
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

0
71

5
73

5
B

9
EP000715735B9
(11) EP 0 715 735 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see page(s) 22

(48) Corrigendum issued on:
01.09.2004 Bulletin 2004/36

(45) Date of publication and mention
of the grant of the patent:
11.02.2004 Bulletin 2004/07

(21) Application number: 94925958.4

(22) Date of filing: 22.08.1994

(51) Int Cl.7: G06F 13/00, G06F 3/06

(86) International application number:
PCT/US1994/009386

(87) International publication number:
WO 1995/006284 (02.03.1995 Gazette 1995/10)

(54) ATA INTERFACE ARCHITECTURE EMPLOYING STATE MACHINES

ATA-SCHNITTSTELLENARCHITEKTUR MIT ANWENDUNG VON ZUSTANDSMASCHINEN

ARCHITECTURE D’INTERFACE ATA UTILISANT DES AUTOMATES FINIS

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
PT SE

(30) Priority: 24.08.1993 US 110883

(43) Date of publication of application:
12.06.1996 Bulletin 1996/24

(73) Proprietor: Seagate Technology LLC
Scotts Valley, CA 95066 (US)

(72) Inventor: CLAY, Donald, W.
Louisville, CO 80027 (US)

(74) Representative: Kenyon, Sarah Elizabeth
Miller Sturt Kenyon
9 John Street
London WC1N 2ES (GB)

(56) References cited:
WO-A-93/03438 US-A- 5 276 662

EP 0 715 735 B9 (W1B1)

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates generally to dig-
ital data storage systems and more particularly to an AT
interface architecture employing state machines for use
in a digital data storage system. More particular still, the
invention relates to a flash solid state memory system
that employs the AT interface architecture comprising
state machines.

Description of the Related Art

[0002] Magnetic disk drives have been widely accept-
ed in the computer industry and are used for storing
large amounts of data. Over the.years, magnetic disk
drives have decreased in size while increasing in oper-
ational speed and in the amount of data that can be
stored on the magnetic media. Magnetic disk drives
have associated with them a seek latency time which is
associated with the time necessary to move the desired
transducer to the desired track or cylinder on the mag-
netic media for the purpose of recovering or writing data
to and from the magnetic media. In addition, there is a
rotational latency associated with waiting for the desired
data sector to pass underneath the transducer once the
transducer is located on the desired track. Magnetic disk
drives also have the associated problems of relying on
mechanical hardware for locating the transducer at a
specific location with regards to the magnetic media and
for maintaining the rotational speed of the magnetic me-
dia at some constant value. The mechanical hardware
is affected by the normal wear and tear associated with
mechanical devices. Further, magnetic disk drives have
employed various track following servo systems for
maintaining the transducer on a desired track once the
transducer reaches that desired track. Finally, the mag-
netic disk drive tracks are divided into a fixed number of
sectors where each sector stores a fixed number of data
bytes. As a rule, magnetic disk drive systems will write
a complete sector each time a sector is written. Where
the data is less than a full sector the data is padded with
zeros to fill up the sector. This is to say that if the sector
length is 512 bytes, whenever a sector is written 512
bytes of data will be written into that sector. The require-
ments of writing a full sector every time a sector is written
means that a substantial portion of the magnetic surface
may be allocated to contain filler data rather than useful
data. Finally, it can readily be realized that the data
would also be recovered from the magnetic disk drive
in sector lengths and, therefore, a full sector must be
read from the disk regardless of the actual amount of
useful data that was recorded in that sector.
[0003] With the advent of solid state memories, at-
tempts have been made to emulate the magnetic disk

drives by use of solid state memories in place of the
magnetic media. Examples of such emulations are
found in U.S. Patent 4,642,759 entitled "Bubble Memory
Disk Emulation System" and U.S. Patent 5,131,089 en-
titled "Solid State Disk Drive Emulation".
[0004] The ideal system would use a solid state mem-
ory that is nonvolatile such as the above-referenced
bubble memory or the solid state memory with its own
power supply to maintain the stored data even though
power is turned off to the drive. However, each of these
solid state memories each have their own advantages
and disadvantages which must be weighed in selecting
which solid state memory should and could be used in
a specific design.
[0005] To have a solid state drive emulating a mag-
netic disk drive, the solid state storage media must be
transparent to the host. Ideally, the solid state drive
would accept the same commands and data formats as
the magnetic disk drive such that no change in program-
ming or system configuration need be done within the
host. A disadvantage associated with most solid state
memories is the time necessary to write into the mem-
ory. The slow write speed is a major reason why the solid
state drives emulating magnetic disk drives have not
been more widely accepted and marketed within the in-
dustry.
[0006] At present, both in magnetic disk drives and in
flash disk drives, a microcontroller is employed for con-
trolling the operation of the storage system. One of the
functions of the microcontroller is to control the transfer
of data across the host interface between the host proc-
essor and the storage media within the drive system.
This requires that the microprocessor dedicate resourc-
es to transfer data between the host computer and the
storage system across the interface in response to
READ and WRITE commands. This requirement limits
the microprocessor's availability to perform other func-
tions and, therefore, results in a limitation on the overall
system performance of the storage system. In magnetic
disk drive storage systems, some attempts have been
made to unburden the microprocessor by transferring
some of the functions of the microprocessor to state ma-
chines or to have two microprocessors involved in per-
forming these functions thereby reducing the workload
on each microprocessor and allowing two functions to
be in process at the same time. In particular, the flash
solid state drive system requires the microprocessor to
be involved in housekeeping operations with regard to
the flash memory, as well as controlling the reading and
writing of data from the memory buffer to the flash mem-
ory itself. This increased responsibility on the microproc-
essor further reduces the system performance due to
the time necessary to perform the increased functions
allocated to the microprocessor.
[0007] WO 93/03438 discloses hardware for automat-
ically reading and writing multiple sectors of data be-
tween a computer bus and a disc drive, in which multiple
sectors of data are transferred without intervention of a

1 2

EP 0 715 735 B9 (W1B1)

3

5

10

15

20

25

30

35

40

45

50

55

microprocessor that controls the operation of the disc
drive.

SUMMARY OF INVENTION

[0008] Accordingly, it is an object of the invention to
provide an AT interface architecture comprised of state
machines such that the microprocessor is not involved
in the transfer of data between the host and the buffer
within the storage system.
[0009] Another object of the invention is to provide a
Read State Machine, a Write State Machine, a Byte
Count State Machine and an Update Task File State Ma-
chine which perform and control the transfer of data be-
tween the storage system and the host across the host
interface.
[0010] Another object of the invention is the coaction
between the Read State Machine, the Byte Count State
Machine and the Update Task File State Machine for
controlling the transfer of data during a READ operation,
that is the transfer of data from the buffer within the stor-
age system to the host.
[0011] Still another object of the invention is the coac-
tion between the Write State Machine, the Byte Count
State Machine and the Update Task File State Machine
during a WRITE operation, that is the transfer of data
from the host to the buffer within the storage system.
[0012] According to a first aspect of the present inven-
tion, there is provided an interface apparatus, within a
storage system, for controlling the transfer of sectors of
data between a host processor and a buffer within the
storage system in response to a READ or WRITE com-
mand issued by the host processor, said apparatus
comprising;

a Byte Count State Machine for controlling the
transfer of a sector of data between said host processor
and said buffer and for generating a signal indicating
when a last byte of data has been transferred for a sec-
tor, wherein the length of sectors is variable for enhanc-
ing data storage;

an Update Task File State Machine having a ma-
chine cycle for decrementing by one the number of sec-
tors still to be transferred after a sector has been trans-
ferred by said Byte Count State Machine and for causing
a sector address to be generated for the next sector to
be transferred by said Byte Count State Machine;

a Read State Machine for controlling the process-
ing of all READ commands issued by said host proces-
sor to said storage system and processing said received
READ command in response to said last byte signal
generated by said Byte Count State Machine and the
initiation of machine cycles in said Update Task File
State Machine to maintain the count of the number of
sectors still to be read and the generation of the next
sector address where a next sector is to be read; and

a Write State Machine for controlling the process-
ing of all WRITE commands issued by said host proc-
essor to said storage system and processing said re-

ceived WRITE command in response to said last byte
signal generated by said Byte Count State Machine and
the initiation of machine cycles in said Update Task File
State Machine to maintain the count of the number of
sectors still to be written and the generation of the next
sector address where a next sector is to be written.
[0013] Briefly, there are four state machines in the AT
interface architecture that are used to control the overall
operation of data transfer to and from the host. A Write
State Machine controls the overall operation of write
commands, i.e. write sectors, write sector long, write
multiple, write buffer, or write DMA. A Read State Ma-
chine controls the operation of the read commands, i.e.
read sectors, read sector long, read multiple, read buff-
er, or read DMA. An Update Task File State Machine
tracks the number of sectors processed and then gen-
erates a signal to increment the sector address. A Byte
Count State Machine controls the conversion of words
to bytes and the transfer of data between the host and
the storage system.
[0014] The operation of the four state machines are
intertwined. The Read and Write State Machines control
the overall operation of the data transfer and are mutu-
ally exclusive. At the point of the transfer for either a
READ or WRITE operation where the task file needs to
be updated, the Read or Write State Machine will initiate
a cycle of the Update Task File State Machine. When
either the Read or Write State Machines are started, the
Byte Count State Machine is activated. The Byte Count
State Machine generates pulses to decrement the byte
counter every time that a byte of data is transferred to
or from the data register and commands to control the
transfer of data during a READ or WRITE operation. The
Read and Write State Machines hold in their cycle await-
ing for the byte count to go to zero as controlled by the
Byte Count State Machine. The Read State Machine is-
sues a gate first word signal to tell the byte count ma-
chine to stage the first two bytes into the data register
so that the first two bytes will be ready when the host
starts reading data.
[0015] The state machines interact with the AT regis-
ters. The task file count register is used to keep the
number of sectors transferred. The head and sector
configuration registers are used to tell when the task file
and sector register should be wrapped. The byte count
register, which is fed from the ECC size register and the
transfer size register, is used to count the number of
bytes in the sector or the number of ECC bytes to be
transferred. The block count register is loaded with a
one for all but the read multiple command and for a read
multiple command to the number of sectors to be trans-
ferred in each block. The byte count register generates
signals when the byte count register contains either a
zero or a one.
[0016] An advantage of the AT interface employing
state machines is that the microprocessor within the
storage system is relieved of the task of controlling the
transfer of data to and from the host processor from the

3 4

EP 0 715 735 B9 (W1B1)

4

5

10

15

20

25

30

35

40

45

50

55

memory buffer within the storage system, thereby in-
creasing system performance.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The invention will be described with respect to
the particular embodiments thereof and references will
be made to the drawings, in which:

FIGURE 1 is a logic diagram of the flash solid state
drive;
FIGURES 2A through 2C is a flow chart setting forth
the operation of the flash solid state drive for a read
operation;
FIGURES 3A through 3C is a flow chart setting forth
the operation of the flash solid state drive for a write
operation;
FIGURES 4A and 4B is a flow chart setting forth the
operation of the flash solid state drive to initialize
the sector translation table during the power up se-
quence;
FIGURE 5 is an overall logic diagram of the major
components of the ATA interface including the four
state machines;
FIGURE 6 is a logic diagram of the Read State Ma-
chine;
FIGURE 7 is a flow chart of the operation of the
Read State Machine;
FIGURE 8 is a logic diagram of the Write State Ma-
chine;
FIGURE 9 is a flow chart of the operation of the
Write State Machine;
FIGURE 10 is the control logic controlled by both
the Read and Write State Machines for providing
control signals to the storage system during a read
and write operation and to the host processor during
a read and write operation;
FIGURE 11 is a logic diagram of the Update Task
File State Machine;
FIGURE 12 is a logic diagram of the Byte Count
State Machine;
FIGURE 13 is a flow chart of the operation of the
Update Task File State Machine; and
FIGURE 14 is a flow chart of the operation of the
Byte Count State Machine.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

SYSTEM ARCHITECTURE

[0018] FIG. 1 is a logic diagram showing the compo-
nents of the flash solid state drive. The flash solid state
drive is 100% hardware and software compatible with
ATA/IDE Interface standards and will support all man-
datory AT-Attachment standard commands.
[0019] Flash memory 27 is comprised of thirty Intel
28F008 flash chips where the chip data size is 8Mb and

8 bits of data are simultaneously written into or read from
the flash chip. Two flash chips are paired together and
addressed at the same time such that 16 bits may be
written or read simultaneously into or from the flash
memory. To accomplish this flash controller 21 is dual
ported so as to provide both address and data to each
flash chip of a chip pair by means of lines 73 through
76. The flash solid state drive is controlled by microproc-
essor 30 in conjunction with an operating program
stored in ROM 28. Microprocessor 30 is also connected
to RAM 29 to allow the dynamic storing of data neces-
sary for controlling the operation of the drive. Microproc-
essor 30 is connected to AT registers 25, to interface
control circuitry 19, to flash control 21, to data multiplex-
er 12, to ECC generator 26, to buffer control and regis-
ters 13 and to ECC detector 15.
[0020] For a write operation, data for a sector is re-
ceived from the host on bus 9 to interface control 19. If
the sector data is to be compressed, the sector data is
transferred via line 64 to compressor 20 for data com-
pression and through CRC generator 22 for generating
CRC data. Data compressor 20 is a LEMPAL/ZIV type
data compressor. The compressed sector data, after be-
ing compressed, is stored in buffer 11. After the com-
pressed sector data has been stored in buffer 11 the
CRC data byte is stored in buffer 11 and made part of
the data associated with the sector being stored.
[0021] If the sector data was not to be compressed,
then the sector data would leave interface control 19 on
line 65 and pass directly through selector 18 , FIFO 14
and data multiplexer 12 into buffer 11. State machines
10 contains a Write State Machine which controls the
sequence of operations during a write operation. Once
the data for the sector, either compressed or uncom-
pressed, has been stored in buffer 11, the Write State
Machine will then transfer the sector data from data mul-
tiplexer 12 to microprocessor 30. Microprocessor 30 act
as a dual port microprocessor where the ports are con-
nected to data multiplexer 12 by means of buses 57 and
69. When sector data is transferred from buffer 11 to
microprocessor 30 the sector data is also passed
through ECC generator 26 to generate the ECC data.
The ECC data is also provided to microprocessor 30.
Microprocessor 30 transfers the sector data and ECC
data as data words, where each data word consists of
two bytes of data,to flash controller 21. Microprocessor
30 performs the task of taking two sequential bytes of
sector data from buffer 11 or ECC data and forming data
words for flash controller 21. Flash controller 21 then
writes the data word into the flash memory 27.
[0022] During a read operation, the read command is
received from the host on bus 9 by interface control 19.
State machine 10 includes a Read State Machine which
controls the sequence of operation during the read pro-
cedure. The data is read from flash memory 27 by flash
controller 21 as data word format. Read sequencer 17
receives the data word and provides sequentially each
of the two bytes of data making up the received data

5 6

EP 0 715 735 B9 (W1B1)

5

5

10

15

20

25

30

35

40

45

50

55

word to speed matching buffer FIFO 16. Read sequenc-
er 17 also routes the data bytes to ECC detector 15 for
the detection of an error in the read data. The output of
FIFO 16 is routed through multiplexer 12 to buffer 11.
When the data for a sector has been stored in buffer 11
and no data error was detected by ECC detector 15, the
sector data is then directed from buffer 11 through data
multiplexer 12 and speed matching buffer FIFO 14 to
selector 18. If the sector data was compressed, then the
sector data is routed from selector 18 through decom-
pressor 24. The decompressed sector data from de-
compressor 24 is routed to CRC checker 23 and to in-
terface control 19 for transmission to the host. If CRC
checker 23 detects a CRC error, a flag is raised to the
host indicating that an error exists in the sector data that
was transmitted for that sector. If the read sector data
was not compressed, selector 18 will route the sector
data via line 65 to interface control 19 which will then
route the data to the host via bus 9.
[0023] State machines 10 also contains a between
sector state machine for updating the task file registers
and a Byte Count State Machine for maintaining of the
number of bytes of data transfer during a read or write
operation.
[0024] AT registers 25 and buffer control registers 13
are used to control the sequence of operation in con-
junction with the microprocessor performing the opera-
tion program as stored in ROM 28 and the operation of
the varies state machines. Buffer control and registers
13 include a tie breaking state machine for to resolve
conflicts in the data multiplexer 12 for access to buffer
11 and a buffer signal state machine for controlling the
reading and writing of data into and out of buffer 11.
[0025] The function of and description of the AT reg-
isters 25 and buffer registers 13 are as follows:

AT REGISTERS

1. TASK FILE ERROR REGISTER

[0026] This register is the error indicating register to
the Host. It has bit significance except at power on or
during the diagnostic command. It is a read only register
to the Host.

bit 7 - Bad Block
bit 6 - ECC Data Check
bit 4 - ID Not Found
bit 2 - Aborted Command
bit 1 - Track 0 Not Found
bit 0 - Address Mark Not Found

2. TASK FILE PRECOMP REGISTER

[0027] This register is a write only register to the Host.
It was previously used to indicate at what cylinder to be-
gin precompensation. It is used for other commands at
this point in time.

3. TASK FILE COUNT REGISTER

[0028] The register is used by the Host to indicate how
many sectors are to be transferred on a read or write
command.

4. TASK FILE SECTOR REGISTER

[0029] This register contains the logical sector re-
quested by the host.

5. TASK FILE SDH REGISTER

[0030] bit 4 - Drive address
bit 3 - Head bit 8
bit 2 - Head bit 4
bit 1 - Head bit 2
bit 0 - Head bit 1

6. TASK FILE CYLINDER LOW REGISTER

[0031] This register and the following register contain
the cylinder requested by the Host.

7. TASK FILE CYLINDER HIGH REGISTER

8. COMMAND REGISTER

[0032] This register is used by the Host to communi-
cate the desired command. When either the Host or the
drive write this register, the drive will become busy.
When the drive is busy, only the drive may write the task
file. When the drive is not busy, only the Host may write
the Task File unless the drive writes 0D bit 3 to enable
the microprocessor access to the Task File registers.

9. SECTOR CONFIGURATION REGISTER

[0033] This is a 8 bit register used to determine the
sector wrap point for the Host values.

10. HEAD CONFIGURATION REGISTERS

[0034] This is a 4 bit register used to determine the
head wrap point for the Host values.

bit 3 - Head bit 8
bit 2 - Head bit 4
bit 1 - Head bit 2
bit 0 - Head bit 1

11. DIGITAL ADDRESS REGISTER

[0035] This register is the same as that read at 3F7
by the Host with the exception that bit 7 is a one instead
of tristate as it is to the interface.

bit 7 - Always 1
bit 6 - Always 1
bit 5 - Head bit 3,

7 8

EP 0 715 735 B9 (W1B1)

6

5

10

15

20

25

30

35

40

45

50

55

bit 4 - Head bit 2,
bit 3 - Head bit 1,
bit 2 - Head bit 0,
bit 1 - Drive 1,
bit 0 - Drive 0,

12. AT CONTROL REGISTER

[0036] This register contains status bits for use by the
microcode. It is read only.

bit 7 - Sector > maximum logical sector
[0037] This bit contains the result of a comparison of
the Task File Sector Number register and the Sector
configuration register.

bit 6 - Head > maximum logical head
[0038] This bit contains the result of a comparison of
the Task File SDH register head value and the Head
configuration register.

bit 5 - Count equal to 0
[0039] This bit is 1 when the Task File Count Register
is equal to 0.

bit 4 - ECC Error
[0040] This bit is 1 when an ECC error is detected.
The ECC is should be reset by toggling AT Res 1 in the
Microprocessor's reset register before continuing.

bit 3 - Byte count equal to 0
[0041] This bit is one when the transfer count register
that counts the number of bytes to be transferred on the
interface is = 0.

bit 2 - IOR & IOW equal to 0
[0042] This bit is for use in PCMCIA interfaces. It is 1
when both IOR & IOW are active low at the same time.

bit 1 - Task file update state 1
[0043] This bit and bit 0 contain the status of the task
file update state machine. It is triggered by the read or
write state machines and normally should not be able to
be seen changing. It should always be in state 00.

bit 0 - Task file update state 0

13. TASK FILE STATUS REGISTER

[0044] This register which is a read/write register used
to access the Task File register which provides a sum-
mary status of the drive. All bits are read/write.

bit 7 - Busy
bit 6 - Ready
bit 5 - Write Fault
bit 4 - Seek Complete
bit 3 - Data Request
bit 2 - Corrected data
bit 1 - Index
bit 0 - Error bit

14. INTERFACE CONTROL REGISTER

[0045] bit 7 - Host PDIAG Out
[0046] This bit, when set to 1, drives the Host PDIAG
signal active low. It is bit settable. bit 6 - LED/Drive

Slave Present
[0047] This bit, when set to 0, drives the DASP signal
low to the interface.

bit 5 - Processor Host Interrupt Enable
[0048] This bit may be set to 1 to force the Host inter-
rupt to be enabled. It should be reset to allow the Host
to enable or disable the drive's interrupt.

bit 4 - OK to continue
[0049] This bit is used by the processor to allow a mul-
tiple sector read or write to continue. Normally it should
be set to 1 at initialization. If sector automation is to be
inhibited, this bit should be set to zero. Then, between
sectors,

bit pulse, CONTINUE R/W 0E, bit 3, is pulsed to
continue the R/W.

bit 3 - Enable microprocessor access to the Task
File Registers.
[0050] This bit is used by the processor to enable it to
access the Task File even when the drive is not busy.
Normally, this bit is not ever used.

bit 2 - INDEX.
[0051] This bit is routed to the status register to sim-
ulate the index of a drive. For the flash drive it should
not be needed.

bit 1 - C,/D.
[0052] The address bit of the drive. Is set to 0 for drive
C or 0 and to 1 for drive 1 or D. This bit is used to route
status and is compared to the bit in the SDH register to
determine the addressed drive.

bit 0 - Slave Present.
[0053] This bit is used to indicate that a second drive
is present. It is set during a reset sequence when dual
drive is detected. It is used to route status because if
the second drive is not present, the master drive, drive
0, is responsible to return 00 for status. Setting this bit
allows the hardware to return this status.

15. BIT PULSES REGISTER

[0054] This register is setup to allow bit operations to
be done. When it is read, it always returns FFh. To pulse
any of these bits, a zero is written.

bit 7 - Set Host IRQ.
[0055] This bit sets the Host interrupt which is gated
by the Host interrupt enable.

bit 6 - Reset Long.
[0056] This reset is used to reset the Long bit, set by
the Host when it does either a read or write long.

bit 5 - Reset Read/Write Mode.
[0057] This bit resets both read and write modes and
the Data Request bit.

bit 4 - Set Read Mode.
[0058] This bit sets read mode. It is the only bit re-
quired to kick off a read operation if all other initialization
has been accomplished.

bit 3 - Continue R/W.
[0059] This bit is used when the sector automation is
disabled, register 0D bit 4 set to 0. to allow the next sec-

9 10

EP 0 715 735 B9 (W1B1)

7

5

10

15

20

25

30

35

40

45

50

55

tor to begin.
bit 2 - Increment Block Release
[0060] This is the drive side pulse used to increment
the Sectors Available Register. 35 on a read and to dec-
rement it on a write.

bit 1 - Increment Transfer Release.
[0061] This is the Host side pulse used to decrement
the Sectors Available Register. 35 on a read and to in-
crement it on a write.

bit 0 - Set Write Mode.
[0062] Used to set Write Mode. This bit is used by the
microprocessor to start any non-autowrite write opera-
tion.

16. INTERFACE BITS REGISTER

[0063] This is a collection of bits that are useful for
interface operation.

bit 7 - Host IRQ.
[0064] This is the Host IRQ bit just before it goes to
the output drivers.

bit 6 - Host Interrupt Enable.
[0065] This is the Host Interrupt Enable bit just before
it goes to the output drivers.

bit 5 - Host PDIAG In.
[0066] This bit comes from the PDIAG line just on the
input side of the Host input receivers.

bit 4 - Long
[0067] This bit is the long bit set by the Host when it
does either a read or write long operation. bit 3 - HI016
[0068] This is the HI016 line just before it goes to the
Host interface.

bit 2 - Write Mode
[0069] The Write mode latch.

bit 1 - Read Mode
[0070] The Read Mode latch.

bit 0 - Drive Slave Present In.
[0071] The drive slave present line at the input receiv-
er lines.

17. ECC 1 GENERATION 4

[0072] This register and the following three registers
are the registers where the ECC Generator 1 result is
stored. To produce the correct ECC value, the registers
should be initialized to F0, 0F, 00, FF respectively before
the data is read by the microprocessor from Port 1 of
the Buffer. It is possible to interrupt the ECC generation
by saving away the current contents of the registers and
then restoring them to continue.

18. ECC 1 GENERATION 3

19. ECC 1 GENERATION 2

20. ECC 1 GENERATION 1

21. ECC 2 GENERATION 4

[0073] This register and the following three registers
are the registers where the ECC Generator 2 result is
stored. To produce the correct ECC value, the registers
should be initialized to F0, 0F, 00, FF respectively before
the data is read by the microprocessor from Port 1 of
the Buffer. It is possible to interrupt the ECC generation
by saving away the current contents of the registers and
then restoring them to continue.

22. ECC 2 GENERATION 3

23. ECC 2 GENERATION 2

24. ECC 2 GENERATION 1

25. ECC DETECTION 4

[0074] The ECC Detection automatically loads the
polynomial into this register and the following 3 registers
and then calculates the ECC on the read data. The hard-
ware then automatically triggers the compare on the
ECC bytes read at the end of the sector.

26. ECC DETECTION 3

27. ECC DETECTION 2

28. ECC DETECTION 1

29.TRANSFER LENGTH LOW REGISTER

[0075] This register and the following one, control the
length of each sector transfer. It is normally set only at
power on time. This register is used to measure the
length of the sector transfer.

30. TRANSFER LENGTH HIGH REGISTER

31. 22 - BIT PULSES 2

[0076] This register is setup to allow bit operations to
be done. When it is read, it always returns FFh. To pulse
any of these bits, a zero is written.

bit 7 - Last Transfer.
[0077] This bit is used to force the AT automation to
end the transfer at the end of the current sector or block.

bit 6 - Start Compressor.
[0078] This bit provides the capability to start the com-
pressor in the non-autowrite case. One of its principle
other uses will be to start the compressor to rewrite a

11 12

EP 0 715 735 B9 (W1B1)

8

5

10

15

20

25

30

35

40

45

50

55

sector that has expanded back to the buffer as a non-
compressed sector.

32. AT DATA 1 REGISTER

[0079] bit 7 - Disable compression
[0080] This bit disables the compression circuitry
when set. When compression is disabled, a sectors are
transferred as 512 byte sectors.

bit 6 - PIO Mode
[0081] When this bit is set, Host data transfers are
done in PIO mode. This bit enables the IO16 circuitry
when set.

bit 5 - EISA DMA Mode
[0082] This bit enables EISA DMA Mode. It controls
how the Host Interface to drive handshaking is done on
read and write DMA commands. When this bit is set
DMA transfers are accomplished with Host DMA Re-
quest and Host DMA Acknowledge remaining active for
the entire transfer although the Host will drop Host DMA
Acknowledge when it does a refresh cycle.

bit 4 - ISA DMA Mode
[0083] This bit enables ISA DMA Mode. It controls
how the Host Interface to drive handshaking is done on
read and write DMA commands. When this bit is set
DMA transfers are accomplished with Host DMA Re-
quest and Host DMA Acknowledge toggling on every
word transfer.

bit 3 - Multiple Mode
[0084] This bit is set when the Host issues a Set Mul-
tiple Command, C6h. It enables multiple operations in
the ASIC hardware.

bit 2 - Host DMA Enable
[0085] This bit is only used by the microprocessor
when connected to a Compaq computer that requires
this signal to initiate a DMA read/write transfer.

bit 1 - Disable Autowrites
[0086] When set this bit, autowrites are disabled. Dis-
abling autowrites requires that the microprocessor set
Write Mode, by clearing register 0E, bit 4.

bit 0 - Disable CRC
[0087] When set this bit disables the CRC check. It
also disables writing the CRC bit.

33. CRC REGISTER

[0088] This register contains the CRC byte. It is valid
at the end of a sector until the start of the next sector.

34. BLOCK SIZE REGISTER

[0089] This register contains the number of sectors in
a block on a read/write multiple. It is set by the micro-
processor when the Host issues a C6h, Set Multiple
Command. It is used by the AT ASIC circuitry to control
the number of sectors to be transferred under a single
DRQ.

35. ECC LENGTH REGISTER

[0090] This register controls the length of the transfer
of the ECC bytes during a long read or write command.
It is usually only set during reset, but may also be mod-
ified by the Host, Set ECC Length. This register is used
by the AT circuitry of the ASIC.

36. BYTE COUNT LOW REGISTER

[0091] This register and the following register are the
actual transfer length registers. They are loaded by the
AT circuitry of the ASIC with either the contents of Trans-
fer Length Register or the ECC Length Register depend-
ent upon if the data or the ECC bytes are being trans-
ferred.

37. BYTE COUNT HIGH REGISTER

38. BLOCK COUNT REGISTER

[0092] This register is used in read or write operations
and is loaded with either 1 if the operation is to be a
normal read or write command, the block size register
for a read or write multiple command where the remain-
ing sectors to be transferred is greater than the block
size, or the Task File Count for a read or write multiple
operation where the number of sectors remaining to be
transferred is less than the block size.

39. READ WRITE STATES REGISTER

[0093] This register contains the current state of both
the read and write state machines that are used to con-
trol any read or write operation to or from the host. The
upper nibble contains the write states and the lower nib-
ble contains the read states.

bit 7 - Wa
bit 6 - Wb
bit 5 - Wc
bit 4 - Wd
bit 3 - Rw
bit 2 - Rx
bit 1 - Ry
bit 0 - Rz

40. SECTORS AVAILABLE REGISTER

[0094] This register maintains a count of the number
of sectors available to the Host on a read operation and
the number of sectors available to the drive on a write
operation. It may be loaded by the microprocessor. It is
reset on an autowrite unless they are disabled.

41. SEGMENT SIZE REGISTER

[0095] This register contains the current size of the
buffer segment. It is set by the microprocessor. It is used

13 14

EP 0 715 735 B9 (W1B1)

9

5

10

15

20

25

30

35

40

45

50

55

by the AT circuitry in the ASIC to determine if there is
any addition room in the segment to place data.

42. BETWEEN SECTOR DELAY REGISTER

[0096] This register is used to control the amount of
delay, in 400ns increments, between sectors on multiple
block read and write operations.

BUFFER REGISTERS

1. START POINTER LOW BYTE 1

[0097] This and the next register makes up the start
pointer to the ram buffer for the first port of the micro-
processor. It is reset to 00000 on the assertion of sector
reset buffer 1. This registers upper address bits 12 - 15
are bounded by the buffer size register so that the start
pointer will only contain valid addresses for the buffer
size selected. This register is loaded into the microproc-
essor #1 address registers when the address pointer
equals the microprocessor wrap pointer.

2. START POINTER HIGH BYTE 1

3. WRAP POINTER LOW BYTE 1

[0098] This and the next register are the wrap pointer
to the ram buffer for the first port of the microprocessor.
It is reset to 00000 on the assertion of sector reset buffer
1. This registers upper address bits 12 - 15 are bounded
by the buffer size register so that the wrap pointer will
only contain valid addresses for the buffer size selected.
This register is loaded with the address that the pro-
grammer wants to cause a wrap condition on.

4. WRAP POINTER HIGH BYTE 1

5. ADDRESS POINTER LOW BYTE 1

[0099] This and the next register makes up the ad-
dress pointer to the ram buffer for the first port of the
microprocessor. This pointer is incremented to the next
address upon each access to the ram. It is reset to
00000h on the assertion of sector reset buffer 1. This
registers upper address bits 12 - 15 are bounded by the
buffer size register so that the address pointer will only
contain valid addresses for the buffer size selected. The
microprocessor #1 start and wrap pointers can be used
to select a wrap point inside the ram buffer. When the
address pointer equals the wrap pointer the Start pointer
is loaded for the next ram access.

6. ADDRESS POINTER HIGH BYTE 1

7. BUFFER CONTROL 1

[0100] This register contains the controls and status

of port 1 of the microprocessor.
bit 7 - U1PROG,(R)

[0101] Progress bit. Bit7 = 0 then the data in the data
register is not valid yet. Bit7=1 Data is valid in the data
register.

bit 2 - ECC ENABLE
[0102] This bit when set will cause the data being read
from this port to be clocked into the ecc generator. If the
bit is clear data will not be clocked into the ecc generator.

bit 1 - U1STRT (W/R)
[0103] Port activation bit. Bit 1 = 0. Any read or writes
to the data register will cause no action to be taken. Bit
1 = 1. If bit 0 = 0 and the data register is written data will
be transferred to the ram. If bit 0 = 1 then an immediate
fetch of the first byte will be performed and there after a
new byte will be fetched upon reading the data register.
bit 0 - U1DIRW,/R (W/R)
[0104] The direction of the port. Bit 0 = 0 a write is
performed to the ram. Bit 0 = 1 a read is performed.

8. DATA REGISTER

[0105] This is the data register for first microprocessor
port. If microprocessor port #1 is active see register 47
then a read of this register will pass data read from the
ram and start off another fetch operation to the ram. A
write to this register will place the written data into the
ram.

9. START POINTER LOW BYTE 2

[0106] This and the next register makes up the start
pointer to the ram buffer for the first port of the micro-
processor. It is reset to 00000 on the assertion of sector
reset buffer 1. This registers upper address bits 12 - 15
are bounded by the buffer size register so that the start
pointer will only contain valid addresses for the buffer
size selected. This register is loaded into the microproc-
essor #1 address registers when the address pointer
equals the microprocessor wrap pointer.

10. START POINTER HIGH BYTE 2

11. WRAP POINTER LOW BYTE 2

[0107] This and the next register makes up the wrap
pointer to the ram buffer for the first port of the micro-
processor. It is reset to 00000 on the assertion of sector
reset buffer 1. This registers upper address bits 12 - 15
are bounded by the buffer size register so that the wrap
pointer will only contain valid addresses for the buffer
size selected. This register is loaded with the address
that the programmer wants to cause a wrap condition
on.

15 16

EP 0 715 735 B9 (W1B1)

10

5

10

15

20

25

30

35

40

45

50

55

12. WRAP POINTER HIGH BYTE 2

13. ADDRESS POINTER LOW BYTE 2

[0108] This and the next register makes up the ad-
dress pointer to the ram buffer for the first port of the
microprocessor. This pointer is incremented to the next
address upon each access to the ram. It is reset to
00000 on the assertion of sector reset buffer 1. This reg-
isters upper address bits 12 - 15 are bounded by the
buffer size register so that the address pointer will only
contain valid addresses for the buffer size selected. The
microprocessor #1 start and wrap pointers can be used
to select a wrap point inside the ram buffer. When the
address pointer equals the wrap pointer the Start pointer
is loaded for the next ram access.

14. ADDRESS POINTER HIGH BYTE 2

15. BUFFER CONTROL 2

[0109] This register contains the controls and status
of port 2 of the microprocessor.

bit 7 - U1PROG, (R)
[0110] Progress bit. Bit7 = 0 then the data in data reg-
ister is not valid yet. Bit 7=1 Data is valid in data register.

bit 2 - ECC ENABLE
[0111] This bit when set will cause the data being read
from this port to be clocked into the ecc generator. If the
bit is clear data will not be clocked into the ecc generator.

bit 1 - U1STRT (W/R)
[0112] Port activation bit. Bit 1 = 0. Any read or writes
to the data register will cause no action to be taken. Bit
1 = 1. If bit 0 = 0 and the data register is written data will
be transferred to the ram. If bit 0 = 1 then an immediate
fetch of the first byte will be performed and there after a
new byte will be fetched upon reading the data register,
bit 0 - U1DIRW,/R (W/R)
[0113] The direction of the port. Bit 0 = 0 a write is
performed to the ram. Bit 0 = 1 a read is performed.

16. DATA REGISTER 2

[0114] This is the data register for second microproc-
essor port. If microprocessor port #2 is active then a
read of this register will pass data read from the ram and
start off another fetch operation to the ram. A write to
this register will place the written data into the ram.

17. INTERFACE START POINTER LOW WORD

[0115] This and the next register makes up the start
pointer to the ram buffer for the interface port. It is reset
to 00000 on the assertion of sector reset buffer 1. This
registers upper address bits 12 - 15 are bounded by the
buffer size register so that the start pointer will only con-
tain valid addresses for the buffer size selected. This
register will be loaded into the interface address pointer

upon a successful compare of the interface address
pointer with the interface wrap pointer.

19. INTERFACE START POINTER HIGH WORD

20. INTERFACE WRAP POINTER LOW WORD

[0116] This and the next register makes up the wrap
pointer to the ram buffer for the interface. It is reset to
00000 on the assertion of sector reset buffer 1. This reg-
isters upper address bits 12 - 15 are bounded by the
buffer size register so that the wrap pointer will only con-
tain valid addresses for the buffer size selected. This
register is loaded with the address that the programmer
wants to cause a wrap condition on.

21. INTERFACE WRAP POINTER HIGH WORD

22. INTERFACE ADDRESS POINTER LOW WORD

[0117] This and the next register makes up the ad-
dress pointer to the ram buffer for the interface. This
pointer is incremented to the next address upon each
access to the ram. It is reset to 00000 on the assertion
of sector reset buffer 1 or upon receiving an autowrite
pulse. This registers upper address bits 12 - 15 are
bounded by the buffer size register so that the address
pointer will only contain valid addresses for the buffer
size selected. The interface start and wrap pointers can
be used to select a wrap point inside the ram buffer.
When the address pointer equals the wrap pointer the
Start pointer is loaded for the next ram access. This
loading of the address pointer to 00000 by receiving an
autowrite can be disabled by setting bit2 of the interface
buffer control register.

23. INTERFACE ADDRESS POINTER HIGH WORD

24. INTERFACE BUFFER CONTROL

[0118] This register contains the controls and status
of the interface buffer port.

Bit 7 - IFPROG- (R)
[0119] Interface access to ram. Bit 7 = 0 when an ac-
cess to the buffer ram is in progress. Bit 7 = 1 when
interface port is idle.

Bit 6 - FIFO FULL (R)
[0120] Bit 6 = 0 When there is room in the sector count
FIFO for releases. Bit 6 = 1 When the sector count FIFO
is full and can not accept any more entries.

Bit 5 - FIFO EMPTY (R)
[0121] Bit 5 = 1 when the sector count FIFO is empty.
Bit 5 = 0 when there is data in the sector count FIFO

Bit 4 - RESET FIFO
[0122] Bit 4 = 1 then the sector count FIFO is held in
reset. Bit4 = 0 the sector count FIFO is free to be loaded.

Bit 2 - AUTOWRITE, (W/R)
[0123] Autowrite load of start pointer. Bit2 = 0 will

17 18

EP 0 715 735 B9 (W1B1)

11

5

10

15

20

25

30

35

40

45

50

55

cause the start pointer to be loaded into the address
pointer if an autowrite is received Bit2 = 1 will inhibit the
load of the start pointer into the address pointer on
autowrites.

Bit 1 - IFACT (R)
[0124] Interface port active. Bit 1 = 0 the interface port
is not active. Bit 1 = 1 means the interface port is active.

Bit 0 - IFDIRW,/R (R)
[0125] Interface direction. Bit 0 = 0 the data is flowing
from the interface to the buffer. Bit 0 = 1 the data is flow-
ing from the buffer to the interface. This bit is only valid
if Bit 1 = 1.

25. SECTOR COUNT LOW

[0126] This and the next register forms the sector
count register port. The nine bits contain the number of
bytes in the sector that is being released. This register
is a port to a 16word X 10bit FIFO. Sixteen sector counts
can be stored up at a time. Bit 6 of register 56 returns
the status of whether this FIFO is full. Both bytes must
be written to load the 10-bit word in the FIFO. Bit 2 of
the sector count high register is used to tell whether the
sector that corresponds to this count is compressed or
uncompressed. You set the bit to 1 for compressed data.
Bits 11-15 are ignored but should be written as zero. The
FIFO is reset and count purged if sector reset buffer 1
is asserted or if the interface deasserts its read_mode.

26. SECTOR COUNTER HIGH

27. READ SEQ START POINTER LOW WORD

[0127] This and the next register makes up the start
pointer to the ram buffer for the read sequencer port. It
is reset to 00000 on the assertion of sector reset buffer
1. This registers upper address bits 12 - 15 are bounded
by the buffer size register so that the start pointer will
only contain valid addresses for the buffer size selected.
This register is loaded into the read sequencer address
pointer upon a successful compare of the read sequenc-
er address pointer to the read sequencer wrap pointer.

28. READ SEQ START POINTER HIGH WORD

29. READ SEQ WRAP POINTER LOW WORD

[0128] This and the next register makes up the wrap
pointer to the ram buffer for the read sequencer. It is
reset to 00000 on the assertion of sector reset buffer 1.
This registers upper address bits 12 - 15 are bounded
by the buffer size register so that the wrap pointer will
only contain valid addresses for the buffer size selected.
This register is loaded with the address that the pro-
grammer wants to cause a wrap condition on.

30. READ SEQ WRAP POINTER HIGH WORD

31. READ SEQ ADDRESS POINTER LOW WORD

[0129] This and the next register makes up the ad-
dress pointer to the ram buffer for the read sequencer
port. This pointer is incremented to the next address up-
on each access to the ram. It is reset to 00000 on the
assertion of sector reset buffer 1. This registers upper
address bits 12 - 15 are bounded by the buffer size reg-
ister so that the address pointer will only contain valid
addresses for the buffer size selected. The read se-
quencer start and wrap pointers can be used to select
a wrap point inside the ram buffer. When the address
pointer equals the wrap pointer the Start pointer is load-
ed for the next ram access.

32. READ SEQ ADDRESS POINTER HIGH WORD

33. READ SEQ CONTROL

[0130] Bit 7 - RSPROG, (R)
[0131] Read sequencer ram access. Bit 7 = 0 the read
sequencer is accessing the ram. Bit 7 = 1 the read se-
quencer is idle.

Bit 1 - RSACT, (R)
[0132] Read sequencer active. Bit1 = 0 means there
is data in the read sequencer FIFO. Bit 1=1 means there
is no data in the read sequencer FIFO.

Bit 0 - RSDIRW-/R (R)
[0133] Read sequencer active. Bit 0 will always equal
0. Since the Read sequencer only writes to the buffer
ram.

34. BUFFER CONTROL REGISTER

[0134] Bit 7 - ADDRESS HIGH-/BCS1 (W/R)
[0135] Address or buffer chip select. Bit7 = 0 the ad-
dress high will be sent to the buffer ram. Bit 7 = 1 then
BCS1 will be sent to the buffer ram in place of the high
address.

35. BUFFER SIZE REGISTER

[0136] This register selects the size ram buffer the
chip will access.

01 - 8K BUFFER
03 - 16K BUFFER
07 - 32K BUFFER
OF - 64K BUFFER

36. BUFFER COUNT REGISTER

[0137] This register contains the number of clock pe-
riods minus 1 that will be used to access the buffer ram.
Only bits 0-3 are used.

19 20

EP 0 715 735 B9 (W1B1)

12

5

10

15

20

25

30

35

40

45

50

55

SYSTEM OPERATION

[0138] The flash solid state drive operates under an
operating system stored in ROM 28. The flash solid
state drive performs various procedures under the joint
control of the operating system and the various state
machines.
[0139] FIGS. 2A, 2B and 2C set forth the operation of
the flash solid state drive for a read operation. The host
sends to the flash solid state drive the read command,
the sector count (the number of sectors to be read) and
the cylinder, head and sector numbers CHS address.
Upon receiving the CHS address, the flash solid state
drive will translate that CHS address into a logical sector
number (LSN). Each sector that would have existed on
the magnetic disk drive will have an associated LSN in
the flash solid state drive. Therefore for the emulation
of any magnetic disk drive, the flash solid state drive will
have a maximum number of LSNs.
[0140] A test is performed which adds the received
sector count to the generated LSN and compares that
summation to the maximum LSN for the flash solid state
drive. If the resulting summation is greater than the max-
imum LSN or if the generated LSN was equal to zero,
then the CHS address sent by the host was in error. Un-
der this condition the flash solid state drive will send sta-
tus of invalid CHS to the host.
[0141] Each LSN has a header stored in the flash
memory which identifies and describes the sector to the
drive. When the drive is first manufactured,a sector
header for each LSN is written in the flash array. A head-
er for each LSN will always exists in the flash array and
it is possible for more than one header for a given LSN
to exist in the flash array however only one such header
will be mark clean and the remaining duplicate headers
will be marked dirty or invalid. During operation, the
drive will store the location of the header of the last LSN
read.
[0142] If the CHS sent by the host was valid, the drive
will read the next header in the flash array after the sec-
tor header who"s location in the flash memory was
stored during the last read operation. The stored sector
header location allows the drive to calculate the flash
array address for the next header. Effectively, if the LSN
stored in the next header is the LSN for the LSN to be
read then the drive has avoided the time necessary to
seek a flash memory address for the LSN.
[0143] Therefore a test is done to compare the LSN
generated for this read operation against the LSN read
from the next sector header after the last stored sector
header during the last read operation. If there is no
match, the drive will go to a sector translation table and
read a partial flash address PFA for the LSN. The sector
translation tables has stored for each LSN a PFA. The
low three order bits of the complete flash address FA
are not included within the PFA thereby reducing the
width of the sector translation table by one byte. In the
preferred embodiment the largest PFA stored in the sec-

tor translation table is address FFFE. The PFA for the
LSN is checked to determine if the PFA has a value of
FFFF which would indicate an error condition. If an error
condition is sensed, status is sent to the host indicating
that the CHS address was not found.
[0144] If the PFA is valid, the drive will add the value
of a scan count multiplied by the header size to the PFA
to form the FA. A scan count register is maintained within
the drive for generating the complete offset for the FA.
At this time, the scan count register will be made to be
equal to zero. The scan count is then determined by the
drive and if the scan count has a value of 0 to 7,the drive
will read the header located at the FA and determine if
the LSN being sought is equal to the LSN stored in the
sector header. If the LSN being sought is different than
the LSN stored in the header, 1 is added to the scan
count and the process is repeated. This loop will be re-
peated until either the scan count reaches a count of 8
which will cause the drive to send status of CHS not
found to the host or a match has been obtained between
the LSN being sought and the LSN stored in the header
being read at the flash address.
[0145] When either the condition that the LSN being
sought was equal to the LSN stored in the next sector
header after the last header stored from the previous
read operation or the LSN in the header of the sector
addressed in the flash memory, the drive will read the
header. The header includes an attribute word and an
offset word. The attribute word contains a bit that is set
if the host has indicated that the sector was bad. If the
bad sector bit is asserted, the drive will send status to
the host indicating that the sector is marked bad. The
offset word indicates the location of the data stored for
that sector. If the attribute word indicates zero bytes of
data, the drive will determine from the attribute word if
the attribute word's compression bit is asserted. The
compression bit indicates whether or not the sector data
was compressed during the writing operation for storing
that sector. If the compression bit was asserted, the
drive will write a sector of compressed zero bytes into
the buffer. If the compression bit was not asserted, the
drive will write a sector, 512 bytes, of zeroes into the
buffer. Since no data was stored within the flash mem-
ory, the drive generates the proper bytes of data to be
stored into the buffer.
[0146] Where the attribute word indicates that data is
stored after the header, the drive will read as data words
from the flash memory the sector data, the CRC data,if
any, and the ECC date. The offset word indicates the
address at which the data is stored. As previously de-
scribed, the flash memory is so arranged as to have the
flash chips paired together such that 16 bits or two bytes
of data may be read from the flash memory at a time.
The offset provides the address at which the data starts
in both of the flash chips. Data is stored on the flash
chips starting at the address indicated by the offset and
subsequent data words are read by incrementing the
flash address for the first data word until all the data

21 22

EP 0 715 735 B9 (W1B1)

13

5

10

15

20

25

30

35

40

45

50

55

words are read for the sector. The data words are con-
verted into two sequential bytes of data by the read se-
quencer 17 and each byte of sector data is read through
multiplexer 12 into buffer 11. The bytes are routed
through the ECC detector 15 and if an error is detected,
the drive will slow down the access time to allow more
settling time for the flash memory and retry reading the
sector. If the retry was not successful, error correction
techniques are then attempted to correct the error. If the
error was not corrected, a flag is set indicating the error
for the host.
[0147] If there was no error or if an error is corrected,
then the drive will again determine whether the com-
pression bit in the header was asserted. If the compres-
sion bit was not asserted, the buffer will contain 512
bytes of data and 4 bytes of ECC data. The drive will
then route the uncompressed sector data through the
data multiplexer 12, FIFO 14, selector 18 and interface
control 19 to the host. If the compression data bit was
asserted, the buffer will contain either the compressed
data for the sector or a compressed sector of zeros, a
CRC byte and 8 bytes of ECC data. The drive will route
the compressed data from buffer 11 through data multi-
plexer 12, FIFO 14 and selector 18 to decompressor 24.
Decompressor 24 decompresses the data and provides
512 bytes of data to interface control 19 to be transferred
to the host. The output of the decompressor 24 is also
sent through the CRC checker 23 which will determine
if the decompressed data contains an error. If an error
is detected by the CRC checker, a flag CRC error is post-
ed to the host to indicate that the sector data just re-
ceived by the host contains an error. The use of the CRC
checker allows the drive to identify an error most likely
occurring during either the compression or decompres-
sion of the sector data.
[0148] FIGS. 3A-3C describe the flash solid state
drive operation for a write operation. The host issues a
write instruction, the CHS address and a sector count
of the number of sectors to be written. Again, the drive
will translate the CHS address into a LSN. The LSN is
then tested to see if the LSN is a valid LSN and, if not,
sends an ID not found status to the host. The drive con-
tains a register which has a bit assigned to it for indicat-
ing whether the data is to be compressed during a write
instruction or has been compressed for a read instruc-
tion. The host processor can set this bit for a write op-
eration and the drive sets the bit during a read operation.
If the compression bit is not asserted, the 512 bytes are
routed through interface control 19, selector 18, FIFO
14 and data multiplexer 12 into buffer 11. No CRC data
is generated for this sector since it was not passed
through compressor 20.
[0149] Whenever a sector is written into the flash
memory, a new header is written for that sector. There-
fore the compression bit in the attribute word of the sec-
tor header is set to indicate the sector data is uncom-
pressed. If the compression bit is asserted, the incoming
sector data is routed through interface control 19 to com-

pressor 20 and CRC generator 22. Compressor 20 is a
LEMPEL/ZIV data compressor. The compressor oper-
ates on 512 byte sectors and achieves an average com-
pression ratio of approximately 1.6 to 1. The uncom-
pressed data is passed through CRC generator 22 to
form one byte of CRC data which is appended to the
compressed data bytes from compressor 20. After com-
pression is completed by compressor 20, a test is made
as to the number bytes generated by the compression
operation. In some circumstances it is possible for the
number of compressed data bytes to be greater than the
512 bytes of original data. If the number of compressed
bytes is equal to or less than 512 bytes, the drive will
route the compressed data and the appended CRC byte
through selector 18, FIFO 14, data multiplexer 12 into
buffer 11. Buffer 11 is segmented and has allocated ar-
eas for storing data received for storage in the flash
memory or for storing data to be sent to the host and for
storing background data.
[0150] If the compression results in greater than 512
bytes of compressed data, the drive will re-route the
compressed data from buffer 11 through data multiplex-
er 12, FIFO 14 and selector 18 to decompressor 24 such
that the data is decompressed back to its original 512
bytes and stored in RAM 31. The sector data is then
routed as uncompressed data from RAM 31 through se-
lector 18, FIFO 14, data multiplexer 12 into buffer 11.
[0151] If the compression results in an unsuccessful
compression, the compression bit in the attribute word
is set to indicate uncompressed. If the compression re-
sulted in a successful compression, the compression bit
in the attribute word is set to indicate compression.
[0152] Since a new sector header is written for each
writing of a sector and a sector header always exists
within the flash memory for each logical sector number,
the active or old sector header in the flash memory must
be marked as invalid or dirty. In a similar fashion to the
read operation, the last header associated with the sec-
tor marked dirty from the last write operation has been
saved by the drive. The drive uses that header address
as a pointer to the address for the next sector header in
the flash array following the sector that was marked dirty
during the last write operation. The drive reads the sec-
tor header and determines if the LSN in that header
equals the LSN associated with the CHS address issued
by the host. If the LSNs are the same, the drive will mark
that header as dirty or invalid. A header is marked dirty
or invalid by making the LSN stored in the header equal
to 0000 which is an illegal LSN. If the LSN being sought
is not equal to the LSN stored in the header, the drive
reads the sector translation table to obtain a PFA for the
LSN,in a similar fashion as was done for the read oper-
ation. Again, the PFA is tested as to whether it is valid
or not and, if it is valid, the scan count is appended to
the PFA to form the complete FA. Again, the scan count
is set to zero and the drive then goes through the same
loop of three steps, that is testing if the scan count is
equal to 8, comparing the LSN being sought against the

23 24

EP 0 715 735 B9 (W1B1)

14

5

10

15

20

25

30

35

40

45

50

55

LSN in the header at the flash address and, finally, to
add 1 to the scan count. If a match of the LSNs is found,
the header at that FA is marked dirty.
[0153] If the PFA was invalid or the scan count
reached a count of 8 indicating that the FA was invalid,
the drive will ignore this situation and proceed with the
write operation. This condition can be ignored because
if the same LSN was issued during a read instruction,
the read instruction would find the same invalid address-
es and would return an ID not found status to the host.
Further, since the write operation generates a new
header which will update the sector translation table,
there is no adverse affect by not finding the previous
header for the LSN.
[0154] At this time either the old header has been
marked invalid or the old header has not been found,
the drive will next make a calculation of the amount of
space available on the flash array for storing data. The
drive maintains a register indicating the amount of free
sectors and the amount of dirty sectors. The drive adds
the number of free sectors to the number of dirty sectors
and subtracts the number of sectors to be written during
this write operation. The results is compared against a
flash reserve set by the drive which is the number of
sectors that have been reserved by the drive which are
not available for writing data into. If the result is greater
than the flash reserve, then standby status is sent to the
host, indicating that the write operation cannot be per-
formed.
[0155] If the result is equal to or less than the flash
reserve, the drive performs the next test by subtracting
the sector size from the number of free sectors and com-
paring the results with the cleanup reserve. The clean-
up reserve is an amount of sectors that are predeter-
mined by the drive as necessary to perform clean-up
operations. If the result is greater than the clean-up re-
serve, the drive goes into a foreground clean-up opera-
tion. Each of the flash chips contains one megabyte of
data and the block area that can be erased is 64 kilo-
bytes of data. Therefore each block of data may contain
a plurality of sectors stored within the block. The drive
then reviews each block on each chip pair within the
flash memory to determine if any block contains only
dirty sectors. If such a block is found, that block is erased
making that block available as free space.
[0156] In some situations the drive will find that a large
proportion of a block is dirty and a small portion of the
block has stored sector data. The drive will then go into
a mode where it will read those sectors into the buffer
and then restore those sectors into the clean-up reserve
area, thereby allowing the block to then be erased and
provide more free space in the array. The reading and
writing during a clean-up operation follows the same
procedure as the reading and writing of read/write com-
mand from the host.
[0157] The drive will next check the block to which it
last read a header during the write operation to deter-
mine whether that block has space available for writing

the present sector. If space is not available, the drive
will move to the next block on the chip and determine if
space is available on that block. Once a block is found
with space available for writing the sector, a test is per-
formed to determine if addition of this header would sur-
pass the maximum number of headers allowed for a
block. If the maximum number of headers would be sur-
passed, the drive will move on to the next block until a
block is found that has both space available and room
for another header.
[0158] Once an available block has been located, the
header for the new sector is written at the next available
address in the block. At this time the drive will write the
flash address less the three low order bits into the sector
translation table as the PFA for the LSN.
[0159] The drive will then check the attribute word for
the new header to determine whether there is any data
to be actually stored for the sector. If no data is to be
written, the write operation is completed. If there is data
to be written, the drive will point the write circuitry on the
proper flash chip pair to the address to begin writing the
sector data. As previously discussed in the read opera-
tion, data is written with the first data word being written
at the offset flash addresses and all subsequent data
words written at incremented addresses until all the data
words have been written into the flash memory. Again
data is written in a form of data words where data words
contains two bytes of data. Effectively, all even bytes of
data are stored in one flash chip and all odd bytes of
data for the sector are stored in the other flash chip. Dur-
ing an erase operation of a block, a block in both of the
flash chips will be erased.
[0160] The drive is now ready for the actual writing of
data into the flash memory. The sector data stored in
buffer 11 is first routed through multiplexer 12 to micro-
processor 30 and to ECC generator 26. ECC generator
generates 4 bytes of ECC data which is appended to
the end of the sector data to be stored. Microprocessor
30 receives the byte by byte data from buffer 11 and
provides data words to flash controller 21 such that flash
controller 21 may write 16 bits in parallel into the flash
memory. Microprocessor 30 will provide data words until
all the data words for the sector data, the CRC data,if
any, and the ECC data have been read into the flash
memory.
[0161] During a write operation the sectors associat-
ed with a write command are attempted to be written
sequentially into the flash array. However, this is not a
requirement as the flash solid state drive maintains the
location of each sector's location within the drive. Fur-
ther, during a foreground operation, sectors may be
moved from their original positions to other positions
within the memory thereby destroying the sequentiality
of location from which the sectors were originally written
in the flash memory. However, the location of each sec-
tor is updated in the sector translation table whenever
a sector is written, either in response to a write com-
mand from the host or during a foreground clean-up op-

25 26

EP 0 715 735 B9 (W1B1)

15

5

10

15

20

25

30

35

40

45

50

55

eration.
[0162] When power is brought up to the flash solid
state drive, the sector translation table must be recreat-
ed from the header information stored in the flash mem-
ory. ROM 28 is composed of flash chips and, therefore,
is capable of being written into. A table of bad blocks is
stored in ROM 28. Seldom does a block within the flash
array go bad and, therefore, the time necessary to write
this data into ROM 28 is not prohibitive. A block is
deemed bad if two or more unrecoverable errors have
been detected during a read operation from two or more
unique locations in that block.
[0163] FIGS. 4A and 4B show the procedure enacted
by the flash solid state drive to reconstruct the sector
translation table during the power-up sequence. First,
the PFA for each LSN is set to the illegal address of
FFFF. Next, the registers containing the number of free
sectors,dirty sectors and total number of sectors are re-
set to zero. Finally, the bad block data is read from ROM
28 and stored in RAM 29.
[0164] A test is done to establish if the last block in
the flash array has been processed. If the last block has
been processed, the initiation procedure is done. If the
last block has not been processed, the drive will go to
the next block in the flash array. In the beginning, the
drive will go to the first block in the first chip pair and
sequentially go through the blocks on a given chip pair
and then through all chip pairs until all blocks on all chip
pairs have been processed. When arriving at a block the
block table is checked to determine if the block is bad.
If the block is bad, the block is not processed and the
drive will go to the next block. Arriving at a good block
the drive will read from the block the cycle count for that
block.
[0165] Each block has stored within a designated ar-
ea in the block a cycle count indicating the number of
times the block has been erased. The cycle count is read
and noted by the drive for that block of memory. The
cycle count for the block being processed is compared
with the maximum cycle count presently stored in the
maximum cycle counter register. If the cycle count for
this block is greater than the maximum cycle count in
the register, the cycle count for this block is stored and
becomes the maximum cycle count. The maximum and
individual cycle counts are used by the drive in deter-
mining the wear profile of the flash memory. Since flash
chips have a lifetime defined by the number of times the
blocks on the chip are erased, it is desirable to attempt
to maintain the cycle count across the flash memory as
evenly as possible such that the flash chips in the flash
memory age at the same rate. The drive can use the
knowledge of the maximum cycle count and the cycle
count for a given block in determining whether or not
that block should be erased during a clean-up process
as described for the write operation. By not erasing the
block, the block will remain in its present erase age until
other portions of the flash memory obtain approximately
the same age.

[0166] Once arriving at a block the process will read
the next header in the block. The header first read will
be the first header in each block as that block is proc-
essed. The header LSN is read and that LSN's location
is read from the sector translation table to determine if
that LSN's PFA is equal to the invalid address of FFFF.
A header is maintained by the drive at the end of the
space allocated for header data to be written into the
flash memory. This last header for has a LSN equal to
FFFF. Therefore, after the header is read, the header
LSN is checked for the value of FFFF and, if the condi-
tion is met, the drive knows that all headers have been
processed. If the header LSN is not equal to FFFF then
the drive will go on and process the header in that block.
[0167] Next, the header for the sector is checked to
see if the sector is dirty, that is, does the sector contain
valid data. The sector is noted to be dirty by having a
LSN equal to 0000. If the sector is dirty, the dirty block
register and dirty array register are updated and the
drive will read the next header. If the header is not dirty,
the drive will read the logical sector number in the head-
er and then reference that LSN in the sector translation
table to determine if the PFA associated with that LSN
is FFFF. If the PFA is not FFFF, the drive knows that it
had processed the same LSN prior to processing this
header.
[0168] The header attribute word has a field which in-
dicates the revision number which is generated by the
drive whenever a LSN is written such that the highest
revision number represent the LSN having the most re-
cent and therefore valid data for that LSN. The drive will
read the header for the PFA in the sector translation ta-
ble for the LSN. The drive then compares the revision
number in the retrieved or old header for that LSN with
the revision number for the presently being processed
LSN. If the presently processed header's revision
number is greater than the old header's revision
number, the old header's is marked dirty by making a
old header's LSN equal to 0000. The drive will then up-
date the dirty block register and dirty array register. Next,
the drive will modify the sector translation table to reflect
the PFA of the header presently being processed for the
LSN stored the header presently being processed. The
drive will then go on to process the next header.
[0169] If the header revision number for the presently
processed sector is less than the revision number in the
old header, then the presently processed header's LSN
is marked dirty by making the LSN equal to 0000. In
practice this occasion should not arise because low re-
vision sectors should have been marked dirty when the
latest revision was written. This process is done to make
sure that the PFA associated with a LSN contains the
most recent data that was stored in the flash memory
for that LSN. Once again the total dirty block register
and array register are updated and the drive then pro-
ceeds to the next header for processing.
[0170] When the last header has been processed in
that block, the drive will update the total amount of free

27 28

EP 0 715 735 B9 (W1B1)

16

5

10

15

20

25

30

35

40

45

50

55

flash in the block, chip and array registers. When the
last block has been processed, the sector translation ta-
ble has been rebuilt and the total amount of free flash
for each block, chip and the memory is stored in a free
flash block registers, free flash chip registers and a free
flash memory register. At the end of the initialization the
drive will therefore have reconstructed the sector trans-
lation table and will know the free flash available for
processing on each chip, for each block on each chip
and for the total memory.
[0171] The foregoing description of the system archi-
tecture and the system operation would allow a drive
designer, skilled in the art, to construct the flash solid
state drive and to write an operating system for operat-
ing that constructed flash solid state drive in the manner
as heretofore set forth above. It is understood that the
designer of the operating system may wish to vary the
steps in the procedure as set forth in the discussion of
the operation of the system. Further, the designer may
wish to design the system architecture to take advan-
tages of the specification which the designer is setting
for his own flash solid state drive. Such variations that
could be to include would be where the operating sys-
tem stored in ROM performs the procedures that are
carried out by the state machines or where additional
state machines carry out other portions of the operating
system that where stored in ROM.
[0172] From the foregoing discussion a flash solid
state drive has been described which emulates a mag-
netic disk drive. Specifically, the drive described emu-
lates a 40 megabyte magnetic disk drive. The flash
memory array will store 30 megabytes of compressed
data which is equivalent to approximately 45 megabytes
of uncompressed data. The flash drive described em-
ploys various length sectors for enhancing data storage,
the simultaneous reading and writing of two bytes of in-
formation into and out of the flash memory to increase
the speed of the flash solid state drive and the dynamic
storage of sectors in the flash array in accordance with
availability of within the flash memory.
[0173] The flash solid state drive is transparent to the
host and can be used directly in place of a magnetic disk
drive having the same storage capacity, or less. Further,
the flash array may be altered in size to contain more or
less flash chips, thereby increasing or decreasing the
capacity of long term memory within the flash solid state
drive. The described flash solid state drive is plug com-
patible with the magnetic disk drive which it emulates
and does not require any reprogramming of the host
system employing the flash solid state drive.

AT INTERFACE ARCHITECTURE STATE MACHINES

[0174] Figure 5 is an overview of the major compo-
nents of the AT architecture involved in the transfer of
data to and from the host. In the WRITE command the
host places a data word, two bytes, into data register 2,
then the data word is transfer as two bytes of data via

multiplexer 3 either directly to the buffer 11 if their is to
be no compression or to compressor 25 and then to buff-
er 11 if their is to be compression. In the READ com-
mand, two bytes of data will be transferred from buffer
11 via multiplexer 3 to data register 2 then to the host
as a data word if the sector being read was not com-
pressed or data will be transferred from buffer 11 to de-
compressor 24 and then two bytes will be sequentially
transferred from decompressor 24 via multiplexer 3 to
data register 2 and then a data word will be transferred
to the host if the sector was compressed.
[0175] AT registers 25 can be accessed by the host,
the microprocessor and the state machines and contain
the information for controlling the transfer of data during
a READ or WRITE operation. Byte Count State Machine
4 controls the transfer of a sector of data between data
register 2 and buffer 11, compressor 25 and decompres-
sor 24. Update Task File State Machine 5 determines
when all sectors have been transferred and will cause
the sector address to be incremented if another sector
is to be transferred. Read State Machine 6 controls all
READ commands. Write State Machine 7 controls all
WRITE commands.

UPDATE SECTOR TASK STATE MACHINE

[0176] The purpose of the Update Task File State Ma-
chine is to increment the cylinder head and sector val-
ues of the sector address, and to decrement the sector
counter upon a request from either the Read State Ma-
chine or the Write State Machine.

STRUCTURE

[0177] Figure 11 is a logic diagram of Update Task File
State Machine 5. FFs 307 and 308 form a two bit register
storing the present state of the state machine where FF
308 is the low bit. ANDs 309, 310 and 311 decode the
count in FFs 307 and 308. AND's 309 output F2 will be
high during state 2 of the state machine, AND's 310 out-
put F1 will be high during state 1 of the state machine
and AND's 311 output F3 will be high during state 3 of
the state machine. ANDS 300, 301, 303, NOR 302 and
ORs 305 and 304 sequence the states of the state ma-
chine as a function of the present state stored in FFs
307 and 308 and input control signal from the AT regis-
ters 25.
ORs 305 and 306 output represent the next state of the
state machine that will be read into FFs 307 and 308 by
the next clock pulse. FFs 312 and 313, ANDs 315 and
317 and NANs 314 and 316 control the incrementing of
the sector address in response to outputs F1 and F3.

OPERATION

[0178] Figure 13 is a flow chart of the operation of the
Update Task File State Machine.

29 30

EP 0 715 735 B9 (W1B1)

17

5

10

15

20

25

30

35

40

45

50

55

State 0

[0179] The state machine remains reset, at state 0,
until it receives an update task file signal from either the
Read or Write State Machine. If this sector counter is
equal to zero and this is not the first operation of a read
or write operation, the state machine will not respond to
the update task file signal and will remain in state 0. If
the sector count is not equal to zero or this is a first op-
eration then the update task file signal will cause the
state machine to switch to the next state.

State 1

[0180] In state 1, output F1 will be high which will
cause the sector count to be decremented in the AT reg-
isters 25. The sector count is then tested and if equal to
zero the state machine will switch to stat 0 upon the next
clock pulse and the cycle of the state machine is com-
pleted. If the sector count is not equal to zero then the
state machine will switch to state 3 upon the next clock
pulse. The fact that the sector count register is decre-
mented first allows the read and write functions and all
of their respective different ending conditions to be com-
pleted in the exact same fashion as if the microproces-
sor was performing the task. For example, at the end of
a read operation, the task file register is to point to the
last sector read during the read operation. In this case,
the count register is decremented to zero at the end of
the transfer and the state machine returns to state 0
rather than going into state 3, thereby saving the ad-
dress of the last sector that was read. In a write opera-
tion, the task file must also point to the last sector trans-
ferred and again since the task file sector counter reg-
ister is decremented first, and under these conditions
will go to zero, the state machine will return to state 0
rather than to state 3, thereby maintaining the address
of the last sector transferred.

State 3

[0181] When the state machine is in state 3, the output
F3 of AND 311 is high which will cause the cylinder, head
sector values for the next sector address to be generat-
ed as a function of the output of FFs 312 and 313. The
state machine will switch to state 2 upon the next clock
pulse.

State 2

[0182] When the state machine is in state 2, the output
F2 of AND 309 will be high which will read into FF 312
the results of a comparison of the present sector value
and the maximum sector value stored in AT registers 25
and will read into FF 313 the results of a comparison of
the present head value with the maximum head value
stored in the AT registers. This allow the proper se-
quencing of the sector addresses. The state machine

will then switch to state o and the cycle is complete.

BYTE COUNT STATE MACHINE

[0183] The purpose of the Byte Count State Machine
4 is to control the transfer of a sector of data between
the host and buffer 11. A cycle of the state machine will
transfer two bytes of data, thus the state machine will
have 256 cycles for the transfer of a sector of data com-
prising 512 bytes.

STRUCTURE

[0184] Figure 12 is the logic diagram for the Byte
Count State Machine. FFs 423, 424 and 425 form a
three bit register storing the present state of the state
machine where FF 423 is the low bit and FF 425 is the
high bit. NANs 426, 427 and 428 decode the count in
FFs 423, 424 and 425. NAN's 426 output C1 will be high
during state 1 of the state machine, NAN's 427 output
C5 will be high during state 5 of the state machine and
NAN's 428 output C2 will be high during state 2 of the
state machine. ANDs 414 through 419 sequence the
states of the state machine as a function of the present
state stored in FFs 423, 424 and 425 and control signals
from the AT registers 25. The state machine once start-
ed will cycle through state 0,1,3,2,6,7,5,4 and 0 in that
order. ANDs 420, 421 and 422 outputs represent the
next state of the state machine that will be read into FFs
423, 424 and 425 by the next clock pulse. FF 424, ANDs
431, 432, 435, 436 and 429, NANs 439, 433, 434, 440
and 443, NORs 437 and 438 and INV 441 control the
sequencing of data between data register 2 and buffer
11 as a function of the state of the state machine and
control signals from AT registers 25. FFs 400 and 403,
ANDs 406, 413, 412 and 405, ORs 402, 410 and 411,
INV 404, 407 and 409 and NAN 401 synchronize the
state machine as a function of control signals received
from AT registers 25.

OPERATION

[0185] Figure 14 is a flow chart of the operation of the
Byte Count State Machine.

State 0

[0186] The state machine is activated by the setting
of the read mode or write mode in the AT registers 25
or by the generation of a gate first word signal by the
Read State Machine 6. The state machine will remain
in state 0 until an IOW or an IOR signal is raised in the
AT registers 25 at which time the state machine will be-
gin one cycle of operation.

State 1

[0187] In state 1, the output of NAN 426 will be high

31 32

EP 0 715 735 B9 (W1B1)

18

5

10

15

20

25

30

35

40

45

50

55

resulting in a signal being generated to decrement the
byte count register in the AT registers 25 and to generate
a timing signal to transfer one byte of data from or to the
low byte position in data register 2. In a WRITE com-
mand, if the data is not to be compressed, the low byte
of data register 2 is transferred to directly to buffer 11
under control of buffer controller 13 which receives the
clock low byte signal. In a WRITE command, if the data
is to be compressed, the low byte of data register 25 is
transferred to compressor 25 which receives the clock
low byte signal. Further buffer controller 13 also re-
ceives the transfer low byte signal and will transfer a
compressed data byte from the compressor if a com-
pressed data byte is ready to be transferred. In a READ
command, if the data is not compressed, a byte is trans-
ferred from buffer 11 to data register 2 under control of
buffer controller which received the clock low byte sig-
nal. In a READ command, where the data was com-
pressed, one byte is transferred from the buffer 11 to
decompressor 24 under control of the buffer controller
13 in response to the clock low byte signal, if their are
any bytes of compressed data to be transferred, and one
byte is transferred from decompressor 24 in response
to the clock low byte signal to the low byte of data reg-
ister 2. Multiplexer 3 in response to the type of command
and whether compression is to be performed as indicted
by the AT registers 25 provides the required data path
for the byte being transferred.

State 3

[0188] No action is taken.

State 2

[0189] In state 2, output C2 of NAN 228 will be high
which will result in a gate high byte signal being gener-
ated. The gate high byte signal is detected by multiplex-
er 3 which will then gate the next byte to be transferred
to or from the high byte od data register 2.

State 6

[0190] No action is taken.

State 7

[0191] No action is taken.

State 5

[0192] In state 5, the output of NAN 426 will be high
resulting in a signal being generated to decrement the
byte count register in the AT registers 25 and to generate
a timing signal to transfer one byte of data from or to the
low byte position in data register 2. In a WRITE com-
mand, if the data is not to be compressed, the high byte
of data register 2 is transferred to directly to buffer 11

under control of buffer controller 13 which receives the
clock high byte signal. In a WRITE command, if the data
is to be compressed, the high byte of data register 25 is
transferred to compressor 25 which receives the clock
high byte signal. Further buffer controller 13 also re-
ceives the transfer high byte signal and will transfer a
compressed data byte from the compressor if a com-
pressed data byte is ready to be transferred. In a READ
command, if the data is not compressed, a byte is trans-
ferred from buffer 11 to data register 2 under control of
buffer controller which received the clock high byte sig-
nal. In a READ command, where the data was com-
pressed, one byte is transferred from the buffer 11 to
decompressor 24 under control of the buffer controller
13 in response to the clock high byte signal, if there are
any bytes of compressed data to be transferred, and one
byte is transferred from decompressor 24 in response
to the clock high byte signal to the high byte of data reg-
ister 2. Multiplexer 3 in response to the type of command
and whether compression is to be performed as indicted
by the AT registers 25 provides the required data path
for the byte being transferred.

State 4

[0193] No action is taken.

State 0

[0194] Same as state 0 as described above.

READ STATE MACHINE

[0195] The Read State Machine frees the microproc-
essor from intervention between sectors, thereby re-
moving the between sector overhead of the data trans-
fer caused by the storage system. The activities that are
eliminated are the updating of the task file, checking to
see if there is data in the buffer, and telling the drive that
a sector has been transferred. This total elimination
eliminates any host related microprocessor activity be-
tween sectors on a read operation.

STRUCTURE

[0196] Figure 6 is a logic diagram of the Read State
Machine 6 and Figure 10 is a logic diagram of the control
circuitry controlled by the Read State Machine 6. FFs
127, 128, 129 and 130 form a four bit register storing
the present state of the state machine where FF 130 is
the low bit and FF 127 is the high bit. State decoder 131
decodes the count in FFs 127, 128, 129 and 130 and
provided sixteen signals R0 to RF corresponding to the
sixteen states 0 to F where the signals will be present
when the state machine is in the corresponding state.
NANs 100 through 126 sequence the states of the state
machine as a function of the present state stored in FFs
127, 128, 129 and 130 and control signals from the AT

33 34

EP 0 715 735 B9 (W1B1)

19

5

10

15

20

25

30

35

40

45

50

55

registers 25. NANs' 123, 124, 125 and 126 outputs rep-
resent the state of the state machine that will be read
into FFs 127, 128, 129 and 130 by the next clock pulse.
The logic of Figure 9 generates the various control sig-
nal for the processing of the READ commands as a func-
tion of the state of state machine as provided by output
signal R0 through RF and control signals from the AT
register 25.

OPERATION

[0197] The operation of the Read State Machine 6 will
be described with reference to the flow chart of Figure 7.

State 0

[0198] The Read State Machine 6 is in a sleep condi-
tion in this state until the read mode is set in the AT reg-
ister 25 which causes the state machine to be switched
to state 1.

State 1

[0199] In state 1, the read initiation takes place. When
in state 1 the byte count and block count will be loaded
in the AT registers 25, the update task file state machine
5 will initiate a cycle of operation and a first read signal
and a first operation signal will be generated. The state
machine will be switched to state 9 by the occurrence
of the next sector pulse.

State 9

[0200] The state machine will stay in state 9 until the
OK-to-transfer condition is indicated by the AT registers
25. The OK-to-transfer signal indicates that there is data
in the buffer and that the decompressor 24 is ready and
active. For multiple reads, data in the buffer means that
there is one block worth of sectors in buffer 11. For all
other reads, data in the buffer means that there is one
sector in the buffer. When the microprocessor has fin-
ished putting a sector in the buffer, it increments the sec-
tor available register in the AT registers 25 which is used
by the state machine to tell if data is in the buffer by
raising the OK-to-transfer signal. After the OK-to-trans-
fer signal has been raised the next clock pulse will place
the state machine in state B.

State B

[0201] The state machine will remain in state B until
the decompressor 24 or the buffer controller 13 indi-
cates that data is ready to be transferred by raising data
ready in AT register 25. After the data ready signal has
been generated and before the next clock pulse, a gate
first word signal will be generated to the byte counter
state machine 4. This signal will cause the byte count
state machine to cycle through one operation, providing

the first two bytes of the sector to be loaded in the data
register to be transferred to the host. At the next clock
pulse, the state machine will switch to state A.

State A

[0202] The state machine remains in state A until the
host is ready for the transfer of data as indicated by the
host processor by setting the proper bit in the AT regis-
ters 25. State A will generate a clock compression bit
signal which will cause the multiplexer 3 to route data to
the data register 2 from the decompressor 24 if the com-
pression bit is turned on or from the buffer 11 if the com-
pression bit is turned off. The results will be the issuing
of a host ready signal resulting in the state machine
switching to state 2 upon the issuance of the next clock
pulse.

State 2

[0203] The state decoder 131 will generate signal R2
which will reset busy, set IRQ, and set DRQ. The reset-
ting of busy and the setting of the DRQ and IRQ starts
the transfer of data between the storage system and the
host.
At the next clock pulse, the state machine will switch
from state A to state 6.

State 6

[0204] The Read State Machine 6 will stay in state 6
until the byte counter goes to zero. The byte counter is
controlled by the Byte Count State Machine and the byte
counter going to zero indicates that a sector has been
transferred. When the byte count equals zero has been
raised in the AT registers 25, the state machine will be
switched to state 4 by the next clock pulse.

State 4

[0205] State decoder 131 will provide signal R4 to the
control logic which in turn will cause the transfer done
bit to be set in the AT registers 25 and will decrement,
if not a READ LONG command, the sectors available
register and the block count register in the AT registers
25. IF the sector count is equal to zero then the state
machine will be switched to state C and if the sector
count is not equal to zero (only in a MULTIPLE READ
command) the state machine will be switched to state 5.

State C

[0206] State decoder will provide signal C which will,
in the AT registers, set the enables ECC transfer bit and
resets IO16 bit, which is required during normal transfer
when the host is transferring data words but is not re-
quired when the ECC bytes are transferred during a
read long command. Further the busy bit in the AT reg-

35 36

EP 0 715 735 B9 (W1B1)

20

5

10

15

20

25

30

35

40

45

50

55

isters will be reset if the read command is a READ LONG
command. If the read command was a READ LONG
command then the long bit in the AT registers 25 will be
set and the state machine will switch to state E otherwise
the state machine will switch to state 8.

State E

[0207] State E is entered where the ECC bytes are to
be transferred to the host. State B will reset the long bit,
load the byte count, which in this case will be from the
ECC size register, and will issue a gate first word signal
to the Byte Count State Machine to initiate operation of
the Byte Count State Machine. At this time the Byte
Count State Machine will transfer the ECC bytes to the
host processor. The state machine, upon the next clock
pulse, will go from state E to state 6 and waits until the
byte count equals zero, indicating that the ECC bytes
have, in this case, been transferred. Upon the next clock
pulse after the byte count equals zero signal has been
generated, the state machine will again enter state 4
from state 6. The transfer done interrupt will be gener-
ated to the host processor. The block counter will be
decremented and the sector available counter will be in-
cremented since the long bit in the AT registers 25 has
been reset by state E. The sector count will equal zero
and the state machine will go from state 4 to state C.
State C again enables the ECC transfer, resets IO16
and sets busy. Since long bit was reset, the state ma-
chine at the next clock pulse will go to state 8 rather than
state E.

State 8

[0208] State 8 will reset the read mode, reset the ECC
transfer, and reset DRQ. The next clock pulse will switch
to state 0 because the READ command has been com-
pleted.

State 5

[0209] State 5 will be entered only upon a MULTIPLE
READ command and the next clock pulse will switch the
state machine to state 7.

State 7

[0210] State 7 will prepare the state machine to read
the next sector by loading the byte counter, generate the
clock compression bit signal to determine if compres-
sion is turned on for the next sector such that the proper
data path is established by multiplexer 3 and initiating a
cycle of the update task file state machine. The update
task machine will decrement the sector counter and will
generate the address for the next sector to be read. If
the block count is not equal to zero then the next sector
to be read is within the block and present in the buffer.
Under this condition, the state machine will loop through

states 5, 7, 6 and 4 until all sectors in the MULTIPLE
READ command have been read. At this time, the state
machine will switch to state c rather than state 5 and will
proceed through states C and 8 into state 0 completing
the MULTIPLE READ command. If the block count is
equal to zero, the number of sectors to be read is greater
than the number of sectors in the block. This condition
will require the loading of the sectors in the next block
to be loaded into the buffer before the next sector can
be transferred to the host. Under this condition the state
machine will be switched from state 7 to state F by the
next clock pulse.

State F

[0211] State F ends the current block transfer by re-
setting DRQ, setting busy, loading the block count to the
value of the number of sectors in the next block and
loading the intersector delay counter from the AT regis-
ters. The next clock pulse switches the state machine
to state D.

State D

[0212] The state machine will remain in state D until
the end of the delay and then the next clock pulse will
switch the state machine to state 9. The state machine
will then cycle through states 9, 8, A, 2, 6, 4, 5, 7, F and
D until all sector in all blocks have been read for the
MULTIPLE READ command. On the last pass through
the cycle the state machine will switch from state 4 to
state C rather than to state 5 and then will proceed
through state 8 to state 0 completing the Multiple READ
command.

WRITE STATE MACHINE

[0213] The Write State Machine controls the opera-
tion of all writes and allows the complete automation of
write transfers. This allows the between sector over-
head of a write transfer to be eliminated from the task
to be performed by the microprocessor, thereby freeing
the microprocessor to perform other tasks simultane-
ously as the write machine controls the write operation.
Since all write operations are treated as multiple oper-
ations, a multiple transfer will be treated until the seg-
ment is completed without host intervention, just like a
normal write operation. This means that the WRITE
MULTIPLE command can become an auto write com-
mand, thereby making WRITE MULTIPLE command.
The only distinction in the write state machine between
a WRITE MULTIPLE command and other WRITE com-
mands is that the block size for non-multiple WRITE
command is always equal to one.

STRUCTURE

[0214] Figure 8 is a logic diagram of the Write State

37 38

EP 0 715 735 B9 (W1B1)

21

5

10

15

20

25

30

35

40

45

50

55

Machine 7 and Figure 10 is a logic diagram of the control
circuitry controlled by the Write State Machine 7. FFs
228, 229, 230 and 231 form a four bit register storing
the present state of the state machine where FF 231 is
the low bit and FF 228 is the high bit. State decoder 232
decodes the count in FFs 228, 229, 230 and 231 and
provided sixteen signals W0 to WF corresponding to the
sixteen states 0 to F where the signals will be present
when the state machine is in the corresponding state.
NANs 200 through 211, 218 through 225 and 227, ANDs
209 through 217 and OR 226 controls the sequence the
states of the state machine as a function of the present
state stored in FFs 228, 229, 230 and 231 and control
signals from the AT registers 25. NAN 224, NAN 225,
OR 226 and NAN 227 outputs represent the state of the
state machine that will be read into FFs 228, 229, 230
and 231 by the next clock pulse. The logic of Figure 10
generates the various control signal for the processing
of the WRITE commands as a function of the state of
state machine as provided by output signal W0 through
WF and control signals from the AT register 25.

OPERATION

[0215] The operation of the Write State Machine 7 will
be described with reference to the flow chart of Figure 9.

State 0

[0216] The Write State Machine 7 is in a sleep condi-
tion in this state until the write mode is set in the AT reg-
ister 25 which causes the state machine to be switched
to state 2.

State 2

[0217] The state machine in state 2 will generate a
write start signal which will set the first write latch in the
state machine, resets DRQ if set and blocks the first
IRQ. The next clock pulse will switch the state machine
to state 3.

State 3

[0218] The state machine will wait for an OK-to-trans-
fer signal to be generated which is indicative that there
is space available in buffer 11. The amount of space re-
quired in the buffer 11 is different if the command is a
WRITE MULTIPLE command as opposed to any other
WRITE command. For a WRITE MULTIPLE command,
enough sectors are required to be free in buffer 11 as
the number of sector in the block to be transferred. For
any other WRITE command there only needs to be one
sector available in buffer 11 for the transfer to proceed.
For all WRITE commands the segment size in the AT
registers 25 is used to determine the availability of buffer
11. Upon the occurrence of the OR-to-transfer signal,
the next clock pulse will switch the state machine in state

7.

State 7

[0219] State 7 will load the byte counter, load the block
counter, set DRQ, reset busy, and set IRQ. The setting
of IRQ indicates to the host that the transfer is ready to
take place. The state machine is then switches to state
6 by the next clock pulse.

State 6

[0220] The state machine will remain in state 6 until
the byte counter equals zero under the control of the
Byte Count State Machine 4. The setting of the byte
count equal to zero indicates that a sector has been
transferred from the host to buffer 11. Upon sensing that
the byte count is equal to zero the state machine will be
switched to state 4, by the next clock pulse. State 4
[0221] State 4 will set the transfer done interrupt, will
generate an update task file signal which in turn will
cause the Update Task File State Machine 5 to decre-
ment the sector counter and increment the sector ad-
dress, will decrement the block counter, and will incre-
ment the transfer release which in a write operation will
decrement the sector available register in the AT regis-
ters 25. Upon the next clock pulse the state machine will
switch to state C.

State C

[0222] State C will reset the first write latch in the state
machine. If the block counter is not equal to zero the
state machine will be switched to state E indicating a
MULTIPLE WRITE command and that there are sectors
in the block to be transferred. Where the block counter
is equal to zero, the state machine will be switched to
state D indicating for a MULTIPLE WRITE command
that all the sectors in the block have been written to buff-
er 11 or for all other WRITE commands that the sector
has been written to buffer 11.

State E

[0223] State E will load the byte counter for the trans-
ferring of the next sector by the Byte Count State Ma-
chine 4. If the sector counter is equal to zero, the state
machine will switch to state F indicating that there are
no more sectors to be transferred for the block. If the
sector count is not equal to zero, the state machine will
switch to state 6. The state machine will cycle through
states E, 6, 4 and C until all the sector to be written for
that block have been transferred to buffer 11.

State F

[0224] The next clock pulse will switch the state ma-
chine to state D.

39 40

EP 0 715 735 B9 (W1B1)

22

5

10

15

20

25

30

35

40

45

50

55

State D

[0225] State D, entered from either state C or state F,
except for a WRITE LONG command, sets busy and re-
sets DRQ ending the write operation for that block of a
MULTIPLE WRITE command and for all other WRITE
commands except for WRITE LONG command. If the
sector count is equal to zero, the next clock pulse switch-
es the state machine to state 5 indicating that all WRITE
commands have been completed except for the WRITE
LONG command. If the sector count is not equal to zero,
the state machine will switched to state 9 indicating that
the MULTIPLE WRITE command still has sector to be
transferred.

State 9

[0226] State 9 will load the intersector delay counter
which will set the intersector delay bit in the AT registers
25. The next clock pulse switches the state machine to
state B.

State B

[0227] The state machine will stay in state B until an
end the delay is indicated by resetting the intersector
delay bit in the AT registers 25 which will cause the state
machine to be switch to state 3 by the next clock pulse.
The state machine will cycle through states 9, 8, 3, 7, 6,
4, C and D until all sectors have been transferred to buff-
er 11 for a MULTIPLE WRITE command.

State 5

[0228] If the long bit in the AT registers is set the com-
mand is a WRITE LONG command and the state ma-
chine is switched to state 7 by the next clock pulse. If
the long bit is not set then the system will shift from state
5 to state 1. Before switching states, state 5 resets the
long bit and I016 in the AT registers and sets the enable
ECC transfer. The state machine then goes through
states 7, 6, 4, C,and D for transferring the ECC bytes
from the host to buffer 11. Since the long bit has now
been reset, state C will reset busy and DRQ and state
D will be switched to state 1 by the next clock pulse.

State 1

[0229] State 1 will reset DRQ, reset the write mode
latch and will reset ECC transfer. The state machine
then switches to state 0 by the next clock pulse indicat-
ing the completion of all WRITE commands.
[0230] The foregoing description of the invention has
been described in conjunction with a flash solid state
drive. It should be understood that the invention is not
limited to this environment and is applicable to any disk
drive system with an ATA interface.
[0231] While the invention has been particularly

shown and described with references to the preferred
embodiments thereof, it will be understood by those
skilled in the art that changes in form and detail may be
made therein without departing from the scope of the
invention. Given the above disclosure of general con-
cepts and specific embodiments, the scope of the pro-
tection sought is defined by the following claims.

Claims

1. An interface apparatus, within a storage system, for
controlling the transfer of sectors of data between
a host processor and a buffer (11) within said stor-
age system in response to a READ or WRITE com-
mand issued by the host processor, said interface
apparatus comprising;

a Byte Count State Machine (4) for controlling
the transfer of a sector of data between said host
processor and said buffer (11) and for generating a
signal indicating when a last byte of data has been
transferred for a sector, wherein the length of sec-
tors is variable for enhancing data storage;

an Update Task File State Machine (5) having
a machine cycle for decrementing by one the
number of sectors still to be transferred after a sec-
tor has been transferred by said Byte Count State
Machine (4) and for causing a sector address to be
generated for the next sector to be transferred by
said Byte Count State Machine (4);

a Read State Machine (6) for controlling the
processing of all READ commands issued by said
host processor to said storage system and process-
ing said received READ command in response to
said last byte signal generated by said Byte Count
State Machine (4) and the initiation of machine cy-
cles in said Update Task File State Machine (5) to
maintain the count of the number of sectors still to
be read and the generation of the next sector ad-
dress where a next sector is to be read; and

a Write State Machine (7) for controlling the
processing of all WRITE commands issued by said
host processor to said storage system and process-
ing said received WRITE command in response to
said last byte signal generated by said Byte Count
State Machine (4) and the initiation of machine cy-
cles in said Update Task File State Machine (5) to
maintain the count of the number of sectors still to
be written and the generation of the next sector ad-
dress where a next sector is to be written.

2. An apparatus according to claim 1, further compris-
ing:

a data register (2) for temporarily storing data
received from said host processor or to be
transferred to said host processor;
a multiplexer (3) for controlling the data path

41 42

EP 0 715 735 B9 (W1B1)

23

5

10

15

20

25

30

35

40

45

50

55

through said storage system between buffer
(11) and said data register (2); and
a buffer controller (13) for controlling the trans-
ferring of data into and out of said buffer (11);
wherein
said Byte Count State Machine (4) transfers
one byte of data at a time between said data
register (2) and said buffer (11) by issuing con-
trol signals to said multiplexer (3) and said buff-
er controller (13).

3. An apparatus according to claim 2, further compris-
ing;

a plurality of AT registers (25) for providing the
status of said storage system during the processing
of a READ or WRITE command where the contents
of said AT registers (25) may be modified and read
by said host processor, said Byte Count State Ma-
chine (4), said Update Task File State Machine (5),
said Read State Machine (6) and said Write State
Machine (7) thereby providing communication
paths between said host processor, said Byte Count
State Machine (4), said Update Task File State Ma-
chine (5), said Read State Machine (6) and said
Write State Machine (7) to facilitate the processing
of READ and WRITE commands issued by said
host processor.

4. An apparatus according to claim 3, wherein;
said data register (2) stores two bytes of data

for receiving and sending data words to said host
processor where a data word is comprised of two
bytes of data, a high byte and a low byte; and

said Byte Count State Machine (4) further in-
cludes:

first means for controlling the separation of said
two bytes of data stored in said data register
into two sequential bytes of data to be stored in
said buffer; and
second means for controlling the combining of
two sequential bytes from said buffer for stor-
age in said data register to form a data word to
be transferred to said host processor.

5. An apparatus according to claim 3, wherein said
Read State Machine (6) comprises:

third means for generating a gate first word sig-
nal to said Byte Count State Machine (4) to al-
low a first data word to be formed in said data
register by said Byte Count State Machine prior
to a first request for a data word being gener-
ated by said host processor during a READ
command.

6. An apparatus according to claim 5, wherein said AT
registers (25) comprise:

a block count register for storing the number of
sectors to be transferred for the block; and said
Read State Machine (6) further comprises;
fourth means for setting said block count regis-
ter to a value of 1 for all READ commands ex-
cept a MULTIPLE READ command, said Read
State Machine (6) in response to a value of 1
in said block count register processing all
READ commands in the same manner result-
ing in an increase in overall efficiency of said
storage system in processing READ com-
mands.

7. An apparatus according to claim 6, wherein said
Write State Machine (7) further comprises:

fifth means for setting said block count register
to a value of 1 for all WRITE commands except
a MULTIPLE WRITE command, said Write
State Machine (7) in response to a value of 1
in said block count register processing all
WRITE commands in the same manner result-
ing in an increase in overall efficiency of said
storage system in processing WRITE com-
mands.

Patentansprüche

1. Schnittstellenvorrichtung innerhalb eines Speicher-
systems zum Steuern des Transfers von Datensek-
toren zwischen einem Hostprozessor und einem
Puffer (11) innerhalb des Speichersystems in Ab-
hängigkeit von einem von dem Hostprozessor aus-
gegebenen Lese- oder Schreibbefehl, wobei die
Schnittstellenvorrichtung umfasst:

eine Bytezählzustandsmaschine (4) zum Steu-
ern des Transfers eines Datensektors zwi-
schen dem Hostprozessor und dem Puffer (11)
und zum Erzeugen eines Signals, das angibt,
wann ein letztes Datenbyte für einen Sektor
transferiert wurde, wobei die Länge von Sekto-
ren zum Verbessern der Datenspeicherung
veränderbar ist;
eine Aktualisierungs-Task-Dateizustandsma-
schine (5) mit einem Maschinenzyklus zum
Herunterzählen um eins der Anzahl von Sekto-
ren, die noch zu transferieren sind, nachdem
ein Sektor von der Bytezählzustandsmaschine
(4) transferiert wurde, und zum Veranlassen,
dass eine für den nächsten Sektor zu erzeu-
gende Sektoradresse von der Bytezählzu-
standsmaschine (4) transferiert wird;
eine Lesezustandsmaschine (6) zum Steuern
der Verarbeitung aller von dem Hostprozessor
an das Speichersystem ausgegebenen Lese-
befehle und der Verarbeitung des empfange-

43 44

EP 0 715 735 B9 (W1B1)

24

5

10

15

20

25

30

35

40

45

50

55

nen Lesebefehls in Abhängigkeit von dem von
der Bytezählzustandsmaschine (4) erzeugten
letzten Bytesignal und der Einleitung von Ma-
schinenzyklen in der Aktualisierungs-Task-Da-
teizustandsmaschine (5), um den Zählwert der
Anzahl noch zu lesender Sektoren aufrechtzu-
erhalten, und der Erzeugung der nächsten Sek-
torenadresse, wo ein nächster Sektor zu lesen
ist; und
eine Schreibzustandsmaschine (7) zum Steu-
ern der Verarbeitung aller von dem Hostprozes-
sor an das Speichersystem ausgegebenen
Schreibbefehle und zur Verarbeitung des emp-
fangenen Schreibbefehls in Abhängigkeit von
dem von der Bytezählzustandsmaschine (4) er-
zeugten letzten Bytesignal und der Einleitung
von Maschinenzyklen in der Aktualisierungs-
Task-Dateizustandsmaschine (5), um den
Zählwert der noch zu schreibenden Anzahl von
Sektoren aufrechtzuerhalten, und der Erzeu-
gung der nächsten Sektoradresse, wo ein
nächster Sektor zu schreiben ist.

2. Vorrichtung gemäß Anspruch 1, ferner mit:

einem Datenregister (2) zum vorübergehenden
Speichern von Daten, die von dem Hostprozes-
sor empfangen wurden oder an den Hostpro-
zessor zu transferieren sind;
einem Multiplexer (3) zum Steuern des Daten-
pfads durch das Speichersystem zwischen
dem Puffer (11) und dem Datenregister (2); und
einem Puffercontroller (13) zum Steuern des
Transferierens von Daten in und aus dem Puf-
fer (11); wobei
die Bytezählzustandsmaschine (4) ein Daten-
byte auf einmal zwischen dem Datenregister
(2) und dem Puffer (11) durch Ausgeben von
Steuersignalen an den Multiplexer (3) und den
Puffercontroller (13) transferiert.

3. Vorrichtung gemäß Anspruch 2, ferner mit:

einer Mehrzahl von AT-Registern (25) zum Lie-
fern des Status des Speichersystems während
der Verarbeitung eines Lese- oder Schreibbe-
fehls, wobei der Inhalt der AT-Register (25) von
dem Hostprozessor, der Bytezählzustandsma-
schine (4), der Aktualisierungs-Task-Dateizu-
standsmaschine (5), der Lesezustandsmaschi-
ne (6) und der Schreibzustandsmaschine (7)
modifiziert und gelesen werden kann, womit
Kommunikationspfade zwischen dem Hostpro-
zessor, der Bytezählzustandsmaschine (4), der
Aktualisierungs-Task-Dateizustandsmaschine
(5), der Lesezustandsmaschine (6) und der
Schreibzustandsmaschine (7), bereitgestellt
werden, um die Verarbeitung von von dem

Hostprozessor ausgegebenen Leseund
Schreibbefehle zu ermöglichen.

4. Vorrichtung gemäß Anspruch 3, bei der:

das Datenregister (2) zwei Datenbytes zum
Empfangen und Senden von Datenwörtern an
den Hostprozessor speichert, wobei ein Daten-
wort aus zwei Datenbytes, nämlich einem hö-
herwertigen Byte und einem niederwertigen
Byte, zusammengesetzt ist; und
die Bytezählzustandsmaschine (4) ferner um-
fasst:

ein erstes Mittel zum Steuern der Trennung
der beiden in dem Datenregister gespei-
cherten Datenbytes in zwei sequentielle in
dem Puffer zu speichernde Datenbytes;
und
ein zweites Mittel zum Steuern des Kombi-
nierens von zwei sequentiellen Bytes aus
dem Puffer zur Speicherung in dem Daten-
register, um ein an den Hostprozessor zu
transferierendes Datenwort zu bilden.

5. Vorrichtung gemäß Anspruch 3, bei der die Lese-
zustandsmaschine (6) umfasst:

ein drittes Mittel zum Erzeugen eines ersten
Gate-Wortsignals an die Bytezählzustandsma-
schine (4), um zu ermöglichen, dass ein erstes
Datenwort in dem Datenregister von der Byte-
zählzustandsmaschine vor einer ersten Anfor-
derung nach einem Datenwort, die von dem
Hostprozessor während eines Lesebefehls er-
zeugt wird, gebildet wird.

6. Vorrichtung gemäß Anspruch 5, bei der die AT-Re-
gister (25) umfassen:

ein Blockzählregister zum Speichern der An-
zahl von für den Block zu transferierenden Sek-
toren; und die Lesezustandsmaschine (6) fer-
ner umfasst:

ein viertes Mittel zum Setzen des Block-
zählregisters auf einen Wert von 1 für alle
Lesebefehle mit Ausnahme eines Mehr-
fachlesebefehls, wobei die Lesezustands-
maschine (6) in Abhängigkeit von einem
Wert von 1 in dem Blockzählregister alle
Lesebefehle auf die gleiche Art und Weise
verarbeitet, was zu einem Anstieg in dem
Gesamtwirkungsgrad des Speichersy-
stems bei der Verarbeitung von Lesebe-
fehlen führt.

7. Vorrichtung gemäß Anspruch 6, bei der die Schreib-

45 46

EP 0 715 735 B9 (W1B1)

25

5

10

15

20

25

30

35

40

45

50

55

zustandmaschine (7) ferner umfasst:

ein fünftes Mittel zum Setzen des Blockzählre-
gisters auf einen Wert von 1 für alle Schreibbe-
fehle mit Ausnahme eines Mehrfachschreibbe-
fehls, wobei die Schreibzustandsmaschine (7)
in Abhängigkeit von einem Wert von 1 in dem
Blockzählregister alle Schreibbefehle auf die
gleiche Art und Weise verarbeitet, was zu ei-
nem Anstieg in dem Gesamtwirkungsgrad des
Speichersystems bei der Verarbeitung von
Schreibbefehlen führt.

Revendications

1. Appareil d'interface, à l'intérieur d'un système de
stockage, pour contrôler le transfert des secteurs
de données entre un processeur hôte et une mé-
moire intermédiaire (11) à l'intérieur dudit système
de stockage en réponse à une commande READ
ou WRITE émise par le processeur hôte, ledit ap-
pareil d'interface comprenant :

un automate fini de comptage d'octets (4) pour
contrôler le transfert d'un secteur de données
entre ledit processeur hôte et ladite mémoire
intermédiaire (11) et pour générer un signal in-
diquant lorsque le dernier octet de données a
été transféré pour un secteur, dans lequel la
longueur des secteurs est variable pour amé-
liorer le stockage des données ;
un automate fini de mise à jour du fichier de
tâches (5) ayant un cycle d'automate pour di-
minuer d'une unité le nombre de secteurs en-
core à transférer après qu'un secteur ait été
transféré par ledit automate fini de comptage
d'octets (4) et pour provoquer la génération
d'une adresse de secteur pour le secteur sui-
vant à transférer par ledit automate fini de
comptage d'octets (4) ;
un automate fini de lecture (6) pour contrôler le
traitement de toutes les commandes READ
émises par ledit processeur hôte vers ledit sys-
tème de stockage et traiter ladite commande
READ reçue en réponse audit signal du dernier
octet généré par ledit automate fini de compta-
ge d'octets (4) et l'initiation des cycles d'auto-
mate dans ledit automate fini de mise à jour du
fichier de tâches (5) pour conserver le compta-
ge du nombre de secteurs encore à lire et la
génération de l'adresse de secteur suivante où
un nouveau secteur doit être lu ; et
un automate fini d'écriture (7) pour contrôler le
traitement de toutes les commandes WRITE
émises par ledit processeur hôte vers ledit sys-
tème de stockage et traiter ladite commande
WRITE reçue en réponse audit signal du der-

nier octet généré par ledit automate fini de
comptage d'octets (4) et l'initiation des cycles
d'automate dans ledit automate fini de mise à
jour du fichier de tâches (5) pour conserver le
comptage du nombre de secteurs encore à
écrire et la génération de l'adresse de secteur
suivante où un nouveau secteur doit être écrit.

2. Appareil selon la revendication 1, comprenant en
outre :

un registre de données (2) pour enregistrer
temporairement les données reçues dudit pro-
cesseur hôte ou à transférer audit processeur
hôte ;
un multiplexeur (3) pour contrôler le chemin de
données au travers dudit système de stockage
entre la mémoire intermédiaire (11) et ledit re-
gistre de données (2) ; et
un contrôleur de mémoire intermédiaire (13)
pour contrôler le transfert de données dans et
hors de ladite mémoire intermédiaire (11) ;
dans lequel
ledit automate fini de comptage d'octets (4)
transfère un octet de données à la fois entre
ledit registre de données (2) et ladite mémoire
intermédiaire (11) en émettant des signaux de
contrôle vers ledit multiplexeur (3) et ledit con-
trôleur de mémoire intermédiaire (13).

3. Appareil selon la revendication 2, comprenant en
outre :

une pluralité de registres TA (25) pour fournir
l'état dudit système de stockage pendant le trai-
tement d'une commande READ ou WRITE où
les contenus desdits registres TA (25) peuvent
être modifiés et lus par ledit processeur hôte,
ledit automate fini de comptage d'octets (4), le-
dit automate fini de mise à jour du fichier de tâ-
ches (5), ledit automate fini de lecture (6) et le-
dit automate fini d'écriture (7) fournissant ainsi
des chemins de communication entre ledit pro-
cesseur hôte, ledit automate fini de comptage
d'octets (4), ledit automate fini de mise à jour
du fichier de tâches (5), ledit automate fini de
lecture (6) et ledit automate fini d'écriture (7)
pour faciliter le traitement des commandes
READ et WRITE émises par ledit processeur
hôte.

4. Appareil selon la revendication 3, dans lequel :

ledit registre de données (2) enregistre deux
octets de données pour recevoir et envoyer des
mots de données audit processeur hôte où un
mot de données comprend deux octets de don-
nées, un octet de haut et un octet de bas ; et

47 48

EP 0 715 735 B9 (W1B1)

26

5

10

15

20

25

30

35

40

45

50

55

ledit automate fini de comptage d'octets (4)
comprend en outre :

un premier moyen pour contrôler la sépa-
ration desdits deux octets de données en-
registrés dans ledit registre de données
dans deux octets séquentiels de données
à enregistrer dans ladite mémoire
intermédiaire ; et
un deuxième moyen pour contrôler la com-
binaison de deux octets séquentiels à par-
tir de ladite mémoire intermédiaire pour le
stockage dans ledit registre de données
pour créer un mot de données à transférer
audit processeur hôte.

5. Appareil selon la revendication 3, dans lequel ledit
automate fini de lecture (6) comprend :

un troisième moyen pour générer un signal de
commutation du premier mot audit automate fi-
ni de comptage d'octets (4) pour permettre à un
premier mot de données d'être créé dans ledit
registre de données par ledit automate fini de
comptage d'octets avant une première requête
pour générer un mot de données par ledit pro-
cesseur hôte pendant une commande READ.

6. Appareil selon la revendication 5, dans lequel les-
dits registres TA (25) comprennent :

un registre de comptage de blocs pour enregis-
trer le nombre de secteurs à transférer pour le
bloc ; et ledit automate fini de lecture (6) com-
prend en outre ;
un quatrième moyen pour paramétrer ledit re-
gistre de comptage de blocs sur une valeur de
1 pour toutes les commandes READ hormis
une commande MULTIPLE READ, ledit auto-
mate fini de lecture (6) en réponse à une valeur
de 1 dans ledit registre de comptage de blocs
traitant toutes les commandes READ de la mê-
me manière induisant une augmentation de
l'efficacité globale dudit système de stockage
dans le traitement des commandes READ.

7. Appareil selon la revendication 6, dans lequel ledit
automate fini d'écriture (7) comprend en outre :

un cinquième moyen pour paramétrer ledit re-
gistre de comptage de blocs sur une valeur de
1 pour toutes les commandes WRITE hormis
une commande MULTIPLE WRITE, ledit auto-
mate fini d'écriture (7) en réponse à une valeur
de 1 dans ledit registre de comptage de blocs
traitant toutes les commandes WRITE de la
même manière induisant une augmentation de
l'efficacité globale dudit système de stockage

dans le traitement des commandes WRITE.

49 50

EP 0 715 735 B9 (W1B1)

27

EP 0 715 735 B9 (W1B1)

28

EP 0 715 735 B9 (W1B1)

29

EP 0 715 735 B9 (W1B1)

30

EP 0 715 735 B9 (W1B1)

31

EP 0 715 735 B9 (W1B1)

32

EP 0 715 735 B9 (W1B1)

33

EP 0 715 735 B9 (W1B1)

34

EP 0 715 735 B9 (W1B1)

35

EP 0 715 735 B9 (W1B1)

36

EP 0 715 735 B9 (W1B1)

37

EP 0 715 735 B9 (W1B1)

38

EP 0 715 735 B9 (W1B1)

39

EP 0 715 735 B9 (W1B1)

40

EP 0 715 735 B9 (W1B1)

41

EP 0 715 735 B9 (W1B1)

42

EP 0 715 735 B9 (W1B1)

43

EP 0 715 735 B9 (W1B1)

44

	bibliography
	description
	claims
	drawings

