Office européen des brevets (12) #### **EUROPEAN PATENT APPLICATION** (43) Date of publication: 25.09.1996 Bulletin 1996/39 (21) Application number: 95115423.6 (22) Date of filing: 29.09.1995 (51) Int. Cl.⁶: **C12N 15/54**, C12N 9/10, C12N 15/70, C12N 1/21 (84) Designated Contracting States: BE CH DE FR GB IT LI SE (30) Priority: 14.02.1995 JP 25253/95 (71) Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA Aichi-ken (JP) (72) Inventors: Ayumi, Koike, c/o Toyota Jidosha K.K. Toyota-shi, Aichi-ken (JP) Tokuzo, Nishino, c/o Toyota Jidosha K.K. Toyota-shi, Aichi-ken (JP) Shusei, Obata, c/o Toyota Jidosha K.K. Toyota-shi, Aichi-ken (JP) Shinichi, Ohnuma, c/o Toyota Jidosha K.K. Toyota-shi, Aichi-ken (JP) Takeshi, Nakazawa, c/o Toyota Jidosha K.K. Toyota-shi, Aichi-ken (JP) (11) Kyozo, Ogura, c/o Toyota Jidosha K.K. Toyota-shi, Aichi-ken (JP) Tanetoshi, Koyama, c/o Toyota Jidosha K.K. Toyota-shi, Aichi-ken (JP) (74) Representative: Tiedtke, Harro, Dipl.-Ing. Patentanwaltsbüro Tiedtke-Bühling-Kinne & Partner Bavariaring 4 80336 München (DE) Remarks: The applicant has subsequently filed a sequence listing and declared, that it includes no new matter. # (54) Mutated farnesyldiphosphate synthase capable of synthesizing geranylgeranyldiphosphate and gene coding therefor (57) A mutated farnesyldiphosphate synthase capable of synthesizing geranylgeranyldiphosphate and gene coding for said mutated enzyme, wherein the mutated enzyme is modified from a native farnesyldiphosphate synthase by mutation of a gene coding for a native farnesyldiphosphate synthase. #### Description 5 10 20 35 45 #### **BACKGROUND OF INVENTION** #### Field of Invention The present invention relates to the mutated farnesyldiphosphate synthase capable of synthesizing geranylgeranyldiphosphate and a process for production thereof, as well as genes coding for said mutated enzymes and a process for isolation thereof. #### 2. Related Art In nature there are various isoprenoid chain compounds comprising 5 carbon atom-basic structure, isoprene units, and these isoprenoid compounds play important roles for the life of various organisms. It is known that the chain-extension mechanism is catalyzed by a series of prenyltransferases which catalyze a series of catalytic reactions comprising sequential condensation of isopentenyldiphosphate (IPP) having 5 carbon atoms with its isomer dimethylallyldiphosphate (DMAPP). Among the isoprenoid compounds, farnesyldiphosphate (FPP) having 15 carbon atoms is positioned at a branching point in a biosynthesis pathway, from which various physiologically important start to geranylgeranyldiphosphate (GGPP) having 20 carbon atoms, to quinones, squalene, to steroids, farnesylated protein, dolichol etc. Different prenyltransferases synthesize different isoprenoid compounds having different lengths. However, prenyl-transferases have a common activity to condense an isoprenoid unit to extend the chain, and in fact, amino acids essential for the condensation are being clarified on the basis of homology of amino acid sequences of different prenyl-transferases. However, the mechanism which determines the length of the isoprenoid compound have not yet clarified. A biosynthesis pathway for geranyldiphosphate (GPP), farnesyldiphosphate (FPP) and geranylgeranyldiphosphate (GGPP) starting from an isoprenoid unit is shown in Fig. 1. In this biosynthesis pathway, the prenyltransferase which synthesizes farnesyldiphosphate is designated "farnesyldiphosphate synthase", and the prenyltransferase which synthesizes geranylgeranyldiphosphate is designated "geranylgeranyldiphosphate synthase". Farnesyldiphosphate synthases are known in <u>Bacillus thermophils</u> (J. Biochem. <u>113</u>, 355 - 363 (1993)), <u>E. coli</u> (J. Biochem. <u>108</u>, 995 - 1000 (1990)), yeast (J.B.C. <u>265</u>, 19176 - 19184 (1989)), rats (Mol. Cell. Biol. <u>7</u>, 3138 - 3146 (1987)) and in humans (J.B.C. <u>265</u>, 4607 - 4616 (1990)), and their amino acid sequences are also known. On the other hand, geranylgeranyldiphosphate synthases are known in <u>Rhodopseudomonas capusulata</u> (J. Bacteriol. <u>154</u>, 580 - 590 (1983)), <u>Erwinia uredovora</u> (J. Bacteriol. <u>172</u>, 6704 - 6712 (1990)), <u>Sulfolobus acidocaldarius</u> (J.B.C. <u>269</u>, 14792 - 14797 (1994)) etc. However, it had not been known that an enzyme having geranylgeranyldiphosphate synthase activity can be obtained by mutation of farnesyldiphosphate synthase. #### SUMMARY OF INVENTION Accordingly, the present invention provides a novel geranylgeranyldiphosphate synthase obtainable by mutating a farnesyldiphosphate synthase and a process for production thereof, as well as gene system therefor and a process for isolation of the gene. More specifically, the present invention provides a process for production of a gene coding for geranylgeranyldiphosphate synthase comprising the steps of: - (1) subjecting genes coding for a farnesyldiphosphate synthase to a mutagenesis; - (2) expressing the genes subjected to the mutagenesis, and - (3) selecting a gene which provides a geranylgeranyldiphosphate synthase. The present invention further provides a gene coding for geranylgeranyldiphosphate synthase, an expression vector containing said gene, and a host transformed with said vector. The present invention also provides a process for production of geranylgeranyldiphosphate synthase comprising expressing said gene, and geranylgeranyldiphosphate synthase obtainable by said process. From another point of view, the present invention provides a geranylgeranyldiphosphate synthase having an amino acid sequence modified from an amino acid sequence of native farnesyldiphosphate synthase wherein the modification is deletion of one or more amino acids, addition of one or more amino acids, and/or replacement of one or more amino acids with other amino acids. The present invention still further provides a gene coding for the above-mentioned geranylgeranyldiphosphate synthase, a vector, especially an expression vector comprising said gene, and a host transformed with said vector. The present invention further provides a process for production of geranylgeranyldiphosphate synthase comprising the steps of cultivation said host, and purification the geranylgeranyldiphosphate synthase from the culture. The present invention further provides a process for production of geranylgeranyldiphosphate or geranylgeranyol, comprising the steps of acting the present geranylgeranyldiphosphate synthase on isopentenyldiphosphate, dimethylallyldiphosphate, geranyldiphosphate or farnesyldiphosphate as a substrate. #### BRIEF EXPLANATION OF DRAWINGS 5 10 20 30 35 Figure 1 represents a biosynthesis pathway for farnesyldiphosphate and geranylgeranyldiphosphate. Fig. 2 shows the homology of amino acid sequences of farnesyldiphosphate synthase derived from different species. In this Figure, the sequences in the boxes A to E show regions having relatively high homology and which are expected to participate in enzyme activity. Fig. 3 shows the homology of amino acid sequences of farnesyldiphosphate synthase derived from different species. In this Figure, the sequences in the boxes F and G show regions having relatively high homology and which are expected to participate in enzyme activity. Fig. 4 shows a native amino acid sequence of farnesyldiphosphate synthase derived from <u>Bacillus</u> stearothermophilus (indicated as W.T), and the mutated points in amino acid sequences of the modified enzymes having geranyldiphosphate synthase activity (No. 1 to No. 4). Fig. 5 schematically shows a process for construction of the present modified gene. Fig. 6 is a profile of reversed phase TLC (developer: acetone/water = 9/1) showing products formed by acting the present enzyme on a substrate dimethylallyldiphosphate. Fig. 7 is a profile of a reversed-phase TLC (developer: acetone/water = 9/1) showing products formed by acting the present enzyme on a substrate geranyldiphosphate. Fig. 8 is a profile of a reversed phase TLC (developer: acetone/water = 9/1) showing products formed by acting the present enzyme on a substrate (all-E)-farnesyldiphosphate. Fig. 9 is a profile of a reversed phase TLC (developer: acetone/water = 9/1) showing products formed by acting the present enzyme on a substrate (all-E)-farnesyldiphosphate. #### **DETAILED DESCRIPTION** Genes of the present invention can be obtained by subjecting a gene coding for a farnesyldiphosphate synthase to mutagenesis, expressing the genes subjected to the mutagenesis, and selecting a gene providing a protein having geranylgeranyldiphosphate synthase activity. Genes coding for a farnesyldiphosphate synthase used in the present invention may be those of any origin. For example, farnesyldiphosphate synthases of <u>E. coli</u>, yeast, human, rat etc., as well as genes coding therefor are known, and amino acid sequences of these enzymes have high homology as shown in Fig. 2. Therefore, in addition to the gene derived from <u>Bacillus stearothermophilus</u> as described in detail, according to the present invention, any gene coding for an amino acid sequence having a high homology, for example, at least 20% homology with the amino acid sequence of farnesyldiphosphate synthase derived from <u>Bacillus stearothermophilus</u> can be used regardless of its origin. As such gene sources, for example, <u>Bacillus stearothermophilus</u>, <u>E. coli</u>, yeast, humans, rats etc. can be used. The gene to be mutated is an RNA or DNA coding for a farnesyldiphosphate synthase and sensitive to treatment with a mutagen, and DNA is preferably used for to ease of handling, and especially a single-stranded DNA is preferred due to its high mutation ratio. A single-stranded DNA can be easily prepared according to a conventional Procedure for preparing a single-stranded DNA, for example, by inserting a double-stranded DNA into a phage, introducing the phage into <u>E. coli</u> cells, culturing the <u>E. coli</u> cells and
recovering the phage from the resulting lysate solution; or by introducing a desired double-stranded DNA into host cells, infecting the host cells with helper phage, culturing the host cells and recovering the phage from the resulting lysate solution. Mutation of a gene can be carried out according to a conventional procedure for artificially mutating a gene. The mutation methods can be a physical method such as irradiation with X-rays, ultraviolet rays, etc., a chemical method such as treatment with a mutagen, a method of cis incorporation by DNA polymerase, a method using synthetic oligonucleotides etc. A chemical method is preferable for ease of operation and a high mutation ratio. As a mutagen, a nitrite, such as sodium nitrite, or the like can be used. To mutate a single-stranded DNA, a nitrite is preferable. Mutagenesis is preferably carried out at a nitrite concentration of 0.01 to 2M, for example, at about 0.1 to 1M, at a temperature of 20 to 30°C, for 10 to 120 minutes. To select a gene coding for a protein having geranylgeranyldiphosphate synthase activity from the genes subjected to the mutagenesis, the gene subjected to the mutagenesis is inserted in an expression vector, the vector is introduced into host cells, the enzyme is expressed, and the expression product is tested for geranylgeranyldiphosphate synthase activity. Geranylgeranyldiphosphate is converted to phytoene by a phytoene synthase, and the phytoene is converted to lycopene having red color by a phytoene desaturase. Accordingly, for example, a gene coding for a phytoene synthase and a gene coding for phytoene desaturase are inserted into an expression vector, the vector is introduced into host cells such as <u>E. coli</u> cells, and further an expression plasmid comprising a DNA to be tested is introduced into said host cells, and the double transformed host cells are cultured. If the gene to be tested encodes a geranylgeranyldiphosphate synthase, and the geranylgeranyldiphosphate produced by the gene expression is converted to phytoene and further to lycopene, the cells are red-colored. Accordingly, a desired gene can be selected very easily and efficiently by selecting a red-colored colony. The present invention provides a protein having geranylgeranyldiphosphate synthase activity, i.e., a geranylgeranyldiphosphate synthase, having an amino acid sequence modified from a native amino acid sequence of a farnesyldiphosphate synthase. Here, the modification of an amino acid sequence means replacement of one or a few amino acids with other amino acids, deletion of one or a few amino acids or addition of one or a few amino acids, or a combination of these modifications. The amino acid replacement is especially preferable. Regarding the number of amino acids to be modified, "a few amino acids" means usually about 15 amino acids, preferably about 10 amino acids, and more preferably about 5 amino acids. Namely, according to the present invention, the number of mutated amino acids is about 1 to 15, preferably about 1 to 10, and more preferably 1 to 5. To determine the positions of modified amino acids, after the mutagenesis and the selection of a gene coding for a geranylgeranyldiphosphate synthase, a nucleotide sequence of the selected gene is determined, and an amino acid sequence is predicted from the determined nucleotide sequence, the predicted amino acid sequence of the modified enzyme is composed with the corresponding native amino acid sequence. Amino acid sequences thus determined of the modified enzymes are shown in Fig. 4. In Fig. 4, the row indicated by the symbol W.T shows, by the one-letter expression, a native amino acid sequence of farnesyldiphosphate synthase of <u>Bacillus stearothermophilus</u> origin, and the rows Nos. 1 to 4 show representative amino acid sequences which acquired geranylgeranyldiphosphate synthase activity by amino acid replacement in the amino acid sequence of the farnesyldiphosphate synthase, wherein only the amino acids different from the corresponding amino acids in the native amino acid sequence of the farnesyldiphosphate synthase shown in the line T.W are indicated by the one-letter expression of amino acid. The modified enzyme No. 1 has two mutations, i.e., the 81st position ($Tyr \rightarrow His$) and 275th position ($Leu \rightarrow Ser$); the modified enzyme No. 2 has two mutations, i.e., 34th position ($Leu \rightarrow Val$) and 59th position ($Arg \rightarrow Gln$); the modified enzyme No. 3 has two mutations, i.e., 157th position ($Val \rightarrow Ala$) and 182nd position ($His \rightarrow Tyr$); and the modified enzyme No. 4 has three mutations, i.e., 81st position ($Tyr \rightarrow His$), 238th position ($Pro \rightarrow Arg$) and 265th position ($Ala \rightarrow Thr$). The amino acid sequences No. 1 to 4 of the above-mentioned modified enzymes and nucleotide sequences coding therefor are shown in SEQ ID NO: 1 to 4, and the native amino acid sequence and a nucleotide sequence coding therefor is shown in SEQ ID NO: 5. 30 35 In the present invention, the amino acid sequence farnesyldiphosphate synthase of <u>Bacillus stearothermophilus</u> origin was used as a specific example. However, as shown in Figs. 2 and 3, farnesyldiphosphate synthases have high homology among a wide spectrum of species covering those derived from the eukaryotes including humans and those derived from prokaryotes including bacteria. Therefore, the present invention can be applied to enzymes derived from various species to obtain novel geranylgeranyldiphosphate synthase. As shown in Fig. 4, amino acid modification such as replacement occurs on the 34th, 59th, 81st, 157th, 182nd, 239th, 265th, and/or 275th positions of farnesyldiphosphate of <u>Bacillus stearothermophilus</u>. For enzymes from other species, it is expected that replacement at positions corresponding to the above-mentioned positions of the farnesyldiphosphate synthase of <u>Bacillus stearothermophilus</u> origin provides similar effects as that for the modified enzyme derived from <u>Bacillus stearothermophilus</u>. Therefore, the present invention can be applied to any farnesyldiphosphate synthases. The present invention also relates to genes coding for the various geranylgeranyldiphosphate synthases derived from a farnesyldiphosphate synthase. These genes can be obtained by mutation of a gene coding for a corresponding native amino acid sequence. In addition, once the position of mutated amino acid is determined, a gene coding for the modified enzyme can be obtained by site-specific mutagenesis using a mutagenic primer. In addition, once an entire amino acid sequence is determined, a DNA coding for the amino acid sequence can be chemically synthesized according to a conventional procedure. Genes coding for farnesyldiphosphate synthases used as starting materials to obtain the present genes have been cloned from various organisms, and therefore they can be used. For example, a gene of <u>Bacillus stearothermophilus</u> origin is described in J. Biochem. <u>113</u>, 355 - 363 (1993), a gene of <u>E. coli</u> origin is described in J. Biochem. <u>108</u>, 995 - 1000 (1990), a gene of yeast origin is described in J.B.C. <u>264</u>, 19176 - 19184 (1989), a gene of rat origin is described in Mol. Cell. Biol. <u>7</u>, 3138 - 3146 (1987), and a gene of human origin is described in J.B.C. <u>265</u>, 4607 - 4614 (1990). The present invention further provides recombinant vectors, especially expression vectors, comprising the abovementioned gene (DNA), recombinant host transformed with said vector, and a process for production of said enzyme using said recombinant host. As an example, where <u>E. coli</u> is used as a host, it is known that there are gene expression control mechanisms which regulate transcription of DNA to mRNA, translation of mRNA to protein etc. As promoter sequences which control the synthesis of mRNA, naturally occurring sequences such as lac, trp, bla, lpp, PL, PR, tet, T3, T7 et al., as well as mutants thereof, such as lacUV5, sequences prepared by fusing naturally occurring promoter sequences, such as tac, tra, etc. are known, and they can be used in the present invention. As sequences which control the ability to synthesize a protein from mRNA, it is known that a ribosome-binding site (GAGG and similar sequence) and the distance between the ribosome-binding site and the start codon ATG are important. In addition, it is known that a terminator which directs the termination of transcription at the 3'-end (for example, a vector comprising rrnBT1T2 is commercially available from Pharmacia) influences the efficiency of protein synthesis in a recombinant host. As starting vectors to prepare recombinant vectors of the present invention, those commercially available can be used. Alternatively, various vectors derivatized according to a particular purpose can be used. For example, pBR322, pBR327, pKK223-2, pKK233-2, pTrc99A etc. containing a replicon derived from pMB1; pUC18, pUC19, pUC118, pUC119, pTV118N, pTV119N, pHSG298, pHSG396 etc., which have been modified to increase copy number; pACYC177, pACYC184 etc. containing a replicon derived from p15A; as well as plasmids derived from pSC101, C01E1, R1 or F-factor, may be mentioned. Further, in addition to plasmids, viral vectors such as λ phage, M13 phage etc., and transposones can be used for introduction of a gene. These vectors are described in Molecular cloning (J. Sambrook, E.F. Fritsch, J. Maniatis, Cold Spring Harbor Laboratory Press); Cloning vector (P.H. Pouwels, B.E. Enger-Valk, W.J. Brammer, Elsevier); and catalogs of manufacturers of vectors. Especially preferable is pTrc99 (commercially available for Pharmacia) which has an ampicillin resistance gene as a selective maker, Ptrc and lacl^q as a promoter and control gene, an AGGA sequence as a ribosome-binding site and rrnBT1T2 as a terminator, and therefore has a function to control an expression of a
geranylgeranyldiphosphate synthase. Introduction of a DNA coding for geranylgeranyldiphosphate synthase and if necessary DNA fragments having a function to control the expression of said gene into the above-mentioned vectors can be carried out using appropriate restriction enzymes and ligases according to a conventional procedure. Such a recombinant vector can be used to transform a microorganism such as <u>Escherichia coli</u>, <u>Bacillus</u> etc. Transformation can be carried out according to a conventional procedure, for example by the CaCl₂ method, protoplast method etc. described, for example, in Molecular cloning (J. Sambrook, E.F. Fritsch, T. Maniatis, Cold Spring Harbor Laboratory Press), DNA cloning Vol. I to III (D.M. Glover, IRLPRESS). Although methods for expression of the present gene in <u>E. coli</u> was described in detail, according to the present invention, a DNA coding for a geranylgeranyldiphosphate synthase is inserted into a conventional expression vector according to a conventional procedure, and the vector is used to transform a host, for example, prokaryotic cells such as various bacterial cells, lower eukaryotic cells for example single cell hosts, for example, yeast cells, or higher eukaryotic cells such as silk-worm. After transformation, the transformant is cultured to produce a geranylgeranyldiphosphate synthase, according to a conventional process. When a transformant host such as <u>E. coli</u> is cultured, geranylgeranyldiphosphate synthase is intracellularly accumulated. To recover the geranylgeranyldiphosphate from the cultured host cells, the cells are treated physiologically or chemically, for example, with a cell lysating agent to lyze the cells. The cell debris is removed, and the supernatant is subjected to an isolation process conventional for purification of enzymes. The above-mentioned cell-lysing enzyme is preferably lysozyme, and the physical treatment is preferably treatment with ultrasonic radiation. When the supernatant is heated to a temperature of about 55°C, proteins intrinsic to <u>E. coli</u> are insolubilized and removed as an insoluble precipitate. To purify the enzyme, gel-filtration chromatography, ion exchange chromatography, hydrophobic chromatography, reversed chromatography, and affinity chromatography can be used alone or in combination. During the purification and isolation steps, the desired enzyme can be stabilized by addition of a reducing agent such as dithiothreitol, protecting agent against proteases such as PMSF, BSA etc., metal ions such as magnesium, alone or in combination. The present invention further provides a process for production of geranylgeranyldiphosphate or geranylgeranyol. In this process, isopentenyldiphosphate, dimethylallyldiphosphate, geranyldiphosphate, farnesyldiphosphate may be used as substrates. #### **EXAMPLES** 5 10 20 25 Next, the present invention is explained in more detail by means of examples, though the present invention is not limited thereto. #### Example 1. Construction of mutated genes (Fig. 5) The translation start codon in plasmid pFE15 (Japanese Unexamined Patent Publication (Kokai) No. 5-219761) containing a gene coding for farnesyldiphosphate synthase of <u>Bacillus stearothermophilus</u> origin was changed to ATG to obtain plasmid pEX11 (J. Biochem. 113, 355 - 363 (1993)) for overexpression of farnesyldiphosphate synthase, and the plasmid pEX11 was used in the following Examples. The mutation was carried out according to M. Myers et al. (Science, 229, 242 - 247 (1985)). First, a farnesyldiphosphate synthase gene present in Ncol-HindIII fragment in pEX11 was removed, and inserted it into plasmid pTV118N (available from Takara Shuzo, Japan) to construct a plasmid, which was then introduced into E. coli cells. The transformed E. coli cells were cultured. With infection of a helper phage M13K07 (available from Takara Shuzo), pTV118N is converted to a single-stranded DNA and preferentially incorporated in phage particles and liberated out of cells. The culture was centrifuged to obtain a supernatant, from which the single-stranded DNA was recovered. The single-stranded DNA thus recovered was subjected to mutation with sodium nitrite (concentration 1M or 0.2M) to introduce random mutation into the single-stranded DNA, which was then restored to a double-stranded DNA using AMV reverse-transcriptase XL (E.C.2.7.7.7). This farnesyldiphosphate synthase gene fragment was introduced into pTrc99A (available for Pharmacia) and pTV118N, and resulting recombinant plasmids were used to transform <u>E. coli</u> into which a phytoene synthase gene and phytoene desaturase gene had been previously introduced, and red colonies were selected. The principle of the selection is as follows. The following screening method follows Ohnuma et al. (J. Biol. Chem., <u>269</u>, 14792 - 14797 (1994)). <u>E. coli</u> harboring a plasmid pACYC-IB, into which crtB (phytoene synthase gene) and crtl (phytoene desaturase gene) of a phytopathogen <u>Erwinia uredovora</u> origin had been introduced, was transformed with the mutant plasmid. Note that at present it is believed that <u>E. coli</u> does not have a geranylgeranyldiphosphate synthase. If the mutant plasmid encodes geranylgeranyldiphosphate synthase activity, lycopene having red color is produced in <u>E. coli</u> cells by pACYC-IB resulting in formation of red-colored colonies. However, if the mutant plasmid does not encode geranylgeranyldiphosphate synthase activity, colonies are color-less. In this way, geranylgeranyldiphosphate synthase activity was easily detected by visual observation. As a result of transformation of the $\underline{E.~coli}$ cells with the mutant plasmid, red colonies were detected. The ratio of positive clones was 1.32×10^{-3} (10 colonies per 7,600 colonies) when the mutation was carried out using 1M NaNO₂, while the ratio of positive clones was 5.98×10^{-5} (one colony per 16,720 colonies) when the mutation was carried out using 0.2M NaNO₂, revealing that the higher the concentration of NaNO₂, the higher the positive ratio. Among the positive colonies, four colonies were selected, and a nucleotide sequence of an enzyme-coding region in the plasmid was determined, and an amino acid sequence encoded by the nucleotide sequence was determined, for each positive clone. The result is shown in SEQ ID NOs: 1 to 4. In addition, these amino acid sequences were compared with the native amino acid sequence, and positions of the mutation are shown in Fig. 4. Four mutated enzymes encoded by four mutant genes were further characterized. #### Example 2. Production of mutated enzymes E. coli transformed with the mutant plasmid was cultured in LB medium at 37°C overnight. The culture was centrifuged at 3,000 × G, at 4°C for 5 minutes to collect cells, which were then suspended in a buffer for sonication (50 mM Tris-HCl (pH 7.0), 10 mM 2-mercaptoethanol, 1 mM EDTA). The suspension was subjected to ultrasonic waves to disrupt the cells. The sonicate was centrifuged at 5,000 × g, at a temperature of 4°C for 20 minutes, to obtain a supernatant, which was then heated at 55°C for one hour to inactivate enzymes intrinsic to E. coli to obtain a crude enzyme extract. 50 20 35 To test the enzymatic activity of each mutant enzyme, reactions were carried out in the following reaction mixture. Table 1 [1-14C]IPP (1 Ci/mol)) 25 nmol Allyl substrate (DMAPP, GPP, FPP) 25 nmol MgCl₂ 5 µmol NH₄CI 50 μmol 2-Mercaptoethanol 50 μmol Tris-HCI buffer (pH 8.5) 50 umol Sample to be tested proper quantity Total 1 ml Note: DMAPP: Dimethylallyldiphosphate GPP: Geranyldiphosphate FPP: Farnesyldiphosphate The reaction mixture was incubated at 55°C for 30 minutes, and the product was extracted with water-saturated 1butanol, and radioactivity of the extract was counted by a liquid scintillation counter. In addition, the extract (butanol layer) was treated with an acid phosphatase and extracted with pentane. The extract was analyzed by TLC. The TLC analysis showed that the use of dimethylallyldiphosphate and geranyldiphosphate as an allyl substrate provides similar TLC patterns. Note that since the amount of each sample was adjusted so that the radioactivity is approximately same between the samples, the density of the band does not indicate specific activity. The modified enzymes Nos. 1 and 4 produced an amount of geranylgeranyldiphosphate more than that of farnesyldiphosphate, and therefore it is considered that the modified enzymes Nos. 1 and 4 are suitable for the production of geranylgeranyldiphosphate. On the other hand, the modified enzymes No. 2 and No. 3 provided a small amount of geranylgeranyldiphosphate. Where (all-E)-farnesyldiphosphate was used as a substrate (primer), (all-E)-geranylgeranyldiphosphate was formed. The results are shown in Figs. 6 to 9. Specific activity and ratio of product (GGOH/FOH) are shown in Table 2. Table 2 | 40 | | | Specific activity* (nmol/min/mg protein) | Ratio of product (GGPP/FPP) | |----|-------|---------|--|-----------------------------| | | Wi | ld type | 286 | 0 | | | No. 1 | pTV118N | 0.293 | 18.4 | | 45 | | pTrc99A | 0.253 | 6.28 | | | No. 2 | pTV118N | 110 | 2.95 × 10 ⁻² | | | | pTrc99A | 83 | 2.54 × 10 ⁻² | | | No. 3 | pTV118N | 143 | 1.65 × 10 ⁻¹ | | 50 | | pTrc99A | 19.7 | 1.73 × 10 ⁻¹ | | | No. 4 | pTV118N | 0.262 | 15.5 | | | | pTrc99A | 0.271 | 8.28 | *DMAPP was used as substrate. 7 5 10 15 20 30 35 | | SEÇ | QUEN | ICE | LIS | rinc | 3 | | | | | | | | | | | | |----|-----|------|-------|-----------|-------------|-----|-----------|------|-----------|------|------|-----|-------------|-----------|-----|-----|-----| | 5 | SEÇ |) ID | NO. | : | 1 | | | | | | | | | | | | | | - | SEÇ | QUEN | ICE . | LENG | GTH: | 8 | 94 | | | | | | | | | | | | | SEÇ | QUEN | CE | TYPI | Ξ: | Nuc | lei | c ac | id | | | | | | | | | | 10 | STF | RAND | NES | s: | Dou | ble | | | | | | | | | | | | | | TOF | OLO
 GY: | Lj | inea | r | | | | | | | | | | | | | | MOI | ECU | LAR | TYE | PE: | | | | | | | | | | | | | | 15 | sot | JRCE | :] | Baci | llu | s s | tear | coth | erm | oph: | ilus | | | | | | | | | СНА | RAC | TER | ISTI | C: | Mu | tant | (1 |) 0 | f Di | NA c | odi | ng 1 | for | | | | | 20 | far | nes | yld: | iphc | sph | ate | syr | ntha | se | | | | | | | | | | | SEQ | UEN | CE | | | | | | | | | | | | | | | | | ATG | GCG | CAG | CTT | TCA | GTT | GAA | CAG | ттт | СТС | AAC | GAG | CAA | AAA | CAG | GCG | 48 | | 25 | Met | Ala | G1n | Leu | Ser | Va1 | Glu | Gln | Phe | Leu | Asn | Glu | Gln | Lys | G1n | Ala | | | | | | | | 5 | | | | | 10 | | | | | 15 | | | | 30 | | | | | | | | | | | | | | | CCG | | 96 | | | Val | Glu | Thr | Ala
20 | Leu | Ser | Arg | Tyr | Ile
25 | Glu | Arg | Leu | Glu | Gly
30 | Pro | Ala | | | | AAG | CTG | AAA | | GCG | ATG | GCG | TAC | | TTG | GAG | GCC | GGC | | AAA | CGA | 144 | | 35 | | | | | | | | | | | | | | | Lys | | | | | | | 35 | | | | | 40 | | | | - | 45 | | | | | | 40 | ATC | CGT | CCG | TTG | CTG | CTT | CTG | TCC | ACC | GTT | CGG | GCG | CTC | GGA | AAA | GAC | 192 | | 40 | Ile | | Pro | Leu | Leu | Leu | | Ser | Thr | Val | Arg | | Leu | Gly | Lys | Asp | | | | CCG | 50 | GTC | GG4 | ጥ ፐር | ccc | 55
GTC | CCC | ጥሮር | ccc | ለ ጥጥ | 60 | ለ ጥር | ል ጥር | CAT | ۸۵۵ | 240 | | 45 | | | | | | | | | | | | | | | His | | 240 | | | 65 | | | • | | 70 | | | | | 75 | | | | | 80 | | | | CAC | TCT | TTG | ATC | CAT | GAT | GAT | TTG | CCG | AGC | ATG | GAC | AAC | GAT | GAT | TTG | 288 | | 50 | His | Ser | Leu | Ile | His | Asp | Asp | Leu | Pro | Ser | Met | Asp | Asn | Asp | Asp | Leu | | | | | | | | 85 | | | | | 90 | | | | | 95 | CGG | CGC | GGC | AAG | CCG | ACG | AAC | CAT | ` AAA | GTG | TTC | GGC | GAG | GCG | ATG | GCC | 336 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|------| | | Arg | Arg | Gly | Lys | Pro | Thr | Asn | His | Lys | Val | Phe | Gly | G1u | Ala | Met | Ala | | | 5 | | | | 100 | , | | | | 105 | | | | | 110 | ı | | | | | ATC | TTG | GCG | GGG | GAC | GGG | TTG | TTG | ACG | TAC | GCG | TTT | CAA | TTG | ATC | ACC | 384 | | | Ile | Leu | Ala | G1y | Asp | Gly | Leu | Leu | Thr | Tyr | Ala | Phe | G1n | Leu | Ile | Thr | | | 10 | | | 115 | | | | | 120 | | | | | 125 | | | | | | | GAA | ATC | GAC | GAT | GAG | CGC | ATC | CCT | CCT | TCC | GTC | CGG | CTT | CGG | CTC | ATC | 432 | | 4.5 | Glu | Ile | Asp | Asp | Glu | Arg | Ile | Pro | Pro | Ser | Val | Arg | Leu | Arg | Leu | Ile | | | 15 | | 130 | | | | | 135 | | | | | 140 | | | | | | | | GAA | CGG | CTG | GCG | AAA | GCG | GCC | GGT | CCG | GAA | GGG | ATG | GTC | GCC | GGT | CAG | 480 | | 20 | Glu | Arg | Leu | Ala | Lys | Ala | Ala | Gly | Pro | G1u | Gly | Met | Val | Ala | G1y | Gln | | | 20 | 145 | | | | | 150 | | | | | 155 | | | | | 160 | | | | GCA | GCC | GAT | ATG | GAA | GGA | GAG | GGG | AAA | ACG | CTG | ACG | CTT | TCG | GAG | CTC | 528 | | 25 | Ala | Ala | Asp | Met | Glu | Gly | Glu | Gly | Lys | Thr | Leu | Thr | Leu | Ser | Glu | Leu | | | | | | | | 165 | | | | | 170 | | | | | 175 | | | | | GAA | TAC | ATT | CAT | CGG | CAT | AAA | ACC | GGG | AAA | ATG | CTG | CAA | TAC | AGC | GTG | 576 | | 30 | G1u | Tyr | Ile | His | Arg | His | Lys | Thr | Gly | Lys | Met | Leu | Gln | Tyr | Ser | Val | | | | | | | 180 | | | | | 185 | | | | | 190 | | | | | | CAC | GCC | GGC | GCC | TTG | ATC | GGC | GGC | GCT | GAT | GCC | CGG | CAA | ACG | CGG | GAG | 624 | | 35 | His | Ala | Gly | Ala | Leu | lle | Gly | G1y | Ala | Asp | Ala | Arg | Gln | Thr | Arg | Glu | | | | | | 195 | | | | | 200 | | | | | 205 | | | | | | | | | | | | | | | GGC | | | | | | | | 672 | | 40 | Leu | Asp | Glu | Phe | Ala | Ala | His | Leu | Gly | Leu | Ala | Phe | Gln | Ile | Arg | Asp | | | | | 210 | | | | | 215 | | | | | 220 | | | | | | | | • | | | | | | | | GAA | | | | | | | | 720 | | 45 | Asp | Ile | Leu | Asp | | | Gly | Ala | Glu | Glu | Lys | Ile | Gly | Lys | Pro | Val | | | | 225 | | | | | 230 | | | | | 235 | | | | | 240 | | | | GGC | | | | | | | | | | | | | | | | 768. | | 50 | G1y | Ser | Asp | | | Asn | Asn | Lys | Ala | Thr | Tyr | Pro | Ala | Leu | Leu | Ser | | | | | | | | 245 | | | | | 250 | | | | | 255 | | | | | CTT | GCC | GGC | GCG | AAG | GAA | AAG | TTG | GCG | TTC | CAT | ATC | GAG | GCG | GCG | CAG | 816 | |----|-----|------|-----------|------|-----|-------|------|------------|------|-----|-----|------|------|-----|-----|-----|------| | 5 | Leu | Ala | Gly | Ala | Lys | Glu | Lys | Leu | Ala | Phe | His | Ile | Glu | Ala | Ala | Gln | | | | | | | 260 | | | | | 265 | | | | | 270 | | - | | | | | | | | | | GAC | | | | | | | | | | 864 | | 10 | Arg | HIS | 275 | Arg | Asn | Ala | Asp | Val
280 | Asp | Gly | Ala | Ala | | Ala | Tyr | Ile | | | | TGC | GAA | | GTC | GCC | GCC | CGC | | CAT | ТАА | | | 285 | | | | 894 | | | | | | | | | Arg | | | | | | | | | | 0,54 | | 15 | • | 290 | | | | | 295 | • | | | | | | | | | | | | SEQ | ID | NO: | : 2 | | | | | | | | | | | | | | | 20 | SEQ | UEN | CE I | LENG | TH: | 89 | 94 | | | | | | | | | | | | | SEQ | UEN | CE 1 | YPE | :] | Nuc] | leic | ac. | id | | | | | | | | | | | STR | AND | NESS | S: | Dou | ble | | | | | | | | | | | | | 25 | тор | oro. | Υ: | Lin | ear | | | | | | | | | | | | | | | MOL | ECU | LAR | TYP | E : | | | | | ÷ | | | | | | | | | 30 | SOU | RCE | : E | Baci | llu | s st | ear | oth | ermo | phi | lus | | | | | | | | | СНА | .RAC | reri | STI | C: | Mut | ant | (2 |) of | DN | A c | odir | ıg f | or | | | | | | far | nes | yldi | pho | sph | ate | sys | tha | se | | | | | | | | | | 35 | SEQ | UEN | CE | | | | | | | | | | | | | | | | | ATG | GCG | CAG | CTT | TCA | GTT | GAA | CAG | TTT | CTC | AAC | GĄG | CAA | AAA | CAG | GCG | 48 | | 40 | Met | Ala | Gln | Leu | Ser | Va1 | Glu | Gln | Phe | Leu | Asn | Glu | Gln | Lys | G1n | Ala | | | | | | | | 5 | | | | | 10 | | | | | 15 | | | | | GTG | GAA | ACA | GCG | CTC | TCC | CGT | TAT | ATA | GAG | CGC | TTA | GAA | GGG | CCG | GCG | 96 | | 45 | Val | Glu | Thr | | Leu | Ser | Arg | Tyr | | Glu | Arg | Leu | Glu | Gly | Pro | Ala | | | | | 0.00 | | 20 | 000 | 4.50 | | m. a | 25 | | | | | 30 | | | | | | | | | | | | GCG | | | | | | | | | | 144 | | 50 | шys | AUT | ъуs
35 | пуз | VIG | rie t | Ala | 40 | SET | ьeu | GIU | Ата | 45 | ета | гàг | Arg | | | | | | | | | | | , 0 | | | | | 7.0 | | | | | | | ATC | CGT | CCG | TTG | CTG | CTT | CTG | TCC | ACC | GTT | CAG | GCG | CTC | GGC | AAA | GAC | 192 | |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | _ | Ile | Arg | Pro | Leu | Leu | Leu | Leu | Ser | Thr | Val | G1n | Ala | Leu | Gly | Lys | Asp | | | 5 | | 50 | | | | | 55 | | | | | 60 | | | | | | | | CCG | GCG | GTC | GGA | TTG | ccc | GTC | GCC | TGC | GCG | ATT | GAA | ATG | ATC | CAT | ACG | 240 | | 10 | Pro | Ala | Val | Gly | Leu | Pro | Val | Ala | Cys | Ala | Ile | Glu | Met | Ile | His | Thr | | | 70 | 65 | | | | | 70 | | | | | 75 | | | | | 80 | | | | TAC | TCT | TTG | ATC | CAT | GAT | GAT | TTG | CCG | AGC | ATG | GAC | AAC | GAT | GAT | TTG | 288 | | 15 | Tyr | Ser | Leu | Ile | His | Asp | Asp | Leu | Pro | Ser | Met | Asp | Asn | Asp | Asp | Leu | | | | | | | | 85 | | | | | 90 | | | | | 95 | | | | | CGG | CGC | GGC | AAG | CCG | ACG | AAC | CAT | AAA | GTG | TTC | GGC | GAG | GCG | ATG | GCC | 336 | | 20 | Arg | Arg | Gly | Lys | Pro | Thr | Asn | His | Lys | Val | Phe | Gly | Glu | Ala | Met | Ala | | | | | | | 100 | | | | | 105 | | | | | 110 | | | | | | ATC | TTG | GCG | GGG | GAC | GGG | TTG | TTG | ACG | TAC | GCG | TTT | CAA | TTG | ATC | ACC | 384 | | 25 | Ile | Leu | Ala | G1y | Asp | Gly | Leu | Leu | Thr | Tyr | Ala | Phe | Gln | Leu | Ile | Thr | | | | | | 115 | | | | | 120 | | | | | 125 | | | | | | | GAA | ATC | GAC | GAT | GAG | CGC | ATC | CCT | CCT | TCC | GTC | CGG | CTT | CGG | CTC | ATC | 432 | | 30 | Glu | Ile | Asp | Asp | Glu | Arg | Ile | Pro | Pro | Ser | Val | Arg | Leu | Arg | Leu | Ile | | | | | 130 | | | | | 135 | | | | | 140 | | | | | | | | GAA | CGG | CTG | GCG | AAA | GCG | GCC | GGT | CCG | GAA | GGG | ATG | GTC | GCC | GGT | CAG | 480 | | 35 | Glu | Arg | Leu | Ala | Lys | Ala | Ala | Gly | Pro | Glu | Gly | Met | Val | Ala | Gly | Gln | | | | 145 | | | | | 150 | | | | | 155 | | | | | 160 | | | | GCA | GCC | GAT | ATG | GAA | GGA | GAG | GGG | AAA | ACG | CTG | AÇG | CTT | TCG | GAG | CTC | 528 | | 40 | Ala | Ala | Asp | Met | Glu | Gly | Glu | Gly | Lys | Thr | Leu | Thr | Leu | Ser | Glu | Leu | | | | | | | | 165 | | | | | 170 | | | | | 175 | | | | | GAA | TAC | ATT | CAT | CGG | CAT | AAA | ACC | GGG | AAA | ATG | CTG | CAA | TAC | AGC | GTG | 576 | | 45 | Glu | Tyr | Ile | His | Arg | His | Lys | Thr | Gly | Lys | Met | Leu | Gln | Tyr | Ser | Val | | | | | | | 180 | | | | | 185 | | | | | 190 | | | | | | CAC | GCC | GGC | GCC | TTG | ATC | GGC | GGC | GCT | GAT | GCC | CGG | CAA | ACG | CGG | GAG | 624 | | 50 | His | Ala | Gly | Ala | Leu | Ile | Gly | Gly | Ala | Asp | Ala | Arg | Gln | Thr | Arg | Glu | | | | | | 195 | | | | | 200 | | | | | 205 | | | | | | | CTT | GAC | GAA | TTC | GCC | GCC | CAT | CTA | GGC | CTT | GCC | TTT | CAA | ATT | CGC | GAT | 672 | |----|------------|-------|-------|------|------|------|------|-----|------|----------|-----|------|------|-----|-----|-----|-----| | E | Leu | Asp | Glu | Phe | Ala | Ala | His | Leu | Gly | Leu | Ala | Phe | Gln | Ile | Arg | Asp | | | 5 | | 210 | | | | | 215 | | | | | 220 | | | | | | | | GAT | ATT | CTC | GAT | TTA | GAA | GGG | GCA | GAA | GAA | AAA | ATC | GGC | AAG | CCG | GTC | 720 | | 10 | Asp | Ile | Leu | Asp | Ile | G1u | G1y | Ala | Glu | Glu | Lys | Ile | Gly | Lys | Pro | Val | | | 70 | 225 | | | | | 230 | | | | | 235 | | | | | 240 | | | | GGC | AGC | GAC | CAA | AGC | AAC | AAC | AAA | GCG | ACG | TAT | CCA | GCG | TTG | CTG | TCG | 768 | | 15 | Gly | Ser | Asp | Gln | Ser | Asn | Asn | Lys | Ala |
Thr | Tyr | Pro | Ala | Leu | Leu | Ser | | | | | | | | 245 | | | | | 250 | | | | | 255 | | | | | CTT | GCC | GGC | GCG | AAG | GAA | AAG | TTG | GCG | TTC | CAT | ATC | GAG | GCG | GCG | CAG | 816 | | 20 | Leu | Ala | Gly | Ala | Lys | Glu | Lys | Leu | Ala | Phe | His | Ile | G1u | Ala | Ala | Gln | | | | | | | 260 | | | | | 265 | | | | | 270 | | | | | | | | | | | | | GTT | | | | | | | | | 864 | | 25 | Arg | His | | Arg | Asn | Ala | Asp | Val | Asp | Gly | Ala | Ala | | Ala | Tyr | Ile | | | | | | 275 | | | | | 280 | | <u>.</u> | | | 285 | | | | | | | | | | | | | | GAC | | | | | | | | | 894 | | 30 | Cys | | Leu | Val | Ala | Ala | • | Asp | His | *** | | | | | | | | | | ano | 290 | | 2 | | | 295 | | | | | | | | | | | | | SEQ | ID | NO: | : 3 | | | | | | | | | | | | | | | 35 | SEQ | UEN | CE I | ENG | TH: | 89 | 94 | | | | | | | | | | | | | SEQ | UEN | CE I | YPE | :] | Nuc] | leic | ac: | id | | | | | | | | | | | STR | AND | NESS | S: | Doul | ble | | | | | | | | | | | | | 40 | TOP | OLO. | Y: | Lin | ear | | | | | | | | | | | | | | | MOL | ECU: | LAR | TYP | E: | | | | | | | | | | | | | | 45 | sou | RCE | : E | Baci | llu | s st | ear | oth | ermo | phi | lus | | | | | | | | | СНА | .RAC' | rer i | STI | C: | Mut | ant | (3 |) of | DN | A c | odir | ıg f | or | | | | | 50 | far | nes | yldi | pho | sph | ate | sys | tha | se | | | | | | | | | | 50 | SEQ | UEN | CE | | | | | | | | | | | | | | | | | ATG | GCG | CAG | CTT | TCA | GTT | GAA | CAG | TTT | CTC | AAC | GAG | CAA | AAA | CAG | GCG | 48 | |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------| | _ | Met | Ala | Gln | Leu | Ser | Val | Glu | Gln | Phe | Leu | Asn | Glu | Gln | Lys | Gln | Ala | | | 5 | | | | | 5 | | | | | 10 | | | | | 15 | | | | | GTG | GAA | ACA | GCG | CTC | TCC | CGT | TAT | ATA | GAG | CGC | TTA | GAA | GGG | CCG | GCG | 96 | | 10 | Val | Glu | Thr | Ala | Leu | Ser | Arg | Tyr | Ile | Glu | Arg | Leu | Glu | Gly | Pro | Ala | | | 10 | | | | 20 | | | | | 25 | | | | | 30 | | | | | | AAG | CTG | AAA | AAG | GCG | ATG | GCG | TAC | TCA | TTG | GAG | GCC | GGC | GGC | AAA | CGA | 144 | | 15 | Lys | Leu | Lys | Lys | Ala | Met | Ala | Tyr | Ser | Leu | Glu | Ala | Gly | Gly | Lys | Arg | | | 10 | | | 35 | | | | | 40 | | | | | 45 | | | | | | | ATC | CGT | CCG | TTG | CTG | CTT | CTG | TCC | ACC | GTT | CGG | GCG | CTC | GGA | AAA | GAC | 192 | | 20 | Ile | Arg | Pro | Leu | Leu | Leu | Leu | Ser | Thr | Val | Arg | Ala | Leu | Gly | Lys | Asp | | | | | 50 | | | | | 55 | | | | | 60 | | | | | | | | CCG | GCG | GTC | GGA | TTG | CCC | GTC | GCC | TGC | GCG | ATT | GAA | ATG | ATC | CAT | ACG | 240 | | 25 | Pro | Ala | Val | Gly | Leu | Pro | Val | Ala | Cys | Ala | Ile | Glu | Met | Ile | His | Thr | | | | 65 | | | | | 70 | | | | | 75 | | | | | 80 | | | | TAC | TCT | TTG | ATC | CAT | GAT | GAT | TTG | CCG | AGC | ATG | GAC | AAC | GAT | GAT | TTG | 288 | | 30 | Tyr | Ser | Leu | Ile | His | Asp | Asp | Leu | Pro | Ser | Met | Asp | Asn | Asp | Asp | Leu | | | | | | | | 85 | | | | | 90 | | | | | 95 | | | | | CGG | CGC | GGC | AAG | CCG | ACG | AAC | CAT | AAA | GTG | TTC | GGC | GAG | GCG | ATG | GCC | 336 | | 35 | Arg | Arg | Gly | Lys | Pro | Thr | Asn | His | Lys | Val | Phe | Gly | Glu | Ala | Met | Ala | | | | | | | 100 | | | | | 105 | | | | | 110 | | | | | | ATC | TTG | GCG | GGG | GAC | GGG | TTG | TTG | ACG | TAC | GCG | TTT | CAA | TTG | ATC | ACC | 384 | | 40 | Ile | Leu | Ala | Gly | Asp | Gly | Leu | Leu | Thr | Tyr | Ala | Phe | Gln | Leu | Ile | Thr | | | | | | 115 | | | | | 120 | | | | | 125 | | | | | | | GAA | ATC | GAC | GAT | GAG | CGC | ATC | CCT | CCT | TCC | GTC | CGG | CTT | CGG | CTC | ATC | 432 | | 45 | G1u | Ile | Asp | Asp | Glu | Arg | Ile | Pro | Pro | Ser | Val | Arg | Leu | Arg | Leu | Ile | | | | | 130 | | | | | 135 | | | | | 140 | | | | | | | | GAA | CGG | CTG | GCG | AAA | GCG | GCC | GGT | CCG | GAA | GGG | ATG | GCC | GCC | GGT | CAG | 480 ⁻ | | 50 | Glu | Arg | Leu | Ala | Lys | Ala | Ala | Gly | Pro | Glu | Gly | Met | Ala | Ala | Gly | G1n | | | | 145 | | | | | 150 | | | | | 155 | | | | | 160 | | | | GCA | GCC | GAT | ATG | GAA | GGA | GAG | GGG | AAA | ACG | CTG | ACG | CTT | TCG | GAG | CTC | 528 | |------------|-----|------|----------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | | Ala | Ala | Asp | Met | Glu | G1y | Glu | Gly | Lys | Thr | Leu | Thr | Leu | Ser | Glu | Leu | | | 5 | | | | | 165 | | | | | 170 | | | | | 175 | | • | | | GAA | TAC | ATT | CAT | CGG | TAT | AAA | ACC | GGG | AAA | ATG | CTG | CAA | TAC | AGC | GTG | 576 | | | Glu | Tyr | Ile | His | Arg | Tyr | Lys | Thr | Gly | Lys | Met | Leu | Gln | Tyr | Ser | Val | | | 10 | | | | 180 | | | | | 185 | | | | | 190 | | | | | | CAC | GCC | GGC | GCC | TTG | ATC | GGC | GGC | GCT | GAT | GCC | CGG | CAA | ACG | CGG | GAG | 624 | | | His | Ala | Gly | Ala | Leu | Ile | Gly | Gly | Ala | Asp | Ala | Arg | Gln | Thr | Arg | Glu | | | 15 | | | 195 | | | | | 200 | | | | | 205 | | | | | | | CTT | GAC | GAA | TTC | ĢCC | GCC | CAT | CTA | GGC | CTT | GCC | TTT | CAA | ATT | CGC | GAT | 672 | | | Leu | Asp | Glu | Phe | Ala | Ala | His | Leu | Gly | Leu | Ala | Phe | Gln | Ile | Arg | Asp | | | 20 | | 210 | | | | | 215 | | | | | 220 | | | | | | | | GAT | ATT | CTC | GAT | ATT | GAA | GGG | GCA | GAA | GAA | AAA | ATC | GGC | AAG | CCG | GTC | 720 | | | Asp | Ile | Leu | Asp | Ile | Glu | Gly | Ala | G1u | Glu | Lys | Ile | Gly | Lys | Pro | Val | | | 25 | 225 | | | | | 230 | | | | | 235 | | | | | 240 | | | | GGC | AGC | GAC | CAA | AGC | AAC | AAC | AAA | GCG | ACG | TAT | CCA | GCG | TTG | CTG | TCG | 768 | | | Gly | Ser | Asp | Gln | Ser | Asn | Asn | Lys | Ala | Thr | Tyr | Pro | Ala | Leu | Leu | Ser | | | 30 | | | | | 245 | | | | | 250 | | | | | 255 | | | | | CTT | GCC | GGC | GCA | AAG | GAA | AAG | TTG | GCG | TTC | CAT | ATC | GAG | GCG | GCG | CAG | 816 | | | Leu | Ala | Gly | Ala | Lys | Glu | Lys | Leu | Ala | Phe | His | Ile | G1u | Ala | Ala | Gln | | | 35 | | | | 260 | | | | | 265 | | | | | 270 | | | | | 55 | CGC | CAT | TTA | CGG | AAC | GCC | GAC | GTT | GAC | GGC | GCC | GCG | CTC | GCC | TAT | ATT | 864 | | | Arg | His | Leu | Arg | Asn | Ala | Asp | Val | Asp | Gly | Ala | Ala | Leu | Ala | Tyr | Ile | | | | | | 275 | | | | | 280 | | | | | 285 | | | | | | 40 | TGC | GAA | CTG | GTC | GCC | GCC | CGC | GAC | CAT | TAA | | | | | | | 894 | | | Cys | Glu | Leu | Val | Ala | Ala | Arg | Asp | His | *** | | | | | | | | | | | 290 | | | | | 295 | | | | | | | | | | | | 45 | SEQ | ID | NO: | 4 | | | | | | | | | | | | | | | | SEQ | UENC | CE L | ENG | TH: | 89 | 4 | | | | | | | | | | | | <i>5</i> 0 | SEQ | UENC | CE T | YPE | : N | Nucl | eic | aci | .d | | | | | | | | | | 50 | STR | ANDI | NESS | : | Doub | ole | | | | | | | | | | | | | | TOP | OLOY | : | Lin | ear | #### MOLECULAR TYPE: SOURCE: Bacillus stearothermophilus CHARACTERISTIC: Mutant (4) of DNA coding for farnesyldiphosphate systhase **SEQUENCE** ATG GCG CAG CTT TCA GTT GAA CAG TTT CTC AAC GAG CAA AAA CAG GCG Met Ala Gln Leu Ser Val Glu Gln Phe Leu Asn Glu Gln Lys Gln Ala GTG GAA ACA GCG CTC TCC CGT TAT ATA GAG CGC TTA GAA GGG CCG GCG Val Glu Thr Ala Leu Ser Arg Tyr Ile Glu Arg Leu Glu Gly Pro Ala AAG CTG AAA AAG GCG ATG GCG TAC TCA TTG GAG GCC GGC GGC AAA CGA Lys Leu Lys Lys Ala Met Ala Tyr Ser Leu Glu Ala Gly Gly Lys Arg ATC CGT CCG TTG CTG CTT CTG TCC ACC GTT CGG GCG CTC GGC AAA GAC Ile Arg Pro Leu Leu Leu Ser Thr Val Arg Ala Leu Gly Lys Asp CCG GCG GTC GGA TTG CCC GTC GCC TGC GCG ATT GAA ATG ATC CAT ACG Pro Ala Val Gly Leu Pro Val Ala Cys Ala Ile Glu Met Ile His Thr CAC TCT TTG ATC CAT GAT GAT TTG CCG AGC ATG GAC AAC GAT GAT TTG His Ser Leu Ile His Asp Asp Leu Pro Ser Met Asp Asn Asp Asp Leu CGG CGC GGC AAG CCG ACG AAC CAT AAA GTG TTC GGC GAG GCG ATG GCC Arg Arg Gly Lys Pro Thr Asn His Lys Val Phe Gly Glu Ala Met Ala ATC TTG GCG GGG GAC GGG TTG TTG ACG TAC GCG TTT CAA TTG ATC ACC Ile Leu Ala Gly Asp Gly Leu Leu Thr Tyr Ala Phe Gln Leu Ile Thr GAA ATC GAC GAT GAG CGC ATC CCT CCT TCC GTC CGG CTT CGG CTC ATC Glu Ile Asp Asp Glu Arg Ile Pro Pro Ser Val Arg Leu Arg Leu Ile | | GAA | CGG | CTG | GCG | AAA | GCG | GCC | GGT | CCG | GAA | GGG | ATG | GTC | GCC | GGT | CAG | 480 | |----------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | | Glu | Arg | Leu | Ala | Lys | Ala | Ala | Gly | Pro | Glu | Gly | Met | Val | Ala | Gly | Gln | | | 5 | 145 | | | | | 150 | | | | | 155 | | | | | 160 | | | | GCA | GCC | GAT | ATG | GAA | GGA | GAG | GGG | AAA | ACG | CTG | ACG | CTT | TCG | GAG | CTC | 528 | | | Ala | Ala | Asp | Met | Glu | Gly | Glu | Gly | Lys | Thr | Leu | Thr | Leu | Ser | Glu | Leu | | | 10 | | | | | 165 | | | | | 170 | | | | | 175 | | | | | GAA | TAC | ATT | CAT | CGG | CAT | AAA | ACC | GGG | AAA | ATG | CTG | CAA | TAC | AGC | GTG | 576 | | | Glu | Tyr | Ile | His | Arg | His | Lys | Thr | Gly | Lys | Met | Leu | Gln | Tyr | Ser | Val | | | 15 | | | | 180 | | | | | 185 | | | | | 190 | | | | | | CAC | GCC | GGC | GCC | ŢTG | ATC | GGC | GGC | GCT | GAT | GCC | CGG | CAA | ACG | CGG | GAG | 624 | | | His | Ala | Gly | Ala | Leu | Ile | Gly | Gly | Ala | Asp | Ala | Arg | Gln | Thr | Arg | Glu | | | 20 | | | 195 | | | | | 200 | | | | | 205 | | | | | | | CTT | GAC | GAA | TTC | GCC | GCC | CAT | CTA | GGC | CTT | GCC | TTT | CAA | ATT | CGC | GAT | 672 | | | Leu | Asp | G1u | Phe | Ala | Ala | His | Leu | Gly | Leu | Ala | Phe | Gln | Ile | Arg | Asp | | | 25 | | 210 | | | | | 215 | | | | | 220 | | | | | | | | GAT | ATT | CTC | GAT | ATT | GAA | GGG | GCA | GAA | GAA | AAA | ATC | GGC | AAG | CGG | GTC | 720 | | | Asp | Ile | Leu | Asp | Ile | Glu | Gly | Ala | Glu | Glu | Lys | Ile | Gly | Lys | Arg | Val | | | 30 | 225 | | | | | 230 | | | | | 235 | | | | | 240 | | | | GGC | AGC | GAC | CAA | AGC | AAC | AAC | AAA |
GCG | ACG | TAT | CCA | GCG | TTG | CTG | TCG | 768 | | | Gly | Ser | Asp | Gln | Ser | Asn | Asn | Lys | Ala | Thr | Tyr | Pro | Ala | Leu | Leu | Ser | | | 35 | | | | | 245 | | | | | 250 | | | | | 255 | | | | | CTT | GCC | GGC | GCG | AAG | GAA | AAG | TTG | ACG | TTC | CAT | ΑŢC | GAG | GCG | GCG | CAG | 816 | | | Leu | Ala | Gly | Ala | Lys | Glu | Lys | Leu | Thr | Phe | His | Ile | Glu | Ala | Ala | Gln | | | 40 | | | | 260 | | | | | 265 | | | | | 270 | | | | | | CGC | CAT | TTA | CGG | AAC | GCC | GAC | GTT | GAC | GGC | GCC | GCG | CTC | GCC | TAT | ATT | 864 | | | Arg | His | Leu | Arg | Asn | Ala | Asp | Val | Asp | Gly | Ala | Ala | Leu | Ala | Tyr | Ile | | | 45 | | | 275 | | | | | 280 | | | | | 285 | | | | | | - | TGC | GAA | CTG | GTC | GCC | GCC | CGC | GAC | CAT | TAA | | | | | | | 894 | | | Cys | Glu | Leu | Val | Ala | Ala | Arg | Asp | His | *** | | | | | | | | | 50 | | 290 | | | | | 295 | | | | | | | | * | | | | 50 | SEQ | ID | NO: | 5 | | | | | | | | | | | | | | | | SEQ | UENC | CE L | ENG | rh: | 89 | 4 | SEÇ | JOEN | CE ' | LAbr | : : | Nuc. | тетс | : ac | 10 | | | | | | | | | |----|-----|------|------|------|------------|------|------|------|------|-------------|------|------|------|------|-----|-------|------| | 5 | STF | RAND | NES | S: | Dou | ble | | | | | | | | | | | | | | TOF | oro | Y: | Lir | ear | | | | | | | | | | | | | | | MOI | ECU | LAR | TYF | E: | | | | | | | | | | | | | | 10 | sot | JRCE | : 1 | Baci | .llu | s s | tear | oth | ermo | ophi | lus | | | | | | | | | CHA | RAC | TER | ISTI | .C: | DN | A co | din | g fo | or n | nati | ve : | farr | nesy | ldi | phosp | hate | | 15 | syn | tha | se | | | | | | | | | | | | | | | | | SEÇ | UEN | CE | | | | | | | | | | | | | | | | | ATG | GCG | CAG | CTT | TCA | GTT | GAA | CAG | TTT | CTC | AAC | GAG | CAA | AAA | CAG | GCG | 48 | | 20 | Met | Ala | Gln | Leu | Ser | Val | Glu | Gln | Phe | Leu | Asn | Glu | G1n | Lys | Gln | Ala | | | | | | | | 5 | | | | | 10 | | | | | 15 | | | | | GTG | GAA | ACA | GCG | CTC | TCC | CGT | TAT | ATA | GAG | CGC | TTA | GAA | GGG | CCG | GCG | 96 | | 25 | Val | Glu | Thr | Ala | Leu | Ser | Arg | Tyr | Ile | Glu | Arg | Leu | Glu | Gly | Pro | Ala | | | | | | | 20 | | | | | 25 | | | | | 30 | | | | | | AAG | CTG | AAA | AAG | GCG | ATG | GCG | TAC | TCA | TTG | GAG | GCC | GGC | GGC | AAA | CGA | 144 | | 30 | Lys | Lys | Lys | Lys | Ala | Met | Ala | Tyr | Ser | Leu | Glu | Ala | Gly | Gly | Lys | Arg | | | | | | 35 | | | | | 40 | | | | | 45 | | | | | | | ATC | CGT | CCG | TTG | CTG | CTT | CTG | TCC | ACC | GTT | CAG | GCG | CTC | GGC | AAA | GAC | 192 | | 35 | Ile | Arg | Pro | Leu | Leu | Leu | Leu | Ser | Thr | Va1 | Gln | Ala | Leu | Gly | Lys | Asp | | | | | 50 | | | | | 55 | | | | | 60 | | | | | | | | CCG | GCG | GTC | GGA | TTG | ccc | GTC | GCC | TGC | G CG | ATT | GAA | ATG | ATC | CAT | ACG | 240 | | 40 | Pro | Ala | Val | Gly | Leu | Pro | Val | Ala | Cys | Ala | Ile | Glu | Met | Ile | His | Thr | | | | 65 | | | | | 70 | | | | | 75 | | | | | 80 | | | | TAC | TCT | TTG | ATC | CAT | GAT | GAT | TTG | CCG | AGC | ATG | GAC | AAC | GAT | GAT | TTG | 288 | | 45 | Tyr | Ser | Leu | Ile | His | Asp | Asp | Leu | Pro | Ser | Met | Asp | Asn | Asp | Asp | Leu | | | | | | | | 85 | | | | | 90 | | | | | 95 | | .• | | | CGG | CGC | GGC | AAG | CCG | ACG | AAC | CAT | AAA | GTG | TTC | GGC | GAG | GCG | ATG | GCC | 336 | | 50 | Arg | Arg | Gly | Lys | Pro | Thr | Asn | His | Lys | Va1 | Phe | Gly | Glu | Ala | Met | Ala | | | | | | | 100 | | | | | 105 | | | | | 110 | | | | | | ATC | TTG | GCG | GGG | GAC | GGG | TTG | TTG | ACG | TAC | GCG | TTT | CAA | TTG | ATC | ACC | 384 | |----|-----|-----|-----|-----|------|-----|-----|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------| | | Ile | Leu | Ala | Gly | Asp | Gly | Leu | Leu | Thr | Tyr | Ala | Phe | Gln | Leu | Ile | Thr | | | 5 | | | 115 | | | | | 120 | | | | | 125 | | | | | | | GAA | ATC | GAC | GAT | GAG | CGC | ATC | CCT | CCT | TCC | GTC | CGG | CTT | CGG | CTC | ATC | 432 | | | Glu | Ile | Asp | Asp | Glu | Arg | Ile | Pro | Pro | Ser | Val | Arg | Leu | Arg | Leu | Ile | | | 10 | | 130 | | | | | 135 | | | | | 140 | | | | | | | | GAA | CGG | CTG | GCG | AAA | GCG | GCC | GGT | CCG | GAA | GGG | ATG | GTC | GCC | GGT | CAG | 480 | | | G1u | Arg | Leu | Ala | Lys | Ala | Ala | G1y | Pro | G1u | Gly | Met | Val | Ala | Gly | Gln | | | 15 | 145 | | | | | 150 | | | | | 155 | | | | | 160 | | | | GCA | GCC | GAT | ATG | GAA | GGA | GAG | GGG | AAA | ACG | CTG | ACG | CTT | TCG | GAG | CTC | 528 | | | Ala | Ala | Asp | Met | Glu | Gly | Glu | Gly | Lys | Thr | Leu | Thr | Leu | Ser | Glu | Leu | | | 20 | | | | | 165 | | | | | 170 | | | | | 175 | | | | | GAA | TAC | ATT | CAT | CGG | CAT | AAA | ACC | GGG | AAA | ATG | CTG | CAA | TAC | AGC | GTG | 576 | | | G1u | Tyr | Ile | His | Arg | His | Lys | Thr | Gly | Lys | Met | Leu | Gln | Tyr | Ser | Val | | | | | | | 180 | | | | | 185 | | | | | 190 | | | | | 25 | CAC | GCC | GGC | GCC | TTG | ATC | GGC | GGC | GCT | GAT | GCC | CGG | CAA | ACG | CGG | GAG | 624 | | | His | Ala | Gly | Ala | Leu | Ile | Gly | Gly | Ala | Asp | Ala | Arg | Gln | Thr | Arg | Glu | | | | | | 195 | | | | | 200 | | | | | 205 | | | | | | 30 | CTT | GAC | GAA | TTC | GCC | GCC | CAT | CTA | GGC | CTT | GCC | TTT | CAA | ATT | CGC | GAT | 672 | | | Leu | Asp | Glu | Phe | Ala | Ala | His | Leu _. | Gly | Leu | Ala | Phe | Gln | Ile | Arg | Asp | | | | | 210 | | | | | 215 | | | | | 220 | | | | | | | 35 | GAT | ATT | CTC | GAT | ATT | GAA | GGG | GCA | GAA | GAA | AAA | ATC | GGC | AAG | CCG | GTC | 720 | | | Asp | Ile | Leu | Asp | lle | G1u | G1y | Ala | G1u | Glu | Lys | Ile | Gly | Lys | Pro | Va1 | | | | 225 | | | | | 230 | | | | | 235 | | | | | 240 | | | 40 | GGC | AGC | GAC | CAA | AGC | AAC | AAC | AAA | GCG | ACG | TAT | CCA | GCG | TTG | CTG | TCG | 768 | | | G1y | Ser | Asp | G1n | Ser | Asn | Asn | Lys | Ala | Thr | Tyr | Pro | Ala | Leu | Leu | Ser | | | | | | | | 245 | | | | | 250 | | | | | 255 | | | | 45 | CTT | GCC | GGC | GCG | AAG | GAA | AAG | TTG | GCG | TTC | CAT | ATC | GAG | GCG | GCG | CAG | 816. | | | Leu | Ala | Gly | Ala | Lys | Glu | Lys | Leu | Ala | Phe | His | Ile | Glu | Ala | Ala | Gln | | | | | | | 260 | | | | | 265 | | | | | 270 | | | | | | CGC | CAT | TTA | CGG | AAC | GCC | GAC | GTT | GAC | GGC | GCC | GCG | CTC | GCC | TAT | ATT | 864 | | 50 | Arg | His | Leu | Arg | Asn. | Ala | Asp | Val | Asp | Gly | Ala | A1a | Leu | Ala | Tyr | Ile | | | | | | 275 | | | | | 280 | | | | | 285 | | | | | | | TGC | GAA | CTG | GTC | GCC | GCC | CGC | GAC | CAT | TAA AAT | 394 | |----|-----------|-----|-----|-----|-----|-----|-----|-----|-----|---|-----| | 5 | Cys | G1u | Leu | Val | Ala | Ala | Arg | Asp | His | *** | | | | | 290 | | | | | 295 | | | | | | | | | | | | | | | | | | | 10 | ynthesizing geranylgeranyldiphosphate and gene co
odified from a native farnesyldiphosphate synthase b | | | | tion of a | | | | | | | | | | | | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | #### SEQUENCE LISTING | 5 | (1) GENERAL INFORMATION: | |----|--| | 10 | (i) APPLICANT: (A) NAME: Toyota Jidosha Kabushiki Kaisha (B) STREET: 1, Toyota-cho (C) CITY: Toyota-shi (D) STATE: Aichi (E) COUNTRY: Japan | | 15 | (F) POSTAL CODE (ZIP): None (ii) TITLE OF INVENTION: MUTATED FARNESYLDIPHOSPHATE SYNTHASE CAPABLE OF SYNTHESIZING GERANYLGERANYLDIPHOSPHATE AND GENE CODING THEREFOR | | | (iii) NUMBER OF SEQUENCES: 10 | | 20 | (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO) | | 25 | (v) CURRENT APPLICATION DATA: APPLICATION NUMBER: EP 95115423.6 | | | (2) INFORMATION FOR SEQ ID NO: 1: | | 30 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 894 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear | | 35 | <pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Bacillus stearothermophilus</pre> | | 40 | <pre>(ix) FEATURE:</pre> | | 45 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: | | | ATG GCG CAG CTT TCA GTT GAA CAG TTT CTC AAC GAG CAA AAA CAG GCG Met Ala Gln Leu Ser Val Glu Gln Phe Leu Asn Glu Gln Lys Gln Ala 1 5 10 15 | | 50 | GTG GAA ACA GCG CTC TCC CGT TAT ATA GAG CGC TTA GAA GGG CCG GCG Val Glu Thr Ala Leu Ser Arg Tyr Ile Glu Arg Leu Glu Gly Pro Ala 20 25 30 | | 55 | | | | | | | | | | | | CGA
Arg | 144 | |----|--|--|--|--|--|--|---------------------|--|------------|-------------| | 5 | | | | | | | CTC
Leu | | | 192 | | 10 | | | | | | | ATG
Met | | | 240 | | 15 | | | | | | | AAC
Asn | | | 288 | | | | | | | | | G A G
Glu | | | 336 | | 20 | | | | | | | CAA
Gln
125 | | | 384 | | 25 | | | | | | | CTT
Leu | | | 432 | | 30 | | | | | | |
GTC
Val | | | 480 | | | | | | | | | CTT
Leu | | | 528 | | 35 | | | | | | | CAA
Gln | | | 576 | | 40 | | | | | | | CAA
Gln
205 | | | 624 | | 45 | | | | | | | C AA
Gln | | | 672 | | | | | | | | | GGC
Gly | | | 720 | | 50 | | | | | | | GCG
Ala | | | 7 68 | | 5 | CTT
Leu | GCC
Ala | GGC
Gly | GCG
Ala
260 | AAG
Lys | G AA
Glu | AAG
Lys | TTG
Leu | GCG
Ala
265 | TTC
Phe | CAT
His | ATC
Ile | GAG
Glu | GCG
Ala
270 | GCG
Ala | CAG
Gln | 816 | |------------|--------------------|------------|-------------------|-------------------|------------|--------------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|-----| | 3 | CGC
A rg | CAT
His | TCA
Ser
275 | CGG
Arg | AAC
Asn | GCC
Ala | GAC
Asp | GTT
Val
280 | GAC
Asp | GGC
Gly | GCC
Ala | GCG
Ala | CTC
Leu
285 | GCC
Ala | TAT
Tyr | ATT
Ile | 864 | | 10 | | | | | | GCC
Ala | | | | TAA | | | | | | | 894 | | 15 | | | | | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | | | | | 35 | | | | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | | | | 4 5 | | | | | | | | | | | | | | | | | | | 50 | | | | | | | | | | | | | | | | | | | 55 | (2) | INF | ORMA' | rion | FOR | SEQ | ID 1 | NO: 3 | 2: | | | | | | | | |----|--------------------|------------|--------------|-------------------------|---------------|------------|------------|-------------|------------|------------|-------------------|------------|------------|-------------------|-------------------|------------| | 5 | | | (1 | SEQUI
A) Li
B) T' | ENGTI
YPE: | H: 2: | 97 ai | mino
cid | | | | | | | | | | | | (ii |) M O | LECUI | LE T | YPE: | pro | tein | | | | | | | | | | 10 | | (xi |) SE | QUEN | CE DI | ESCR: | IPTI(| ON: | SEQ | ID N | 0: 2 | : | | | | | | | Met
1 | Ala | Gln | Leu | Ser
5 | Val | Glu | Gln | Phe | Leu
10 | Asn | Glu | Gln | Lys | Gln
15 | Ala | | 15 | Val | Glu | Thr | Ala
20 | Leu | Ser | Arg | Tyr | Ile
25 | Glu | Arg | Leu | Glu | Gly
30 | Pro | Ala | | | Lys | Leu | Lys
35 | Lys | Ala | Met | Ala | Tyr
40 | Ser | Leu | Glu | Ala | Gly
45 | Gly | Lys | Arg | | 20 | Ile | Arg
50 | Pro | Leu | Leu | Leu | Leu
55 | Ser | Thr | Val | Arg | Ala
60 | Leu | Gly | Lys | Asp | | | Pro
65 | Ala | Val | Gly | Leu | Pro
70 | Val | Ala | Cys | Ala | Ile
75 | Glu | Met | Ile | His | Thr
80 | | 25 | His | Ser | Leu | Ile | His
85 | Asp | Asp | Leu | Pro | Ser
90 | Met | Asp | Asn | Asp | As p
95 | Leu | | | Arg | Arg | Gly | Lys
100 | Pro | Thr | Asn | His | Lys
105 | Val | Phe | Gly | Glu | Ala
110 | Met | Ala | | 30 | Ile | Leu | Ala
115 | Gly | Asp | Gly | Leu | Leu
120 | Thr | Tyr | Ala | Phe | Gln
125 | Leu | Ile | Thr | | 35 | Glu | Ile
130 | Asp | Asp | Glu | Arg | Ile
135 | Pro | Pro | Ser | Val | Arg
140 | Leu | Arg | Leu | Ile | | | Glu
145 | Arg | Leu | Ala | Lys | Ala
150 | Ala | Gly | Pro | Glu | Gly
155 | Met | Val | Ala | Gly | Gln
160 | | 40 | Ala | Ala | Asp | Met | Glu
165 | - | Glu | _ | _ | | | Thr | Leu | Ser | Glu
175 | Leu | | | Glu | Tyr | Ile | His
180 | Arg | His | Lys | Thr | Gly
185 | Lys | Met | Leu | Gln | Tyr
190 | Ser | Val | | 45 | His | Ala | Gly
195 | Ala | Leu | Ile | Gly | Gly
200 | Ala | Asp | Ala | Arg | Gln
205 | Thr | Arg | Glu | | | Leu | Asp
210 | Glu | Phe | Ala | Ala | His
215 | Leu | Gly | Leu | Ala | Phe
220 | Gln | Ile | Arg | Asp | | 50 | As p
225 | Ile | Leu | Asp | Ile | Glu
230 | Gly | Ala | Glu | Glu | Lys
235 | Ile | Gly | Lys | Pro | Val
240 | | | Gly | Ser | Asp | Gln | Ser
245 | Asn | Asn | Lys | Ala | Thr
250 | Tyr | Pro | Ala | Leu | Leu
255 | Ser | | | Leu | Ala | Gly | Ala
260 | Lys | Glu | Lys | Leu | Ala
265 | Phe | His | Ile | Glu | Ala
270 | Ala | Gln | |----|-----|------------|------------|------------|-----|-----|------------|------------|------------|-----|-----|-----|------------|------------|-----|-----| | 5 | Arg | His | Ser
275 | Arg | Asn | Ala | Asp | Val
280 | Asp | Gly | Ala | Ala | Leu
285 | Ala | Tyr | Ile | | 10 | Cys | Glu
290 | Leu | Val | Ala | Ala | Arg
295 | Asp | His | | | | | | | | | 15 | | | | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | | | | 35 | | | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | | | 45 | | | | | | | | | | | | | | | | | | 50 | | | | | | | | | | | | | | | | | | 55 | | | | | | | | | | | | | | | | | | | (2) | INF | ORMA' | rion | FOR | SEQ | ID I | , iOi | 3: | | | | | | | | | |----|-----|--------------------|--------------|-----------------|------------------------|---------------|-----------------------|-----------------------|------------|------|---------------|-------|------|-----------|-----|-------------|-----| | 5 | | (i) | (1 | QUENCA) LIB) TO | ENGTI
YPE:
[RAN] | H: 89
nucl | 94 ba
leic
ESS: | ase p
acio
doub | pair:
d | S | | | | | | | | | 10 | | (vi) |) OR: | | | | | illus | s st | earo | ther | noph: | ilus | | | | | | 15 | | (ix) | (1 | A) NA
B) L | AME/I
OCAT:
THER | ION:
INFO | 1
CRMA | rion: | | | ion=
hospl | | | | | O NA | | | •• | | (xi) |) SE | QUEN | CE DI | SCR: | [PTI | ON: S | SEQ : | ID N | 0: 3 | : | | | | | | | 20 | | GCG
Ala | | | | | | | | | | | | | | | 48 | | | GTG | GAA | ACA | GCG | CTC | TCC | CGT | TAT | АТА | GAG | CGC | TTA | GAA | GGG | CCG | GCG | 96 | | 25 | Val | Glu | Thr | Ala
20 | Leu | Ser | Arg | Tyr | Ile
25 | Glu | Arg | Leu | Glu | Gly
30 | Pro | Ala | | | | | GTG
Val | | | | | | | | | | | | | | CGA | 144 | | 30 | цуъ | Vai | д у 5 | пур | AIQ | Mec | міа | 40 | Ser | пеп | Giu | AIG | 45 | GIY | пуъ | ALG | | | | | CGT
Arg
50 | | | | | | | | | | | | | | | 192 | | 35 | | GCG
Ala | | | | | | | | | | | | | | | 240 | | 40 | _ | TCT
Ser | _ | | | _ | _ | _ | | _ | | _ | _ | _ | _ | _ | 288 | | 45 | | CGC
A rg | | | | | | | | | | | | | | | 336 | | | | TTG
Leu | | | | | | | | | | | | | | | 384 | | 50 | | ATC
Ile
130 | | | | | | | | | | | | | | | 432 | | 5 | | | | GCG
Ala
150 | | | | | | 480 | |----|---|--|--|-------------------|--|-----|--|--|--|-----| | | | | | GGA
Gly | | | | | | 528 | | 10 | _ | | | CAT
His | | | | | | 576 | | 15 | | | | ATC
Ile | | | | | | 624 | | 20 | | | | GCC
Ala | | | | | | 672 | | 25 | | | | GAA
Glu
230 | | | | | | 720 | | 25 | | | | AAC
Asn | | | | | | 768 | | 30 | | | | GAA
Glu | | | | | | 816 | | 35 | | | | GCC
Ala | | | | | | 864 | | 40 | | | | GCC
Ala | | TAA | | | | 894 | | | (2) | INF | ORMA' | 1.TON | FOR | SEQ | 1D . | NO: | 4: | | | | | | | | |----|------------|------------|--------------------|------------------------|------------|-------------|------------|-------------|------------|------------|-------------------|------------|------------|------------|-------------------|------------| | 5 | | | (1 | SEQUI
A) LI
B) T | ENGT: | H: 2
ami | 97 a | mino
cid | | | | | | | | | | | | (ii |) M O | LECU | LE T | YPE: | pro | tein | | | | | | | | | | 10 | | (xi |) SE | QUEN | CE D | ESCR | IPTI | ON: | SEQ | ID N | 0: 4 | : | | | | | | | Met
1 | Ala | Gln | Leu | Ser
5 | Val | Glu | Gln | Phe | Leu
10 | Asn | Glu | Gln | Lys | Gln
15 | Ala | | 15 | Val | Glu | Thr | Ala
20 | Leu | Ser | Arg | Tyr | Ile
25 | Glu | Arg | Leu | Glu | Gly
30 | Pro | Ala | | | Lys | Val | Lys
35 | Lys | Ala | Met | Ala | Tyr
40 | Ser | Leu | Glu | Ala | Gly
45 | Gly | Lys | Arg | | 20 | Ile | Arg
50 | Pro | Leu | Leu | Leu | Leu
55 | Ser | Thr | Val | Gln | Ala
60 | Leu | Gly | Lys | Asp | | | Pro
65 | Ala | Val | Gly | Leu | Pro
70 | Val | Ala | Cys | Ala | Ile
7 5 | Glu | Met | Ile | His | Thr
80 | | 25 | Tyr | Ser | Leu | Ile | His
85 | Asp | Asp | Leu | Pro | Ser
90 | Met | Asp | Asn | Asp | As p
95 | Leu | | | Arg | Arg | Gly | Lys
100 | Pro | Thr | Asn | His | Lys
105 | Val | Phe | Gly | Glu | Ala
110 | Met | Ala | | 30 | Ile | Leu | Ala
115 | Gly | Asp | Gly | Leu | Leu
120 | Thr | Tyr | Ala | Phe | Gln
125 | Leu | Ile | Thr | | | Glu | Ile
130 | Asp | Asp | Glu | Arg | Ile
135 | Pro | Pro | Ser | Val | Arg
140 | Leu | Arg | Leu | Ile | | 35 | Glu
145 | Arg | Leu | Ala | Lys | Ala
150 | Ala | Gly | Pro | Glu | Gly
155 | Met | Val | Ala | Gly | Gln
160 | | 40 | Ala | Ala | Asp | Met | Glu
165 | Gly | Glu | Gly | Lys | Thr
170 | Leu | Thr | Leu | Ser | Glu
175 | Leu | | 40 | Glu | Tyr | Ile | His
180 | Arg | His | Lys | Thr | Gly
185 | Lys | Met | Leu | Gln | Tyr
190 | Ser | Val | | 45 | His | Ala | Gl y
195 | Ala | Leu | Ile | Gly | Gly
200 | Ala | Asp | Ala | Arg | Gln
205 | Thr | Arg | Glu | | | Leu | Asp
210 | Glu | Phe | Ala | Ala | His
215 | Leu | Gly | Leu | Ala | Phe 220 | Gln | Ile | Arg | Asp | | 50 | Asp
225 | Ile | Leu | Asp | Ile | Glu
230 | Gly | Ala | Glu | Glu | Lys
235 | Ile | Gly | Lys | Pro | Val
240 | | | Gly | Ser | Asp | Gln | Ser
245 | Asn | Asn | Lys | Ala | Thr
250 | Tyr | Pro | Ala | Leu | Leu
255 | Ser | Leu | Ala | Gly | Ala
260 | Lys | Glu | Lys | Leu | Ala
265 | Phe | His | Ile | Glu | Ala
270 | Ala | Gln | |------------|-----|------------|------------|------------|-----|-----|------------|------------|------------|-----|-----|-----|------------|------------|-----|-----| | 5 | Arg | His |
Leu
275 | Arg | Asn | Ala | Asp | Val
280 | Asp | Gly | Ala | Ala | Leu
285 | Ala | Tyr | Ile | | 10 | Cys | Glu
290 | Leu | Val | Ala | Ala | Arg
295 | Asp | His | | | | | | | | | 15 | | | | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | | | | 35 | | | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | | | 4 5 | | | | | | | | | | | | | | | | | | 50 | | | | | | | | | | | | | | | | | | 55 | | | | | | | | | | | | | | | | | | | (2) | INF | ORMA | TION | FOR | SEQ | ID | NO: | 5: | | | | | | | | | |----|-----|--------------------|----------|----------------------|------------------------------|---------------------|----------------------|-------------------|-----------|--------------|------|------|------|--|------------|------|------------| | 5 | | (i | (.
() | A) L
B) T
C) S | CE C
ENGT
YPE:
TRAN | H: 8
nuc
DEDN | 94 b
leic
ESS: | ase
aci
dou | pair
d | S | | | | | | | | | 10 | | (vi | | | AL S | | | illu | s st | earo | ther | moph | ilus | | | | | | 15 | | (ix | ()
(1 | B) L | AME/
OCAT
THER | ION: | 1
ORMA | TION | | unct
ldip | | | | | DNA | | | | | | (xi) |) SE | QUEN | CE D | ESCR | IPTI | ON: | SEQ | ID N | O: 5 | : | | | | | | | 20 | | GCG
Ala | | | | | | | | | | | | | | 4 | 8 8 | | 25 | | G AA
Glu | | | | | | | | | | | | | | 9 | 96 | | 30 | | CTG
Leu | | | | | | | | | | | | | CGA
Arg | 14 | : 4 | | | | CGT
Arg
50 | | | | | | | | | | | | | | 19 | 12 | | 35 | | GCG
Ala | | | | | | | | | | | | | | . 24 | :0 | | 40 | | TCT
Ser | | | | | | | | | | | | | | 28 | 8 | | 45 | | CGC
Arg | | | | | | | | | | | | | | 33 | 6 | | | | TTG
Leu | | | | | | | | | | | | | | 38 | 4 | | 50 | | ATC
Ile
130 | | | | | | | | | | | | | | 43 | 2 | | 5 | | | | AAA
Lys | | | | | | | 480 | |----|---|---|--|--------------------|--|--|-----|--|--|--|-----| | | _ | _ | | GAA
Glu
165 | | | | | | | 528 | | 10 | | | | CGG
A rg | | | | | | | 576 | | 15 | | | | TTG
Leu | | | | | | | 624 | | 20 | | | | GCC
Ala | | | | | | | 672 | | 25 | | | | ATT
Ile | | | | | | | 720 | | 23 | | | | AGC
Ser
245 | | | | | | | 768 | | 30 | | | | AAG
Lys | | | | | | | 816 | | 35 | | | | AAC
Asn | | | | | | | 864 | | 40 | | | | GCC
Ala | | | TAA | | | | 894 | | | (2) | INF | ORMA' | TION | FOR | SEQ | ID I | NO: | 6: | | | | | | | | |----|------------|------------|------------|---------------|-----------------------|------------|------------|-------------|------------|------------|-------------------|------------|------------|------------|------------|--------------------| | 5 | | | (1 | A) Li
B) T | ENCE
ENGTI
YPE: | H: 2: | 97 ai | mino
cid | | | | | | | | | | | | (ii |) MOI | LECUI | LE T | YPE: | pro | tein | | | | | | | | | | 10 | | (xi |) SE(| QUEN | CE DI | ESCR: | IPTI | ON: | SEQ : | ID N | 0: 6 | : | | | | | | | Met
1 | Ala | Gln | Leu | Ser
5 | Val | Glu | Gln | Phe | Leu
10 | Asn | Glu | Gln | Lys | Gln
15 | Ala | | 15 | Val | Glu | Thr | Ala
20 | Leu | Ser | Arg | Tyr | Ile
25 | Glu | Arg | Leu | Glu | Gly
30 | Pro | Ala | | | Lys | Leu | Lys
35 | Lys | Ala | Met | Ala | Tyr
40 | Ser | Leu | Glu | Ala | Gly
45 | Gly | Lys | Arg | | 20 | Ile | Arg
50 | Pro | Leu | Leu | Leu | Leu
55 | Ser | Thr | Val | Arg | Ala
60 | Leu | Gly | Lys | Asp | | | Pro
65 | Ala | Val | Gly | Leu | Pro
70 | Val | Ala | Cys | Ala | Ile
75 | Glu | Met | Ile | His | Thr
80 | | 25 | Tyr | Ser | Leu | Ile | His
85 | Asp | Asp | Leu | Pro | Ser
90 | Met | Asp | Asn | Asp | Asp
95 | Leu | | | Arg | Arg | Gly | Lys
100 | Pro | Thr | Asn | His | Lys
105 | Val | Phe | Gly | Glu | Ala
110 | Met | Ala | | 30 | Ile | Leu | Ala
115 | Gly | Asp | Gly | Leu | Leu
120 | Thr | Tyr | Ala | Phe | Gln
125 | Leu | Ile | Thr | | | Glu | Ile
130 | Asp | Asp | Glu | Arg | Ile
135 | Pro | Pro | Ser | Val | Arg
140 | Leu | Arg | Leu | Ile | | 35 | Glu
145 | Arg | Leu | Ala | Lys | Ala
150 | Ala | Gly | Pro | Glu | Gly
155 | Met | Ala | Ala | Gly | Gln
160 | | 40 | Ala | Ala | Asp | | Glu
165 | Gly | Glu | Gly | - | Thr
170 | | Thr | Leu | Ser | Glu
175 | | | 40 | Glu | Tyr | Ile | His
180 | Arg | Tyr | Lys | Thr | Gly
185 | Lys | Met | Leu | Gln | Tyr
190 | Ser | Val | | 45 | His | Ala | Gly
195 | Ala | Leu | Ile | Gly | Gly
200 | Ala | Asp | Ala | Arg | Gln
205 | Thr | Arg | Glu | | | Leu | Asp
210 | Glu | Phe | Ala | Ala | His
215 | Leu | Gly | Leu | Ala | Phe
220 | Gln | Ile | Arg | Asp | | 50 | Asp
225 | Ile | Leu | Asp | Ile | Glu
230 | Gly | Ala | Glu | Glu | Lys
235 | Ile | Gly | Lys | Pro | V al
240 | | | Gly | Ser | Asp | Gln | Ser
245 | Asn | Asn | Lys | Ala | Thr
250 | Tyr | Pro | Ala | Leu | Leu
255 | Ser | | 55 | | | | | | | | | | | | | | | | | | | Leu | Ala | Gly | Ala
260 | Lys | Gļu | Lys | Leu | Ala
265 | Phe | His | Ile | Glu | Ala
270 | Ala | Gln | |------------|-----|------------|------------|------------|-----|-----|------------|------------|------------|-----|-----|-----|------------|------------|-----|-----| | 5 | Arg | His | Leu
275 | Arg | Asn | Ala | Asp | Val
280 | Asp | Gly | Ala | Ala | Leu
285 | Ala | Tyr | Ile | | 10 | Cys | Glu
290 | Leu | Val | Ala | Ala | Arg
295 | Asp | His | | | | | | | | | 15 | | | | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | | | | 35 | | | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | | | 4 5 | | | | | | | | | | | | | | | | | | 50 | | | | | | | | | | | | | | | | | | 55 | | | | | | | | | | | | | | | | | | | (2) | INF | ORMA | TION | FOR | SEQ | ID : | NO: | 7: | | | | | | | - | | |------------|--|-------------------|------|------|------|------|-----------|------|-------|------|------|------|------|--|---|------------|-----| | 5 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 894 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (vi) ORIGINAL SOURCE: | | | | | | | | | | | | | | | | | | 10 | | (vi | | | | | E:
Bac | illu | s st | earo | ther | moph | ilus | | | | | | 15 | <pre>(ix) FEATURE:</pre> | | | | | | | | | | | | | | | | | | 20 | | (xi) | SE | QUEN | CE D | ESCR | IPTI(| ON: | SEQ : | ID N | 0: 7 | : | | | | | | | 20 | | GCG
Ala | | | | | | | | | | | | | | | 48 | | 25 | | GAA
Glu | | | | | | | | | | | | | | | 96 | | 30 | | CTG
Leu | | | | | | | | | | | | | | CGA
Arg | 144 | | | | CGT
Arg
50 | | | | | | | | | | | | | | | 192 | | 35 | | GCG
Ala | | | | | | | | | | | | | | | 240 | | 40 | | TCT
Ser | | | | | | | | | | | | | | | 288 | | 4 5 | | CGC
Arg | | | | | | | | | | | | | _ | | 336 | | | | TTG
Leu | | | | | | | | | | | | | | | 384 | | 50 | | ATC
Ile
130 | | | | | | | | | | | | | | | 432 | | 5 | | | AAA
Lys | | | | | | | 480 | |----|--|--|--------------------|--|--|-----|--|--|--|-----| | | | | GAA
Glu
165 | | | | | | | 528 | | 10 | | | CGG
A rg | | | | | | | 576 | | 15 | | | TTG
Leu | | | | | | | 624 | | 20 | | | GCC
Ala | | | | | | | 672 | | 25 | | | ATT
Ile | | | | | | | 720 | | | | | AGC
Ser
245 | | | | | | | 768 | | 30 | | | AAG
Lys | | | | | | | 816 | | 35 | | | AAC
Asn | | | | | | | 864 | | 40 | | | GCC
Ala | | | TAA | | | | 894 | | | (2) | INF | OR MA T | rion | FOR | SEQ | ID I | 4O: 8 | 3: | | | | | | | | |---------------|------------|------------|----------------|----------------------------------|------------|------------|------------|-------------|------------|------------|-------------------|------------|------------|------------|------------|------------| | 5 | | | (I | SEQUI
A) Li
B) T'
C) T(| ENGTI | H: 29 | 97 ar | mino
cid | | | | | | | | | | | | (ii) | MOI | LECUI | LE TY | PE: | prot | ein | | | | | | | | | | 10 | | (xi) | SEÇ | QUENC | CE DI | ESCR | PTI | ON: S | SEQ : | ID NO | D: 8 | : | | | | | | | Met
1 | Ala | Gln | Leu | Ser
5 | Val | Glu | Gln | Phe | Leu
10 | Asn | Glu | Gln | Lys | Gln
15 | Ala | | 15 | Val | Glu | Thr | Ala
20 | Leu | Ser | Arg | Tyr | Ile
25 | Glu | Arg | Leu | Glu | Gly
30 | Pro | Ala | | | Lys | Leu | Lys
35 | Lys | Ala | Met | Ala | Tyr
40 | Ser | Leu | Glu | Ala | Gly
45 | Gly | Lys | Arg | | 20 | Ile | Arg
50 | Pro | Leu | Leu | Leu | Leu
55 | Ser | Thr | Val | Arg | Ala
60 | Leu | Gly | Lys | Asp | | | Pro
65 | Ala | Val | Gly | Leu | Pro
70 | Val | Ala | Cys | Ala | Ile
75 | Glu | Met | Ile | His | Thr
80 | | 25 | His | Ser | Leu | Ile | His
85 | Asp | Asp | Leu | Pro | Ser
90 | Met | Asp | Asn | Asp | Asp
95 | Leu | | | Arg | Arg | Gly | Lys
100 | Pro | Thr | Asn | His | Lys
105 | Val | Phe | Gly | Glu | Ala
110 | Met | Ala | | 30 | Ile | Leu | Ala
115 | Gly | Asp | Gly | Leu | Leu
120 | Thr | Tyr | Ala | Phe | Gln
125 | Leu | Ile | Thr | | | Glu | Ile
130 | Asp | Asp | Glu | Arg | Ile
135 | Pro | Pro | Ser | Val | Arg
140 | Leu | Arg | Leu | Ile | | 35 | Glu
145 | Arg | Leu | Ala | Lys | Ala
150 | Ala | Gly | Pro | Glu | Gly
155 | Met | Val | Ala | Gly | Gln
160 | | | Ala | Ala | Asp | Met | Glu
165 | Gly | Glu | Gly | Lys | Thr
170 | Leu | Thr | Leu | Ser | Glu
175 | Leu | | 40 | Glu | Tyr | Ile | His
180 | Arg | His | Lys | Thr | Gly
185 | Lys | Met | Leu | Gln | Tyr
190 | Ser | Val | | 45 | His | Ala | 45 | Ala | Leu | Ile | Gly | Gly
200
| Ala | Asp | Ala | Arg | Gln
205 | Thr | Arg | Glu | | - | Leu | Asp
210 | Glu | Phe | Ala | Ala | His
215 | Leu | Gly | Leu | Ala | Phe
220 | Gln | Ile | Arg | Asp | | 50 | Asp
225 | Ile | Leu | Asp | Ile | Glu
230 | Gly | Ala | Glu | Glu | Lys
235 | Ile | Gly | Lys | Arg | Val
240 | | | Gly | Ser | Asp | Gln | Ser
245 | Asn | Asn | Lys | Ala | Thr
250 | Tyr | Pro | Ala | Leu | Leu
255 | Ser | Leu | Ala | Gly | Ala
260 | Lys | Glu | Lys | Leu | Thr
265 | Phe | His | Ile | Glu | Ala
270 | Ala | Gln | |-----------|-----|------------|------------|------------|-----|-----|------------|------------|------------|-----|-----|-----|------------|------------|-----|-----| | 5 | Arg | His | Leu
275 | Arg | Asn | Ala | Asp | Val
280 | Asp | Gly | Ala | Ala | Leu
285 | Ala | Tyr | Ile | | 10 | Cys | Glu
290 | Leu | Val | Ala | Ala | Arg
295 | Asp | His | | | | | | | | | 15 | | | | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | | | | 35 | | | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | | | 45 | | | | | | | | | | | | | | | | | | 50 | | | | | | | | | | | | | | | | | | 55 | | | | | | | | | | | | | | | | | | | (2) | INF | ORMA | TION | FOR | SEQ | ID. | NO: | 9: | | | | | | | | | | |----|-----|-----|----------|----------------------|---------------------------------|---------------------|----------------------|-------------------|----------------|------|------|------|------|-------------------|-----|--------|---|-----| | 5 | | (i | (.
(| A) L
B) T
C) S | CE CI
ENGTI
YPE:
TRANI | H: 8
nuc
DEDN | 94 b
leic
ESS: | ase
aci
dou | pair
d | S | | | | | | | | | | 10 | | (vi | | | AL SO | | | illu | s st | earo | ther | moph | ilus | | | | | | | 15 | | (ix | (.
() | B) L | AME/1
OCAT:
THER | ION: | 1
ORMA | TION | : /fi
phato | | | | A co | ding | for | native | ÷ | | | | | (xi |) SE | QUEN | CE DI | ESCR: | IPTI | ON: | SEQ : | ID N | O: 9 | : | | | | | | | | 20 | | | | | | | | | | | | | | AAA
Lys | | | | 48 | | 25 | | | | | | | | | | | | | | GGG
Gly
30 | | | | 96 | | 30 | | | | | | | | | | | | | | GGC
Gly | | | | 144 | | | | | | | | | | | | | | | | GGC
Gly | | | | 192 | | 35 | | | | | | | | | | | | | | ATC
Ile | | | | 240 | | 40 | | | | | | | | | | | | | | GAT
Asp | | | | 288 | | 45 | | | | | | | | | | | | | | GCG
Ala
110 | | | | 336 | | | | | | | | | | | | | | | | TTG
Leu | | | | 384 | | 50 | | | | | | | | | | | | | | CGG
Arg | | | | 432 | | 5 | CGG
Arg | | | | | | | | | 480 | |----|-----------------------|--|-------|---|--|-----|--|--|---|-----| | | GCC
Ala | | | | | | | | | 528 | | 10 |
TAC
Tyr | |
- | | | | | | _ | 576 | | 15 | GCC
Ala | | | | | | | | | 624 | | 20 |
GAC
Asp
210 | |
 | _ | | | | | | 672 | | 05 | ATT
Ile | | | | | | | | | 720 | | 25 | AGC
Ser | | | | | | | | | 768 | | 30 | GCC
Ala | | | | | | | | | 816 | | 35 | CAT
His | | | | | | | | | 864 | | 40 | GAA
Glu
290 | | | | | TAA | | | | 894 | | | (2) | INF | ORMA' | TION | FOR | SEQ | ID I | NO: | 10: | | | | | | | | |----|------------|------------|---------------|---------------|------------------------------|--------------------|------------|-------------|---------------------|------------|------------|-------------|------------|------------|------------|------------| | 5 | | | (1 | A) Li
B) T | ENCE
ENGT
YPE:
OPOL | H: 2 | 97 ai | mino
cid | | | | | | | | | | | | (ii) |) M O: | LECU: | LE T | YPE: | pro | tein | | | | | | | | | | 10 | | (xi |) SE | QUEN | CE D | ESCR | IPTI | ON: | SEQ | ID N | 0: 1 | 0: | | | | | | | Met
1 | Ala | Gln | Leu | Ser
5 | Val | Glu | Gln | Phe | Leu
10 | Asn | Glu | Gln | Lys | Gln
15 | Ala | | 15 | Val | Glu | Thr | Ala
20 | Leu | Ser | Arg | Tyr | Ile
25 | Glu | Arg | Leu | Glu | Gly
30 | Pro | Ala | | | Lys | Lys | Lys
35 | Lys | Ala | Met | Ala | Tyr
40 | Ser | Leu | Glu | Ala | Gly
45 | Gly | Lys | Arg | | 20 | Ile | Arg
50 | Pro | Leu | Leu | Leu | Leu
55 | Ser | Thr | Val | Gln | Ala
60 | Leu | Gly | Lys | Asp | | | Pro
65 | Ala | Val | Gly | Leu | Pro
70 | Val | Ala | Cys | Ala | Ile
75 | Glu | Met | Ile | His | Thr
80 | | 25 | Tyr | Ser | Leu | Ile | His
85 | Asp | Asp | Leu | Pro | Ser
90 | Met | Asp | Asn | Asp | Asp
95 | Leu | | | Arg | Arg | Gly | Lys
100 | Pro | Thr | Asn | His | L y s
105 | Val | Phe | Gly | Glu | Ala
110 | Met | Ala | | 30 | Ile | Leu | Ala
115 | Gly | Asp | Gly | Leu | Leu
120 | Thr | Tyr | Ala | Phe | Gln
125 | Leu | Ile | Thr | | | Glu | Ile
130 | Asp | Asp | Glu | Arg | Ile
135 | Pro | Pro | Ser | Val | Arg
140 | Leu | Arg | Leu | Ile | | 35 | Glu
145 | Arg | Leu | Ala | Lys | A la
150 | Ala | Gly | Pro | Glu | Gly
155 | Met | Val | Ala | Gly | Gln
160 | | 40 | Ala | Ala | Asp | Met | Glu
165 | Gly | Glu | Gly | Lys | Thr
170 | | Thr | Leu | Ser | Glu
175 | Leu | | | Glu | Tyr | Ile | His
180 | Arg | His | Lys | Thr | Gly
185 | Lys | Met | Leu | Gln | Tyr
190 | Ser | Val | | 45 | His | Ala | Gly
195 | Ala | Leu | Ile | Gly | Gly
200 | Ala | Asp | Ala | A rg | Gln
205 | Thr | Arg | Glu | | | Leu | Asp
210 | Glu | Phe | Ala | Ala | His
215 | Leu | Gly | Leu | Ala | Phe
220 | Gln | Ile | Arg | Asp | | 50 | Asp
225 | Ile | Leu | Asp | Ile | Glu
230 | Gly | Ala | Glu | Glu | Lys
235 | Ile | Gly | Lys | Pro | Val
240 | | | Gly | Ser | Asp | Gln | Ser
245 | Asn | Asn | Lys | Ala | Thr
250 | Tyr | Pro | Ala | Leu | Leu
255 | Ser | | | | | | | | | | | | | | | | | | | #### 15 Claims 20 30 40 45 50 - 1. A process for production of a gene coding for a mutated farnesyldiphosphate synthase capable of synthesizing geranyldiphosphate synthase comprising the steps of: - (1) subjecting a gene coding for a farnesyldiphosphate synthase to mutagenesis; - (2) expressing the genes subjected to the mutagenesis; and - (3) selecting a gene coding for a mutated farnesyldiphosphate synthase capable of synthesizing geranylgeranyldiphosphate. - 25 **2.** A process according to claim 1, wherein the gene coding for mutated farnesyldiphosphate synthase capable of synthesizing geranylgeranyldiphosphate is derived from <u>Bacillus</u> stearothermophilus. - **3.** A gene coding for a mutated farnesyldiphosphate synthase capable of synthesizing geranyldiphosphate synthase, obtainable according to a process of claim 1. - **4.** A process for production of a mutated farnesyldiphosphate synthase capable of synthesizing geranylgeranyldiphosphate, comprising the step of expressing a gene of claim 3. - **5.** A mutated farnesyldiphosphate synthase capable of synthesizing geranylgeranyldiphosphate, obtainable according to a process of claim 4. - **6.** A process for production of geranylgeranyldiphosphate or geranylgeranyol, comprising the step of acting a mutated farnesyldiphosphate synthase capable of synthesizing geranylgeranyldiphosphate on a substrate selected from the group consisting of isopentenyldiphosphate, dimethylallyldiphosphate, geranyldiphosphate and farnesyldiphosphate. - 7. A geranylgeranyldiphosphate synthase having an amino acid sequence modified from a native amino acid sequence of a farnesyldiphosphate synthase wherein the modification comprises deletion of one to a few amino acid residues, addition of one to a few amino acid residues or replacement of one to a few amino acid residues with other amino acid residues, or a combination of said modification. - 8. A geranylgeranyldiphosphate synthase according to claim 7, wherein the modification is present on at least one of the positions 34, 59, 81, 157, 182, 239, 265 and 275 of farnesyldiphosphate synthase of Bacillus stearother-mophilus origin, or one to a few corresponding positions in an amino acid sequence of a farnesyldiphosphate synthase of other origin. - 9. A geranylgeranyldiphosphate synthase having an amino acid sequence shown in SEQ ID NO: 1. - 10. A geranylgeranyldiphosphate synthase having an amino acid sequence shown in SEQ ID NO: 2. - 11. A geranylgeranyldiphosphate synthase having an amino acid sequence shown in SEQ ID NO: 3. - 12. A geranylgeranyldiphosphate synthase having an amino acid sequence shown in SEQ ID NO: 4. 13. A gene coding for a geranylgeranyldiphosphate synthase according to claim 7. 14. A gene coding for a geranylgeranyldiphosphate synthase according to claim 8. **15.** A gene coding for a geranylgeranyldiphosphate synthase according to claim 9. **16.** A gene coding for a geranylgeranyldiphosphate synthase according to claim 10. 17. A gene coding for a geranylgeranyldiphosphate synthase according to claim 11. 10 18. A gene coding for a geranylgeranyldiphosphate synthase according to claim 12. 19. An expression vector comprising a gene according to claim 13. 20. An expression vector comprising a gene according to claim 14. 21. An expression vector comprising a gene according to claim 15. 22. An expression vector comprising a gene according to claim 16. 20 23. An expression vector comprising a gene according to claim 17. 24. An expression vector comprising a gene according to claim 18. 25. A recombinant host transformed with an expression vector according to claim 19. 26. A recombinant host transformed with an expression vector according to claim 20. 27. A recombinant host transformed with an expression vector according to claim 21. 30 28. A recombinant host transformed with an expression vector according to claim 22. 29. A recombinant host transformed with an expression vector according to claim 23. 30. A recombinant host transformed with an expression vector according to claim 24. 35 40 45 50 55 # F i q.2 | A YSLEAGGKRIRPL
LLLST
Q YGALLGGKRLRPF LVYAT
LNY NTPGGKLNRGL SVVDT
LEY NAIGGKYNRGL TVVVA
LEY NTVGGKYNRGL TVVQT | B MIHT YSLIHDDLPSMDNDDLRRGKPIN H AYSLIHDDLPAMDDDDLRRGLPIC HLQ AYFLVADD MMDKSITRRGQP C WYKVPEVGEI LLQ AFFLVADD IMDSSLTRRGQ IC WYQKPGVGLD LLQ AFFLVLDD IMDSSHTRRGQI C WYQKPGIGLD | GQAADM EGEGKTLTLSE
GQALDL DAEGKHVPLDA
GQLMDL ITAPEDKVDLS
GQTLDL LTAPQGNVDLV
GQTLDL ITAPQGVDLG | |---|--|---| | MAQL SVEQFLNEQKQAVETAL SRYIERLEGPAKLKKAM MOFPQQLEACVKQANQAL SRFIAPL PFQNTPVVETM MASEKEIRRERFLNVFPKLVEELNASLLAYGMPKEACOWYAHS LNY NTPGGKLNRGL MNGDQNSDVYAQEKQDFVQHFSQIVRVLTEDEMGHPEIGDAIARLKEV MNGDQNSDVYAQEKQDFVQHFSQIVRVLTEDELGHPEKGDAITRIKEV LEY NTVGGKYNRGL | S
C C A E
C C VE | LLTYA FQLITEIDDERIPPSVRLRLIERLAKAAGPEGMVA GQAADM EGEGKTLTLSE TL A FSILSDADMPEVSDRDRISMISELASASGIAGMCG GQALDL ML EA AIYKLLKSHFRNEKYYIDITELFHEVTFQTEL CIYRLLKLYCREQPYYLNLIELFLQSSYQTEI CIYRLLKFYCREQPYYLNLELFLQSSYQTEI CATLOL ITAPQGQVDLG | | MAQL SVEQFLNEQKÇ
MDF PQQLEACVKQAN
MASEKE I RRERFLNV
MNGDQNSDVYAQEKÇ
MNGDQNSDVYAQEKÇ | VRALGKDPAVGLPVA GHMFGVSTNTLDAPAAAVE C YAILSNKTVEQLGQEEYEKVAILGW C FRELVEPRKQDADSLQRAWTVGW C FQELVEPRKQDAESLQRALTVGW C | C A GDG LLTYA A GDALQTL A AINDAF ML EA AINDAN LL EA AINDAL LL EA | | 25,000 | 2000 | 2000 | | | | ESI
LEM
LEM | YPALLSLAGAKEKLAFHIEAAQRHLRNADVDGAA
TYPALLGLEQARKKARDLIODARQSLKQLAEQSLDTS
WVINKALELASAEQRKTLDENYGKKDSVAEAKCKKIF
WLVVQCLQRATPEQYQILKENYGQKAEKVARVKALYE
WLVVQCLLRATPQQRQILEENYGQKDPEKVARVKALY | , | (1) B. STEAROTHERMOPHILAS
(2) E. COL!
(3) YEAST
(4) HUMAN
(5) RAT | |-----------|---|---|---|---|---| | F i g . 3 | ш | (1) LEYIHRH KTGKMLQYSVHAG ALIG G ADAR QTRELDEFAAHL (2) LERIHRH KTGA LIRAAVRLGALS AG DKG RRALPVLDKYAESI (3) KFSLKKHSFIVTF KTAYYSFYLPVAL AMYVAGITDEK DLKQARDVLIPL (4) RFTEKRYKSIVKY KTAFYSFYLPIAA AMYMAGI D G EKEHANAKKILLEM (5) RYTEKRYKSIVKY KTAFYSFYLPIAA AMYMAGI D G EKEHANALKILLEM | (1) GLAFQIRDDILDIEGAEEKI GKPVGSD QSNNKAT YPALLSLAGAKEKLAFHIEAAQRHLRNADVDGAA (2) GLAFQVQDDILDVVGDTA TLGKRQGAD QQLGK S TYPALLGLEQARKKARDLIDDARQSLKQLAEQSLDTS (3) GEYFQIQDDYLDCFGTPEQI GKI GTDIQDN KCS WVINKALELASAEQRKTLDENYGKKDSVAEAKCKKIF (4) GEFFQIQDDYLDLFGDPSVT GKI GTDIQDN KCS WLVVQCLQRATPEQYQILKENYGQKAEKVARVKALYE (5) GEFFQIQDDYLDLFGDPSVT GKV GTDIQDN KCS WLVVQCLLRATPQQRQILEENYGQKDPEKVARVKALY | O | 1) 2) A 2) A 3) NDLKIEQLYHEYEESIAKDLKAKISQVDESRGFKADV LTAFLN KVYKRSK 4) ELDLPAVFLQYEEDSYSHIMALIEQYAAPLPPAVF 5) EELDLRSVFFKYEEDSYNRLKSLIEQCSAPLPPSIF LE LANKIYKRRK | # Fig.4 | | | 2 34 | |---|---|---| | W.T | 1: | MAQLSVEQFLNEQKQAVETALSRYIERLEGPAKLKKAMAYSLEAGGKRIR | | No.1 | 1: | | | No.2 | 1: | V | | No.3 | 1: | | | No.4 | 1: | | | | | | | | | 59 81 | | W.T | 51: | PLLLLSTVRALGKDPAVGLPVACAIEMIHTYSLIHDDLPSMDNDDLRRGK | | No.1 | 51: | H | | No.2 | 51: | Q | | No.3 | 51: | | | No.4 | 51: | Н | | | | | | | | 141 | | W.T | 101: | PTNHKVFGEAMAILAGDGLLTYAFQLITEIDDERIPPSVRLRLIERLAKA | | No.1 | 101: | | | No. 2 | 101: | | | No.3 | 101: | | | No. 4 | 101: | | | | | | | | | 157 182 | | ₩.T | | AGPEGMVAGQAADMEGEGKTLTLSELEYIHRHKTGKMLQYSVHAGALIGG | | No.1 | 151: | | | | | | | No.2 | 151: | | | No. 2
No. 3 | 151 :
151 : | | | No.2 | 151: | | | No. 2
No. 3 | 151 :
151 : | | | No. 2
No. 3
No. 4 | 151 :
151 :
151 : | 239 | | No. 2
No. 3
No. 4 | 151 :
151 :
151 :
201 : | 239
ADARQTRELDEFAAHLGLAFQIRDD1LDIEGAEEKIGKPVGSDQSNNKAT | | No. 2
No. 3
No. 4
W. T
No. 1 | 151 :
151 :
151 :
201 :
201 : | 239
ADARQTRELDEFAAHLGLAFQIRDD1LDIEGAEEKIGKPVGSDQSNNKAT | | No. 2
No. 3
No. 4
W. T
No. 1 | 151 :
151 :
151 :
201 :
201 :
201 : | 239
ADARQTRELDEFAAHLGLAFQIRDD1LDIEGAEEKIGKPVGSDQSNNKAT | | No. 2
No. 3
No. 4
W.T
No. 1
No. 2
No. 3 | 151 :
151 :
151 :
201 :
201 :
201 : | 239
ADARQTRELDEFAAHLGLAFQIRDD1LDIEGAEEKIGKPVGSDQSNNKAT | | No. 2
No. 3
No. 4
W. T
No. 1 | 151 :
151 :
151 :
201 :
201 :
201 : | 239
ADARQTRELDEFAAHLGLAFQIRDD1LDIEGAEEKIGKPVGSDQSNNKAT | | No. 2
No. 3
No. 4
W.T
No. 1
No. 2
No. 3 | 151 :
151 :
151 :
201 :
201 :
201 : | 239
ADARQTRELDEFAAHLGLAFQIRDD1LDIEGAEEKIGKPVGSDQSNNKAT
R | | No. 2
No. 3
No. 4
W. T
No. 1
No. 2
No. 3
No. 4 | 151 :
151 :
151 :
201 :
201 :
201 :
201 : | 239 ADARQTRELDEFAAHLGLAFQIRDD1LDIEGAEEKIGKPVGSDQSNNKAT R 265 275 | | No. 2
No. 3
No. 4
W. T
No. 1
No. 2
No. 3
No. 4 | 151 :
151 :
151 :
201 :
201 :
201 :
201 : | 239 ADARQTRELDEFAAHLGLAFQIRDD1LDIEGAEEKIGKPVGSDQSNNKAT R 265 275 YPALLSLAGAKEKLAFHIEAAQRHLRNADVDGAALAYICELVAARDHX | | No. 2
No. 3
No. 4
W. T
No. 1
No. 2
No. 3
No. 4 | 151 :
151 :
151 :
201 :
201 :
201 :
201 :
251 : | 239 ADARQTRELDEFAAHLGLAFQIRDDILDIEGAEEKIGKPVGSDQSNNKAT R 265 275 YPALLSLAGAKEKLAFHIEAAQRHLRNADVDGAALAYICELVAARDHX S | | No. 2
No. 3
No. 4
W. T
No. 1
No. 2
No. 3
No. 4 | 151 :
151 :
151 :
201 :
201 :
201 :
201 :
251 :
251 : | ADARQTRELDEFAAHLGLAFQIRDD1LDIEGAEEKIGKPVGSDQSNNKAT R 265 275 YPALLSLAGAKEKLAFHIEAAQRHLRNADVDGAALAYICELVAARDHX S | | No. 2
No. 3
No. 4
W. T
No. 1
No. 2
No. 3
No. 4 | 151 :
151 :
151 :
201 :
201 :
201 :
201 :
251 : | ADARQTRELDEFAAHLGLAFQIRDDILDIEGAEEKIGKPVGSDQSNNKAT R 265 275 YPALLSLAGAKEKLAFHIEAAQRHLRNADVDGAALAYICELVAARDHX S | Fig.5