BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION:
[0001] The present invention relates to body structure of industrial vehicle such as a fork
lift, and more particularly relates to body structure suitable for a rear wheel drive,
battery-operated, three-wheeled fork lift.
DESCRIPTION OF THE RELATED ART:
[0002] Fig. 5 schematically shows a body structure of a conventional rear wheel drive, battery-operated,
three-wheeled fork lift. The illustrated fork lift has a drive unit 34 of the type
vertically placing a drive motor 33 for driving a rear wheel, the drive unit 34 being
attached to the rear side of a frame 31 together with a power steering oil motor 35
and controller 36. A large quantity of strengthening material such as a thick steel
plate 37 or rib is welded with the rear side of the frame 31 to secure a required
strength for attaching such mechanical hardwares as the drive unit 34 and controller
36.
[0003] Further, a counterweight 32 is mounted on the rear end portion of the frame 31, the
counterweight 32 having a horizontal section in the form of a substantially U-shape
so as to surround mechanical hardwares and strengthening material for supporting them.
Such body structure is disclosed, for example, in Japanese Patent Laid-Open No. 62-36299
and Japanese Patent Laid-Open No. 5-24555.
[0004] In the above described conventional fork lift, since the drive unit 34, oil motor
35, controller 36 etc. are attached to the frame 31, it is necessary, when mounting
the counterweight 32, to provide a predetermined gap between an inner surface of the
counterweight 32 and the mechanical hardwares and steel plate or the like for supporting
them so as not to cause an interference thereof. Since, however, the counterweight
in general is formed as a cast product, the production precision thereof is poor.
For this reason, the gap for avoiding an interference tends to be set larger than
that actually needed considering a margin of safety.
[0005] On the other hand, one of the characteristics of a three-wheeled, rear wheel drive
fork lift is its compactness and capability of making a small turn. In order to fully
use this characteristic, it is necessary to reduce the overall length of the vehicle
as much as possible. For this reason, a rearward extension from the outer surface
of the counterweight must be avoided. As described, the counterweight in the conventional
three-wheeled, rear wheel drive fork lift has a constraint on its extension with respect
to both the inner surface side and the outer surface side thereof. It has thus been
very difficult to clear such constraint to obtain a required weight. Further, since
a large quantity of strengthening material such as a thick steel plate or rib is welded
with the rear portion of the frame, material cost and processing cost are increased
to result in a problem of high cost.
SUMMARY OF THE INVENTION
[0006] In view of the above described problems, it is an object of the present invention
to provide a body structure of industrial vehicle capable of facilitating setting
of the weight of a counterweight and at the same time suitable for achieving simplification
of a rear portion of its frame.
[0007] In a body structure of industrial vehicle where a drive unit for driving a rear wheel
and a counterweight are disposed on the rear of the frame of the body, the body structure
according to the present invention includes: a unit attaching portion formed on the
counterweight mounted at a rear end portion of the frame; and a drive unit fixed to
the unit attaching portion.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008]
Fig. 1 is a schematic perspective view showing a counterweight and mechanical hardwares
attached thereto used in the body structure of a rear wheel drive, battery-operated,
three-wheeled fork lift according to an embodiment of the present invention,
Fig. 2 illustrates the attaching relation between the counterweight and drive unit
in the embodiment,
Fig. 3 is a top view showing the layout of an upper side portion of the counterweight
in the embodiment,
Fig. 4 is a horizontal sectional view showing the layout of a lower side portion of
the counterweight in the embodiment, and
Fig. 5 schematically illustrates the body structure of a conventional three-wheeled,
fork lift.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0009] An embodiment of the present invention will now be described in detail by way of
the drawings. Referring to Fig. 1, a counterweight 1 formed as a cast product includes
a rear portion 2 constituting a rear end portion of the vehicle and left and right
side portions 3 monolithically extended frontward from the rear portion 2 to constitute
the two side portions of the rear end of the vehicle. The counterweight 1 is to be
mounted on a rear end portion of the frame (not shown) of a fork lift.
[0010] The rear portion 2 of the counterweight 1 is formed into a substantially arch-like
shape with the front surface side thereof being formed as a concave of the arch. The
outer surface (rear surface) thereof is provided as a curved surface having a curvature
approximated to the minimum turning clearance radius of the vehicle. A unit attaching
portion 4 for attaching a drive unit 11 is formed on the inner surface side of the
rear portion 2. The unit attaching portion 4 is formed into the form of a plate extended
substantially horizontally in a direction toward the front with having a required
thickness substantially at the mid height on the inner surface of the rear portion
2, the front end edge thereof reaching near the end surface of the side portions 3
and a substantially circular attaching hole vertically penetrating through substantially
the center portion thereof.
[0011] As shown in Fig. 2, the drive unit 11 to be attached to the unit attaching portion
4 includes: a gear case 12; a tire 13 rotatably attached to the gear case 12 around
the horizontal axial line thereof; a drive motor 14 serving as a driving unit assembled
in its vertical position with an upper portion of the gear case 12; an array of gears
(not shown) contained in the gear case 12 and transmitting the driving force of the
drive motor 14 to the tire 13; and a substantially ring-like turning base 15 for rotatably
supporting an upper end portion of the gear case 12 around a vertical axis thereof
through a bearing (not shown).
[0012] Of the drive unit 11, the members except the drive motor 14 are attached to a lower
surface of the unit attaching portion 4 of the counterweight 1. That is, the unit
attaching portion 4 has an attaching surface formed by the lower surface of the peripheral
edge of the attaching hole 5, and the turning base 15 is detachably/reattachably tighten
to the attaching surface with its upper surface abutting thereagainst by means of
a plurality of bolts 16 which are inserted from the upper surface side of the unit
attaching portion 4. It should be noted that the attaching surface of the unit attaching
portion 4 is processed into a horizontal plane, and the bolt holes to be formed on
the attaching portion 4 are assured with their horizontal aspect by means of spot
facing.
[0013] On the other hand, the drive motor 14 is placed on an upper end surface of the gear
case 12 through the attaching hole 5 from the top of the unit attaching portion 4,
and a peripheral edge portion of an attaching flange 17 thereof is fixed detachably/reattachably
to the upper end surface of the gear case 12 by means of a suitable number of fixing
bolts 18. That is, the drive motor 14 of the drive unit 11 is so constructed that
it is detached/attached from the top of the unit attaching portion 4. In this manner,
of the drive unit 11, only the turning base 15 is fixed to the counterweight 1 and
the remaining members are provided as capable of a horizontal rotation for the purpose
of steering.
[0014] In this manner, the gear case 12 of the drive unit 11 is attached from the lower
surface side of the unit attaching portion 4 and the drive motor 14 is attached to
the gear case 12 from the upper surface side of the unit attaching portion 4 through
the attaching hole 5. Thereby, rational assembling of the drive unit 11 can be realized.
[0015] To secure an attaching space for the fixing bolt 16 of the turning base 15 in the
present embodiment, the portions corresponding to the bolt attaching positions of
the inner peripheral edge of the attaching hole 5 are extended inwardly as shown in
Fig. 3 to form protuberances 5a. Further, in order to secure an attaching space of
the fixing bolt 18 of the drive motor 14, protuberances 17a are formed by outwardly
extending the portions of the peripheral edge of the attaching flange 17 corresponding
to the bolt attaching positions.
[0016] A predetermined gap is required between the end surface of the hole side protuberance
5a and the end surface of the flange side protuberance 17a in order to avoid interference
of the protuberances 5a, 17a with each other in the rotating direction of the drive
unit 11. In this case, since dimensional precision of the counterweight 1 formed as
a cast product is poor, the end surface of the hole side protuberance 5a is processed
after the forming of the counterweight 1 to secure the required gap therefrom to the
flange side protuberance 17a.
[0017] As a result of forming the protuberances 5a on the inner periphery of the attaching
hole 5 and forming the protuberances 17a on the outer periphery of the attaching flange
17, recesses 5b, 17b are formed respectively between the neighboring hole side protuberances
5a and between the neighboring flange side protuberances 17a. Accordingly, when the
drive motor 14 is to be detached or attached, the detaching/attaching operation may
be readily performed by positioning in the peripheral direction as shown in Fig. 3
so that the protuberances 5a, 17a pass each other through the recesses 17b, 5b on
their respective opposite side.
[0018] As shown in Fig. 4, a substantially block-like motor attaching portion 6 for attaching
an oil motor 19 for effecting power steering is formed on a lower side of the inner
surface of one side portion 3 of the counterweight 1. The motor attaching portion
6 is processed so that a vertical front surface thereof is provided as an attaching
surface 6a. The oil motor 19 with its axis placed along a vertical direction is detachably
and attachably fixed to the attaching surface 6a at a base plate 20 thereof by means
of fixing bolt 21. A steering chain 24 is then extended over a driving sprocket 22
on the motor shaft and a large-diameter follower rail 23 formed on the outer periphery
of an upper portion of the gear case 12. It should be noted that a laterally extended
opening 8 is formed on the rear portion 2 of the counterweight 1 at a position suitable
for the maintenance of the steering chain 24. The opening is usually closed by a cover
9 which may be removed and reattached.
[0019] Further, as shown in Fig. 3, controller attaching portions 7 for attaching a controller
25 are formed on an upper portion of the front end surface of the left and right side
portions 3 of the counterweight 1. The controller attaching portion 7 is processed
so as to provide an attaching surface 7a by its vertical front surface. A base plate
26 of the controller 25 disposed in a manner extended left and right over the attaching
surfaces 7a is detachably and attachably fixed thereto by means of fixing bolts 27.
[0020] As described above, in the present embodiment, the counterweight 1 is used as a rear
frame by assembling such mechanical hardwares as the drive unit 11, oil motor 19 and
controller 25 with the counterweight 1. Thereby, the rear portion of the frame in
the fork lift requires no strengthening members and their welding such as a thick
steel plate for attaching mechanical hardwares and ribs for reinforcing the same which
have been required in the conventional construction. Thus, the rear portion of the
frame is simplified in construction and a reduction in cost is achieved.
[0021] Further, when mounting the counterweight 1 onto the rear portion of a frame, the
conventional type where the mechanical hardwares are mounted on the frame side requires
a gap to be provided in order to avoid interference with the mechanical hardwares
and strengthening members for attaching them. Since, however, the above described
gap need not be considered when employing the construction where the mechanical hardwares
are attached to the counterweight 1 as in the present embodiment, the constraint with
respect to space is eliminated and at the same time it becomes possible to set the
shape of the inner surface of the counterweight 1 at will whereby weight adjustment
may be readily performed.
[0022] In particular, since the counterweight 1 may be designed as a single unit including
the drive unit 11, oil motor 19 and controller 25 to be attached thereto, the space
efficiency thereof is improved so that a required weight may be readily obtained within
a limited vehicle dimension (overall length and vehicle width).
[0023] In addition, a rational positioning of the drive unit 11, oil motor 19 and controller
25 becomes possible by respectively providing the unit attaching portion 4 on a substantially
center portion of the front surface of the rear portion 2 of the counterweight 1,
the motor attaching portion 6 on a lower portion of the inner surface of one of the
side portions 3 and the controller attaching portions 7 on an upper portion of the
front surface of the left and right side portions 3.
[0024] Provided herein is a battery-operated, three-wheeled fork lift using a counterweight
as its rear frame, thereby making weight setting of the counterweight easier and at
the same time suitably achieving a simplification of the rear portion of the frame.
A unit attaching portion 4 extended substantially horizontally in a direction toward
the front is formed on a front surface of a rear portion 2 of the counterweight 1
to be mounted on a rear end portion of the frame, and a drive unit 11 for driving
a rear wheel is attached thereto. Further, controller attaching portions 7 are formed
on an upper part of front surface of two side portions 3 of the counterweight 1, and
a controller 25 is attached thereto. Furthermore, a motor attaching portion 6 extended
inwardly to provide an attaching surface by its front surface is formed on an inner
surface of one of the side portions 3 of the counterweight 1, and an oil motor 19
for power steering is attached thereto.
1. A body structure of industrial vehicle having a drive unit (11) for driving a rear
wheel (13) and a counterweight (1) provided at the rear of a frame of the body,
characterized in that a unit attaching portion (4) is formed on said counterweight
mounted on a rear end portion of the frame, and said drive unit is fixed to said unit
attaching portion.
2. The body structure as claimed in claim 1 wherein said counterweight includes a rear
portion (2) constituting a rear end portion of the vehicle and a pair of left and
right side portions (3) monolithically extended frontward from the rear portion to
constitute two side portions of the rear end of the vehicle, said unit attaching portion
being extended substantially horizontally frontward in the manner of a plate from
the front surface of said rear portion.
3. The body structure as claimed in claim 1 or 2 wherein said body structure further
comprises: a substantially circular attaching hole (5) penetrating through in a vertical
direction formed on said unit attaching portion; a ring-like turning base (15) attached
to a lower surface of a peripheral edge of the attaching hole; a gear case (12) of
said drive unit fixed to said turning base at a lower surface side of said unit attaching
portion; a drive motor (14) of said drive unit disposed on an upper surface side of
said unit attaching portion and fixed to an upper end surface of said gear case through
said attaching hole.
4. The body structure as claimed in claim 3 wherein said turning base is fixed by means
of bolts (16) to a plurality of protuberances (5a) formed in such a manner as to extend
inward on an inner peripheral edge of the attaching hole of said unit attaching portion,
and said drive motor is fixed to the upper end surface of said gear case by putting
bolts (18) through a plurality of protuberances (17a) formed in such a manner as to
extend outward on an outer peripheral edge of an attaching flange (17) on the outer
peripheral portion thereof.
5. The body structure as claimed in one of claims 1 to 4 wherein an oil motor (19) for
power steering and a controller (25) are fixed to said counterweight.
6. The body structure as claimed in claim 5 wherein said counterweight includes: an attaching
portion (7) for said controller on a front end surface of said pair of side portions;
and an attaching portion (6) for said oil motor extended inwardly of said counterweight
on an inner surface of one of the side portions to provide an attaching surface by
a front surface thereof.
7. The body structure as claimed in one of claims 2 to 6 wherein said rear portion has
a substantially arch-like horizontal shape having a front surface side thereof formed
in a concave surface, and the outer surface thereof is a curved surface having a curvature
close to that of the minimum turning clearance radius of the vehicle.