(11) **EP 0 733 719 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag:25.09.1996 Patentblatt 1996/39
- (51) Int Cl.6: **C22C 38/22**, C22C 38/24

- (21) Anmeldenummer: 96890050.6
- (22) Anmeldetag: 19.03.1996
- (84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

- (30) Priorität: 23.03.1995 AT 516/95
- (71) Anmelder: BÖHLER Edelstahl GmbH A-8605 Kapfenberg (AT)
- (72) Erfinder:
 - Lenger, Hubert, Dipl. Ing. 8605 Kapfenberg (AT)

- Schweiger, Herbert, Ing. 8661 Wartberg (AT)
- (74) Vertreter: Brauneiss, Leo, Dipl.Ing. Patentanwälte Dipl.-Ing. Leo Brauneiss Dipl.-Ing. Dr. Helmut Wildhack Dipl.Ing. Dr. Gerhard Jellinek Landstrasser Hauptstrasse 50 1030 Wien (AT)

(54) Eisenbasislegierung zur Verwendung bei erhöhter Temperatur

(57) Die Erfindung betrifft eine Eisenbasislegierung zur Verwendung bei erhöhter Temperatur, insbesondere einen Warmarbeitsstahl, mit verbessertem Eigenschaftsniveau.

Es wird eine Legierungszusammensetzung enthaltend im wesentlichen folgende Elemente in Gew.-%

Kohlenstoff 0,30 bis 0,50 Silizium (Si) 0,40 bis 1,60 Mangan 0,30 bis 0,80 Chrom 3,20 bis 6,50 Molybdän (Mo) 0 bis 2,00
Wolfram (W) 0 bis 3,00
(Mo+W/2) 0,95 bis 2,00
Vanadin 0,25 bis 1,20
Aluminium (Al) 0,75 bis 1,60
(Al+Si) 1,20 bis 2,60
Niob 0 bis 0,20
Titan 0 bis 0,15
Nickel max 0,35
Stickstoff max 0,015

Rest Eisen und Begleitelemente vorgeschlagen.

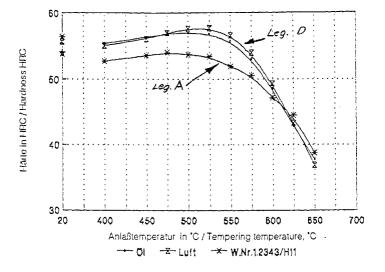


Fig. 1

EP 0 733 719 A

Beschreibung

10

15

25

30

35

40

45

50

55

Die Erfindung betrifft eine Eisenbasislegierung zur Verwendung bei erhöhter Temperatur, insbesondere Warmarbeitsstahl für Werkzeuge zur spanlosen Warmformgebung von Metallen und Legierungen, zum Beispiel Eisen,- Kupferoder Aluminiumlegierungen enthaltend zumindest die Elemente Kohlenstoff, Silizium, Mangan, Chrom, Molybdän und/ oder Wolfram, Vanadin sowie herstellungsbedingte Stahlbegleiter und Verunreinigungen.

Weiters betrifft die Erfindung ein Werkzeug , insbesondere zur spanlosen Warmverformung von Metallen und Legierungen.

Eisenbasislegierungen, die bei erhöhter Temperatur verwendbar sind, insbesondere Warmarbeitsstähle, zeichnen sich dadurch aus, daß die daraus gefertigten Werkzeuge nach entsprechender thermischer Vergütung auch bei Arbeitstemperaturen von 400°C bis 500°C eine im wesentlichen gleich hohe Härte wie bei Raumtemperatur aufweisen. Die hohe Warmhärte bzw. die beim Anlassen des gehärteten Werkstoffes gebildete Sekundärhärte wird durch die Legierungselemente Chrom, Molybdän sowie Wolfram und insbesondere Vanadin und gegebenenfalls auch Niob erreicht.

Es ist bekannt, daß beim Erwärmen einer Eisenbasislegierung bzw. eines Warmarbeitsstahls diese bzw. dieser in das Gammagebiet mit kubisch flächenzentrierter Atomstruktur umwandelt. Das kubisch flächenzentrierte Atomgitter ermöglicht eine vermehrte feste Lösung von Kohlenstoff bei Bildung von Gamma-Mischkristallen, so daß durch Diffusion die in der Legierung bzw. im Stahl vorliegenden Karbide aufgelöst werden und/oder eine größere Menge von Kohlenstoff homogen verteilt in Lösung geht. Erfolgt nun eine Abkühlung des Werkstoffes und ein Rückumwandeln von dessen Atomstruktur in ein raumzentriertes bzw. Alpha- Gitter mit geringer Löslichkeit bzw. Einlagerungsmöglichkeit für Kohlenstoffatome, so bilden sich bei niedrigen Abkühlgeschwindigkeiten wieder Metallkarbide oder es ist bei hohen Abkühlraten die verfügbare Zeitspanne für eine Atom- bzw. Kohlenstoffdiffusion nicht ausreichend für eine Karbidbildung, so daß das Gitter durch Kohlenstoffatome mit kleinem Atomvolumen verzerrt, in eine Alpha- Konfiguration diffusionslos unter Bildung von harter Martensitstruktur umklappt, wobei kubisch flächenzentrierte Restbereiche, sogenannte Restaustenitteile erhalten bleiben. Ein derartig vorliegendes Material ist vielfach spröde und weist auf Grund des Restaustenitgehaltes gegebenenfalls geringe bzw. steigerbare Härte auf.

Durch ein vorzugsweise mehrmaliges Anlassen des gehärteten Werkstoffes erfolgen einerseits eine Umwandlung von weichem Restaustenit in harten Martensit, andererseits , auf Grund der erhöhten Anlaßtemperatur, eine Diffusion von Kohlenstoffatomen und dadurch eine Bildung von feinen, die Gitterversetzungen blockierenden, vielfach submikroskopischen, homogen mit hoher Dichte verteilten Karbidausscheidungen. Diese von der chemischen Zusammensetzung der Legierung abhängenden Vorgänge, die bei Temperaturen von 400°C bis ca. 500°C ablaufen, sind der Fachwelt hinreichend bekannt. Es wird dadurch bei verbesserter Materialzähigkeit eine Erhöhung der Härte bzw. ein sogenannter Sekundärhärtebuckel beim Anlassen des gehärteten Materials bewirkt. Warmarbeitsstähle, wie zum Beispiel eine Eisenbasislegierung gemäß DIN Werkstoff Nr. 1.2343 oder gemäß AISI Type H 11 sind bezüglich der Zusammensetzung, Herstellung und der erforderlichen thermischen Vergütungsparameter für höchste erreichbare Härte, Festigkeits- und Zähigkeitswerte bei Einsatztemperaturen bis ca. 500°C dem Fachmann bekannt.

Bei hohen Beanspruchungen der Warmarbeitswerkzeuge können jedoch oftmals die durch eine thermische Vergütung einstellbaren Gebrauchseigenschaften des Materials nicht ausreichen und hohen Werkzeugverschleiß oder Bruch desselben verursachen. Auch kann eine erreichbare hohe Warmzähigkeit des Werkstoffes vielfach nicht mit hoher Sicherheit in allen Vergütungsfällen leicht eingestellt werden.

Der Erfindung liegt nun die Aufgabe zugrunde, eine Eisenbasislegierung zur Verwendung bei erhöhter Temperatur, insbesondere einen Warmarbeitsstahl für Werkzeuge zur spanlosen Warmformgebung von Metallen und Legierungen, anzugeben, welche bzw. welcher im Vergleich mit bekannten Legierungen höhere Arbeitstemperaturen zuläßt und verbesserte Materialeigenschaften aufweist.

Insbesondere sollen beim Gebrauch der daraus gebildeten Werkzeuge bei einer Temperatur von über 500°C die Arbeitshärte erhöht, die Brandrißbeständigkeit verbessert sowie die Werkstoffzähigkeit angehoben werden. Weiters ist es Ziel der Erfindung, ein Werkzeug, insbesondere für eine spanlose Warmformgebung von Metallen und Legierungen, zu schaffen, welches bei Einsatztemperaturen von über 500°C günstige mechanische Kennwerte, verbesserte Gebrauchseigenschaften sowie eine erhöhte Lebensdauer besitzt.

Diese Aufgabe wird bei einer Eisenbasislegierung der eingangs genannten Art dadurch gelöst, daß diese Gehalte im wesentlichen folgender Elemente in Gew.-%

 Kohlenstoff
 0,30 bis 0,50

 Silizium (Si)
 0,40 bis 1,60

 Mangan
 0,30 bis 0,80

 Chrom
 3,20 bis 6,50

 Molybdän (Mo)
 0 bis 2,00

 Wolfram (W)
 0 bis 3,00

	(Mo+W/2)	0,95 bis 2,00
	Vanadin	0,25 bis 1,20
	Aluminium (Al)	0,75 bis 1,60
	(Al+Si)	1,20 bis 2,60
5	Niob	0 bis 0,20
	Titan	0 bis 0,15
	Nickel	max 0,35
	Stickstoff	max 0,015

15

25

30

35

40

10 Rest Eisen und Begleitelemente aufweist.

Es hat sich volkommen überraschend gezeigt, daß offensichtlich durch die synergetische Wirkung aller Elemente, insbesondere in Verbindung mit den beiden stark ferritbildenden Elementen Silizium und Aluminium, das Eigenschaftsniveau des Warmarbeitswerkstoffes wesentlich angehoben und/oder zu höheren Einsatztemperaturen verschoben werden kann. Wichtig dabei ist, daß der Nickelgehalt und insbesondere der Stickstoffgehalt der austenitisierenden Wirkung dieser Elemente

wegen einen niedrigen Grenzwert nicht überschreiten.

0.00 6:- 0.50

Die Ursachen für die Verbesserungen bzw. Erhöhungen der Anlaßbeständigkeit, der Brandrißbeständigkeit, der Arbeitshärte und Warmzähigkeit sowie der Zeitbrucheinschnürung, der Zeitbruch- und Kriechdehnung bei höheren Temperaturen der erfindungsgemäßen Legierung sind wissenschaftlich noch nicht vollkommen geklärt. Es kann jedoch angenommen werden, daß eine Gitterverzerrung und die Ausscheidungskinetik der Karbide bei einer Umwandlung der Legierung von einem kubisch flächenzentrierten in ein kubisch raumzentriertes Kristallgitter und beim Anlassen nach einem Härten vorteilhaft geändert ist.

Dem Fachmann ist bekannt, daß durch steigende Aluminiumgehalte die Löslichkeit für Kohlenstoff in Gamma-Mischkristall vermindert ist, woraus auf eine schlechtere Vergütbarkeit des Werkstoffes geschlossen werden könnte. Infolge der Abschnürung des Gammagebietes mußte weiters auch befürchtet werden, daß durch Silizium und zusätzlich Aluminium im Stahl Ferritreste bei der Wärmebehandlung im Gefüge verbleiben bzw. keine vollständige Umwandlung mehr erfolgt und dadurch eine geringere erreichbare Werkstoffhärte verursacht wird. Entgegen dieser Fachmeinung wurde gefunden, daß die geänderte Ausscheidungskinetik offenbar eine feine, homogen dichte Karbidkonftiguration bewirkt und eine Ausbildung von Karbidnetzen und Komgrenzenbelegungen durch Karbide behindert, dadurch höhere Zähigkeitswerte des Werkstoffes erreichen läßt sowie die Anlaßtemperatur zu höheren Werten verschiebt. Dabei ist wichtig, daß bei einem Siliziumgehalt von mindestens 0,40, vorzugsweise von 0,75 bis 1,60, Gew.-% ein Aluminiumgehalt von 0,75 bis 1,6 Gew.-% gegeben ist und die Summenkonzentration obiger Elemente im Werkstoff einen Wert innerhalb des Bereiches von 1,20 bis 2,60 Gew.-% aufweist. Summenwerte (Al + Si) unter 1,20 Gew.-% erniedrigen sprunghaft das Eigenschaftsniveau des Werkstoffes bei hohen Temperaturen und höhere Gehalte an Aluminium und Silizium über 2,6 Gew.-% führen zu Versprödungserscheinungen und niedrigen mechanischen Werten.

Von besonderer Bedeutung sind niedrige Nickel- und Stickstoffgehalte. Nickel über 0,35 Gew.-% verschlechtert die Vergütbarkeit des Werkstoffes wahrscheinlich durch eine Stabilisation des Restaustenites. Eine Stickstoffkonzentration von größer als 0,015 Gew.-% bewirkt eine Bildung von Aluminiumnitrid, welches an Komgrenzen angelagert ein überproportionales Absinken der Zähigkeitswerte des Materiales hervorrufen kann.

Eine Anhebung des durchschnittlichen Eigenschaftsniveaus von Werkzeugen kann durch ein Einengen der Konzentrationen von Si, Mo, Mo+W/2, (Al+Si) sowie Nb in der Legierung erreicht werden. Demzufolge besitzt der Werkstoff Gehalte folgender Elemente in Gew.-%:

	Kohlenstoff	0,30 bis 0,50
45	Silizium (Si)	0,75 bis 1,60
	Mangan	0,30 bis 0,80
	Chrom	3,20 bis 6,50
	Molybdän (Mo)	0 bis 1,65
	Wolfram (W)	0 bis 3,00
50	(Mo+W/2)	0,95 bis 1,65
	Vanadin	0,25 bis 1,20
	Aluminium (Al)	0,75 bis 1,60
	(Al+Si)	1,60 bis 2,60
	Niob	0 bis 0,15
55	Titan	0 bis 0,15
	Nickel	max 0,35
	Stickstoff	max 0,015

1/ = |= | = ... = + = ff

Rest Eisen und Begleitelemente.

Besonders bevorzugt weist die Eisenbasislegierung zur Verwendung bei erhöhter Temperatur Gehalte im wesentlichen folgender Elemente in Gew.-% auf:

5	Kohlenstoff	0,35 bis 0,40
	Silizium (Si)	0,90 bis 1,20
	Mangan	0,35 bis 0,55
	Chrom	4,50 bis 5,50
	Molybdän (Mo)	0,75 bis 1,50
10	Wolfram (W)	0 bis 1,50
	(Mo+W/2)	1,20 bis 1,50
	Vanadin	0,30 bis 0,60
	Aluminium (Al)	0,80 bis 1,25
	(Al + Si)	1,85 bis 2,40
15	Niob	0,03 bis 0,1
	Titan	0 bis 0,09
	Nickel	max 0,18
	Stickstoff	max 0,009
	Sauerstoff	max 0,006
20		

25

30

35

40

45

50

55

Bei obiger Zusammensetzung in engen Grenzen wird ein besonders hohes Eigenschaftsniveau bei einer Verwendung eines vergüteten Werkzeuges im Temperaturbereich von 450 °C bis 570 °C und darüber hinaus erreicht. Ein Niobgehalt im Bereich von 0,03 bis 0,1 Gew.-% bewirkt nicht nur eine Feinkörnigkeit des Materials mit dessen vorteilhaften Auswirkungen sondern unterstützt auch die Bildung des Sekundärhärtebuckels beim Anlassen des gehärteten Werkstoffes und dessen Verschiebung zu höheren Temperaturen. Titankonzentrationen bis 0,09 Gew.-% fördern eine Feinkömigkeit , höhere Gehalte vermindern eine Härteannahme der Legierung. Höhere Sauerstoffgehalte als 0,006 Gew.-% wirken sich ungünstig auf die mechanischen Hochtemperatureigenschaften aus und verschlechtern insbesondere eine Polierbarkeit des Materials.

Weiters ist, wie sich gezeigt hat, bei der erfindungsgemäßen Ausbildung der Eisenbasislegierung zur Verwendung bei erhöhter Temperatur ein Gehalt an Schwefel im Bereich von in Gew.-% 0,05 bis 0,16 vorteilhaft für eine verbesserte mechanische Bearbeitung derselben.

Höchste Kerbschlagzähigkeitswerte auch bei hohen Anwendungstemperaturen der Eisenbasislegierung werden erreicht, wenn weiters, wie in günstiger Weise vorgesehen werden kann, eine geringe Phosphorkonzentration im Stahl von höchstens 0,01 Gew.-% eingestellt wird.

Im Zuge der Entwicklungsarbeiten hat es sich überraschend gezeigt, daß die Summenkonzentration der wichtigen ferritbildenden Elemente im Werkstoff einen entscheidenden Einfluß auf die Ausbildung der Struktur des Vergütungsgefüges und damit auf die Gebrauchseigenschaften des Teiles besitzt. Wenn nämlich, wie gemäß einer weiteren Ausführungsform der Erfindung, der Summengehalt an Cr, Mo, Si und Al der Legierung Werte zwischen 7,6 und 8,8 Gew.-% aufweist, wird ein äußerst sicheres, verfahrensmäßig weitgehend unempfindliches Umwandlungsverhalten mit einer besonders feinen Gefügeausbildung beim Härten und Anlassen des Werkstoffes erreicht.

Das weitere Ziel der Erfindung wird bei einem Werkzeug der eingangs genannten Art erreicht, wenn dieses eine chemische Zusammensetzung des Werkstoffes gemäß einem der Ansprüche 1 bis 4 aufweist und eine Materialhärte von mindestens 53, vorzugsweise von mindestens 54, HRC, eine Zugfestigkeit von mindestens 1195, vorzugsweise von mindestens 1200, N/mm², eine 0,2 % Dehngrenze von mindestens 1060, vorzugsweise von 1070, N/mm², eine Dehnung und Einschnürung von mindestens 18,5 bzw. 60 %, vorzugsweise von mindestens 20 bzw. 66 %, bei einer Temperatur von 500°C bis 550°C, besitzt.

Bei einer thermischen Vergütung der erfindungsgemäßen Legierung auf mindestens oben gekennzeichnete Werte wird ein optimales Eigenschaftsniveau des Warmarbeitswerkzeuges erreicht. Dies betrifft nicht nur die mechanischen Werte bei hoher Arbeitstemperatur sondern auch einen geringeren Warmverschleiß, erhöhte Zeitstandsfestigkeit, verminderte Brandrißempfindlichkeit und geringere Klebeneigung zum Beispiel des Schmiederohlings am Gesenk. Obwohl exakte wissenschaftliche Daten noch fehlen, dürfte der Warmarbeitsstahl durch einen vorgesehenen hohen Aluminiumgehalt im Hochtemperaturbetrieb eine Oxidschicht an den Arbeitsflächen bilden, welche im Verein mit anderen Legierungselementen eine hohe Haftung und Abriebfestigkeit besitzt und die Klebeneigung am Werkstück vermindert.

Als weiters vorteilhaft hat sich erwiesen, wenn die Arbeitsflächen zumindest teilweise mit erhöhter Härte ausgebildet sind. Dafür hat sich als besonders günstig eine Nitrierschicht mit hoher Härte herausgestellt, weil einerseits ein erhöhter Aluminiumgehalt des Werkstoffes eine Aufnahme von Stickstoff bzw. eine Nitrierschichtbildung fördert und eine Hartschicht auf besonders einfache Weise gebildet werden kann, andererseits die Schicht mit erhöhter Härte ein vergrößertes Volumen aufweist und dadurch im arbeitsflächennahen Bereich des Werkzeuges Druckspannungen er-

zeugt und eine Rißbildungsneigung wesentlich vermindert werden. Der Stickstoff der Luft bewirkt beim Werkzeug mit hoher Arbeitstemperatur auf Grund des Aluminiumgehaltes des Werkstoffes wahrscheinlich eine weitere Aufstickung der Oberfläche, so daß auch bei einem gegebenenfalls geringen Abrieb im praktischen Einsatz die Dicke der Hartschicht weitgehend erhalten bleibt.

Im folgenden wird die Erfindung anhand von Beispielen vergleichend näher erläutert. Es wurden jeweils durch Elektroschlacke-Umschmelzen Blöcke mit einer Zusammensetzung gemäß Tabelle 1 gefertigt, wonach aus diesen Blöcken durch Schmieden mit 6-facher Verformung Proben hergestellt wurden. Die Proben wurden thermisch vergütet bzw. gehärtet und mehrfach angelassen und erbrachten die in den Tabellen 2.1 bis 2.6 dargestellten Ergebnisse. Dabei ist anzumerken, daß die Ergebnisse betreffend die Temperatur, die Wechselbeständigkeit, den Warmverschleiß, die Zähigkeit und das Nitrierverhalten der zum Stand der Technik zählenden Legierung A und zwar der Legierung entsprechend DIN Werkstoff Nr. 1.2343 mit 100 % bezeichnet wurden und Abweichungen von diesem Wert durch kleinere oder größere Prozentzahlen relativ dazu gekennzeichnet sind. Die Warmhärtewerte erfindungsgemäßer Eisenbasislegierungen bei Temperaturen zwischen 475°C und 575°C lagen durchwegs um mindestens 9 % höher als diejenigen der Vergleichslegierung (W.Nr. 1.2343). Bei der Legierung A (Stand der Technik) wurden beispielsweise die maximalen Härtewerte bei 475°C erreicht, wogegen bei der erfindungsgemäßen Legierung D bis zu einer höheren Temperatur von 575°C größere Werkstoffhärten vorlagen. Die Kurve (Fig. 1) zeigt deutlich die Anhebung der Härtewerte beim Einsatz der erfindungsgemäßen Legierung.

5	Legicning Chem Zus Setzg	А	В	C	D	E	F	G	Н	<i>,</i> ,
	С	0.39	0.42	0.33	0.39	0,38	0.39	0.39	0.40	0,37
10	Sı	1.05	0.85	1.23	1.12	1.14	1.08	1.10	0.48	0.97
	Mn	0.40	0.34	0.78	0,40	0.39	0.42	0.41	0.46	0,42
15	P	0.023	0,021	0.019	0,010	0.008	0.017	0.01	0.011	0.012
	S	0,019	0.027	0.022	0,0011	0.018	0,07	0,016	0.005	0.017
20	C _r	5.15	4.36	5,80	5,10	5,20	5,15	5,00	5.15	5.25
	Мо	1.25	0,70	1,2	1.30	1.32	1,28	1.31	1,23	1.87
	W	-	0.90	088	0.25	0.13	0.16	0.22	0.15	0.33
25	Mo+ W/2	1.25	1.15	1.64	1.43	1.39	1,36	1.41	1.30	2.04
	V	0.40	0.34	0.82	0,45	0,48	0,43	0.42	0,47	0,52
30	Αl	0.031	0,78	1,30	1.02	1,10	1.15	1.10	1.21	1.02
	AL+SI	1.081	1,63	2.53	2.14	2.24	2.23	2.20	1.69	1,99
35	N6	_	-		_		_	0.067	0.08	0.18
	7,	_	-		_	(0.050	0.04	0.016		<0.005
40	N;	0,53	0.30	0,29	0.17	0.17	0,17	0.12	0,27	0,21
	<i>N</i>	0.018	0.013	0.011	0,008	0.007	0,008	0.004	0.007	0.012
45	0	0,008	0,0040	0,0045	0.0045	0.0041	0,0038	0.0036	0,0035	0,0055

50

Tobelle 1

Legierung	Α	В	С	D	E	F	4	Н	,°
Hörte HRC	54	55	54.5	57	57	56,5	57	55	55.5
Zugfestigkeit	1155	1254	1223	1293	1268	1228	1262	1245	1253
0.2% Gimze N/mm²	965	1095	1068	1125	1120	1065	1114	1098	1103
Dehnung %	19	18	20	19.5	19.5	16	16	18.5	18
Einschnurung	58	65	62	66	64	55	64	65	64
Tomp Wechselb. Basis A, %	100	120	115	125	120	120	115	110	115
Warmrenschle B Basis A, %	100	115	110	130	120	120	120	115	115
zohighert Bosis A, %	100	100	105	100	95	90	95	110	95
N. ticrostalian Bosis A, %	100	105	110	120	115	115	115	115	110

Pristemperatur: 475 °C

Tab. 2.1

Legierung	А	B	С	D	E	F	4	Н	,°
Hörte HRC	 53.5	55	54	57,5	57	56	56,5	<i>5</i> 6	56,5
Zugfeshøbeit N/mm²	1150	1250	1212	1305	1257	1213	1260	1263	1267
0.2% Graze	970	1100	1045	1132	1107	1069	1115	1103	1105
Dehnung	27	19	21	22	19.5	16,5	17.5	20	19.5
Einschnurung	60	66	62	68	67	58	66	67	66
Tomp Wechselb. Basis A, %	100	120	115	130	125	120	120	115	115
Warmerschle B Basis A, %	100	120	115	135	120	125	120	115	175
zóhigkeit Basis A, %	100	100	105	100	100	90	96	115	95
BosisA, %	100	105	110	130	120	120	120	115	110

Priftemperatur: 500°C

Tab. 2.2

Fediernud	Α	B	C	D	E	F	G	Н	,°
Hörte HRC	<i>5</i> 3	54	53,5	58	56,5	56	56	56.5	57
zugfestigkeit N/mm²	1125	1230	1205	1295	1256	1192	1228	1243	1252
0.2% 6, cm 2 e	950	1095	1028	1108	1104	1045	1082	1098	1087
Dehnung %	21.5	21.5	21.5	22	21.0	188	19,5	21,5	20.5
Einschnurung	63	68	64	70	67	58	66	68	66.5
Tomp. Wechselb. Basis A, %	100	120	715	135	120	115	115	115	110
Wormrenschleß Basis A, %	100	120	120	140	125	125	120	115	115
Zohigkeit Bosis A, %	100	95	100	100	95	90.	95	115	95
N.ticronhollm BosisA, %	100	705	115	135	120	120	115	110	110

Pristemperatur: 525 00

Tab. 2.3

Legiciung	А	В	C	D	Ē	F	4	Н	ŗ
Hörte HRC	52	53.5	53	57	56	55	<i>55</i>	55,5	<i>5</i> 6
Zugfestigkeit N/mm²	1100	7270	1182	1263	1230	1145	7192	1208	1214
0.2% 6, m2e N/mm2	923	1063	1036	1087	1084	1008	1058	1062	1065
Dehnung %	22	218	22,5	22,5	27.5	17,5	19.5	22	20,5
Einschnumng	64	69	67	72	69	59	68	70	68
Tamp Wechselb. Basis A, %	100	120	115	140	120	115	115	115	110
Hormicischles Bosis A, %	100	120	120	145	130	125	120	115	115
Zöhigket Bosis A, %	100	95	100	105	95	9.0	95	120	95
N. Historiahallan BosisA, %	100	105	115	135	125	120	115	110	110

Pristemperatur: 550

Tab. 2,4

Legierung	А	В	С	D	E	F	G	Н	,°
Hörte HRC	50	52	51.5	54.5	54	54	53.5	54	53.5
Zug/estigheit N/mm²	1045	1145	1113	1165	1142	1090	1118	1138	1124
0.2% 61 cm ze	842	992	964	1045	985	933	965	992	984
Dehnung %	23	23,5	23,5	24	24	18	22	23.5	22
Einschnurung	68	72	69	77	74	60	73	75	73.
Tomp. Wechselb. Bass A, %	100	115	110	125	115	110	110	110	110
Wormerschieß Basis A, %	100	115	115	138	120	120	115	115	775
zohigkeit Bosis A, %	100	95	100	105	95	90	95	710	95
N.ticomhaltan BosisA, %	100	105	115	130	120	120	115	110	110

Pristemperatur: 575°C

Tab. 2.5

Legierung	Д	В	C	D	E	F	G	Н	,°
Hórte HRC	46	47,5	48	49	48,5	48	47,5	47,5	48
Zugfestigheit N/mm²	865	980	938	1010	983	904	948	974	982
0.2% 61 mze	645	845	813	885	860	756	818	833	819
Dehnung %	23.5	24	24	24.5	23	19	22	24	23
Einschnung	70	77	74.5	82	76.5	60	74	78	74
Tomp Wechselb. Basis A, %	100	110	105	123	110	105	105	105	105
Warmreschles Basis A, %	100	110	110	125	115	115	110	105	105
Zohigheit Bosis A, %	100	95	100	105	95	90	95	110	95
Nilviermhallan Bosisa, %	100	105	115	130	120	115	110	105	105

Pruttemperatur: 600 °C

Tab. 2,6

Patentansprüche

1. Eisenbasislegierung zur Verwendung bei erhöhter Temperatur, insbesondere Warmarbeitsstahl für Werkzeuge zur spanlosen Warmformgebung von Metallen und Legierungen, zum Beispiel Eisen, Kupfer- oder Aluminiumlegierungen, enthaltend zumindest die Elemente Kohlenstoff, Silizium, Mangan, Chrom, Molybdän und/oder Wolfram, Vanadin sowie herstellungsbedingte Stahlbegleiter und Verunreinigungen, gekennzeichnet durch Gehalte im wesentlichen folgender Elemente in Gew.-%:

	Kohlenstoff	0,30 bis 0,50
	Silizium (Si)	0,40 bis 1,60
	Mangan	0,30 bis 0,80
	Chrom	3,20 bis 6,50
5	Molybdän (Mo)	0 bis 2,00
	Wolfram (W)	0 bis 3,00
	(Mo +W/2)	0,95 bis 2,00
	Vanadin	0,25 bis 1,20
	Aluminium (Al)	0,75 bis 1,60
10	(Al+Si)	1,20 bis 2,60
	Niob	0 bis 0,20
	Titan	0 bis 0,15
	Nickel	max 0,35
	Stickstoff	max 0,015
_		

15

40

Rest Eisen und Begleitelemente.

2. Eisenbasislegierung nach Anspruch 1, gekennzeichnet durch Gehalte folgender Elemente in Gew.-%:

20	Kohlenstoff	0,30 bis 0,50
	Silizium (Si)	0,75 bis 1,60
	Mangan	0,30 bis 0,80
	Chrom	3,20 bis 6,50
	Molybdän (Mo)	0 bis 1,65
25	Wolfram (W)	0 bis 3,00
	(Mo+W/2)	0,95 bis 1,65
	Vanadin	0,25 bis 1,20
	Aluminium(Al)	0,75 bis 1,60
	(Al+Si)	1,60 bis 2,60
30	Niob	0 bis 0,15
	Titan	0 bis 0,15
	Nickel	max 0,35
	Stickstoff	max 0,015

- Rest Eisen und Begleitelemente.
 - 2. Eisenbasislegierung nach Anspruch 1, gekennzeichnet durch Gehalte folgender Elemente in Gew.-%:
 - 3. Eisenbasislegierung nach Anspruch 1 oder 2, gekennzeichnet durch Gehalte folgender Elemente in Gew.-%:

	Kohlenstoff	0,35 bis 0,40
	Silizium (Si)	0,90 bis 1,20
	Mangan	0,35 bis 0,55
	Chrom	4,50 bis 5,50
45	Molybdän (Mo)	0,75 bis 1,50
	Wolfram (W)	0 bis 1,50
	/Mo + W/2	1,20 bis 1,50
	Vanadin	0,30 bis 0,60
	Aluminium (Al)	0,80 bis 1,25
50	(Al + Si)	1,85 bis 2,40
	Niob	0,03 bis 0,1
	Titan	0 bis 0,09
	Nickel	max 0,18
	Stickstoff	max 0,009
55	Sauerstoff	max 0,006

4. Legierung nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen Gehalt an Schwefel in Gew.-% von 0,05 bis 0,16.

5. Legierung nach einem der Ansprüche 1 bis 4, gekennzeichnet durch einen Gehalt an Phosphor von höchstens 0,01 Gew.-%. 6. Legierung nach einem der Ansprüche 1 bis 5, gekennzeichnet durch einen Summengehalt an Cr+Mo+Si+Al in 5 Gew.-% von 7,6 bis 8,8. 7. Werkzeug, insbesondere für eine spanlose Warmformgebung von Metallen und Legierungen, zum Beispiel Eisen-, Kupfer- oder Aluminiumlegierungen, gekennzeichnet durch eine chemische Zusammensetzung des Werkstoffes gemäß einem der Ansprüche 1 bis 6 und eine Materialhärte von mindestens 53, vorzugsweise von minde-10 stens 54, HRC, eine Zugfestigkeit von mindestens 1195, vorzugsweise von mindestens 1200 N/mm², eine 0,2% Dehngrenze von mindestens 1060, vorzugsweise von 1070, N/mm², eine Dehnung und Einschnürung von mindestens 18,5 bzw. 60 %, vorzugsweise von mindestens 20 bzw. 66 %, bei einer Temperatur von 500 °C bis 550 °C. 8. Werkzeug nach Anspruch 7, gekennzeichnet durch Arbeitsflächen mit zumindest teilweise erhöhter Härte. 15 9. Werkzeug nach Anspruch 7 oder 8, gekennzeichnet durch Arbeitsflächen, die zumindest teilweise eine Nitrierschicht mit hoher Härte aufweisen. 20 25 30 35 40 45 50

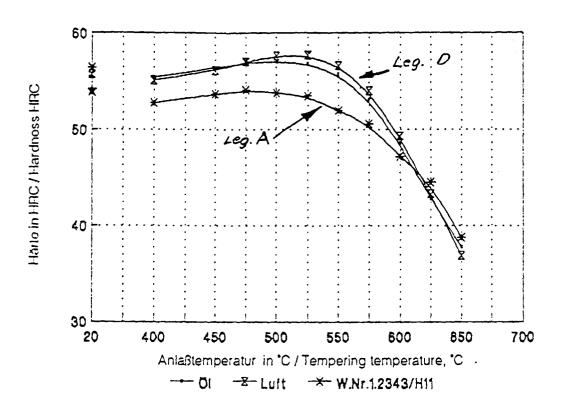


Fig. 1

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 96 89 0050

EINSCHLÄGIGE DOKUMENTE Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, Betrit				ifft KLASSIFIKATION DER
Kategorie	der maßgeblich		Anspruc	
X	US-A-4 729 872 (KISH 8.März 1988 *Tabelle 1 und Spalt		1,7	C22C38/22 C22C38/24
X	DATABASE WPI Week 7830 Derwent Publications AN 78-54635A XP002007871 & JP-A-53 070 940 (Page 1978) *Tabelle 1 in der 01 * Zusammenfassung *	HITACHI METAL KK)	,	
X	PATENT ABSTRACTS OF vol. 012, no. 398 (0 & JP-A-63 140066 (H 11.Juni 1988, *Tabelle 1 in der 0 * Zusammenfassung *	C-538), 21.0ktober ITACHI METALS LTD)	,	RECHERCHIERTE
A	JP-A-58 113 352 (DA 6.Juli 1983	IDO TOKUSHUKO KK)	1-9	SACHGEBIETE (Int.Cl.6) C22C
A	PATENT ABSTRACTS OF vol. 005, no. 016 (& JP-A-55 145155 (D LTD;OTHERS: 01), 12 * Zusammenfassung *	C-041), 30.Januar AIDO STEEL CO	1981	
A	EP-A-0 425 471 (BOE	HLER GMBH) 2.Mai 1	991 1-9	
	vorliegende Recherchenbericht wurd Recherchenort	Abschlußdatum der Reci	nerche	Prifer
	MÜNCHEN	9.Juli 199	6	Badcock, G
Y:v A:t O:	KATEGORIE DER GENANNTEN I ron besonderer Bedeutung allein betrach ron besonderer Bedeutung in Verbindung, underen Veröffentlichung derselben Kate echnologischer Hintergrund nichtschriftliche Offenbarung zwischenliteratur	tet E: älter nach g mit einer D: in de egorie L: aus :	es Patentdokument, da dem Anmeldedatum v er Anmeldung angefüh undern Gründen angefüh	eröffentlicht worden ist rtes Dokument