TECHNICAL FIELD
[0001] The present invention relates to rotary cutting tools for working of woods or wood-based
composite materials, that is, a tipped saw for cutting, a drill, a finger cutter,
and a molding cutter.
BACKGROUND ART
[0002] In recent years, making best use of woods has become a large task from the viewpoint
of protection of forests. In particular, a lamination industry wherein small-diameter
materials, short-length materials, cut-off materials and the like are laminated to
form larger boards and materials having a larger section has become played a more
and more important role in accomplishing the above task. In a finger cutter which
is a tool used in the production of a laminated wood and functions to provide a finger-like
joint in the end in the longitudinal direction of the wood, the formed joints should
be always exactly fitted for attaining the contemplated purposes. For this reason,
the shape of the finger should remain unchanged even upon re-grinding of this tool,
in order to maintain the fitting accuracy in the joint.
[0003] This will be explained with reference to accompanying drawings. A finger cutter is
formed in such a manner that the section thereof as viewed from a flank 5 of a peripheral
cutting edge 6 (Fig. 1a) having a clearance angle θ
2 of a cemented carbide tip 2 brazed to a tip seat of an edge body formed in a conformal
position on a circumference of a base metal 1 has an identical thickness (Fig. 1d).
[0004] The oblique angle θ
3 (Fig. 1b) is 3° to 10°, the clearance angle θ
2 in the flank 5 of the peripheral cutting edge is 15° to 25° and the clearance angle
θ
1 in the side cutting edge:

[0005] From this relationship, 0.8°≤θ
1≤4.7°, namely, the clearance angle θ
1 (Fig. 1 e) in the side cutting edge in the direction of rotation in a flank 4 of
a side cutting edge 7 (Fig. 1c) is geometrically 5° or less. That is, the flank 4
of the side cutting edge has a small angle. Further, since the edge thickness of the
edge section (Fig. 1d) as viewed from the flank of the peripheral cutting edge is
identical, it is apparent that, in re-grinding of the tool, grinding of a front face
3 (Fig. 1a) alone suffices for maintaining the working shape accuracy.
[0006] A tipped saw is used in various types of working ranging from sawing of logs to secondary
cutting of wood-based boards. In this tipped saw, the edge thickness which determines
the groove width should be reduced in order to improve the yield of the product and
to reduce the cutting power, and the thickness of the base metal body should be as
thick as possible in order to enhance the rigidity of the saw. The upper limit of
clearance angle of the side cutting edge in the tipped saw, i.e., clearance angle
in the direction of rotation of the side cutting edge, is generally about 5°. The
re-grinding of the tool is carried out for either the rake or the flank of the peripheral
cutting edge or both the rake and the flank.
[0007] These two tools, finger cutters and tipped saws, are representative tools having
a small clearance angle in the side cutting edge. Other cutters include a flooring
cutter for working a male tongue and a female tongue for joining wood-based flooring
materials in the longitudinal or widthwise direction, a round bar cutter for working
the reverse and front surfaces of a plate material into a semicircular form to form
a round bar, and a moulding cutter which mainly performs design working and cuts various
shapes including R face. For all the above tools, since the rake is re-ground before
use, a large clearance angle cannot be provided in the side cutting edge from the
viewpoint of maintaining the accuracy of a shape created by working. For this reason,
the clearance angle of the side cutting edge is generally about 5° .
[0008] Further, in the case of a drill for deep hole drilling of a wood, particularly a
drill for working horizontal members and horizontal braces for use in wooden framework
houses, for example, a deep hole having a diameter of 15 mm and a depth of not less
than 200 mm is created by drilling. Therefore, direct advance of the drill is important.
In general, the side, i.e., peripheral face, of the edge nose in the drill is formed
in a completely circular form having a clearance angle in the direction of rotation
of 0° or up to 5°. For a wood working drill, the number of revolutions is generally
1000 to 5000 rpm which is 10 to 100 times larger than that for steel working, which
is likely to cause resonance. The clearance angle in the side of the edge nose should
be small also from the viewpoint of preventing this reproduced chatter vibration.
[0009] In a finger cutter, an accurate shape should be stably created by working. Therefore,
care consideration should be given to the sharpness and the accuracy of the shape
created by the working. For this reason, the cutter should be replaced after use for
a short period of time, resulting in short service life of the cutter. This adversely
affects the productivity in a mill for the production of laminated materials. The
moulding cutter also has a drawback that the sharpness is rapidly deteriorated in
a portion having a small clearance angle in the side cutting edge.
[0010] In order to solve the above problems and to keep the edge nose sharp, the applicant
has already proposed the provision of a CrN covering on the flank of a side cutting
edge in a cutter with the clearance angle in the side cutting edge being small (Japanese
Patent Laid-Open No. 252501/1990). The effect attained by this proposed technique
is merely twice that where no covering is provided, and the covering effect cannot
be sufficiently utilized, resulting in no satisfactory results.
[0011] On the other hand, for the tipped saw, reducing the saw thickness is an important
task to be accomplished in order to reduce the amount of saw dust produced to thereby
improve the yield of the wood. In addition, elimination of unstable cutting derived
from the reduced saw thickness and, at the same time, prolongation of the service
life are also an important task to be accomplished. Further, the long drill for deep
hole drilling has problems of increased cutting resistance and frequent breakage caused
by oblique advance.
[0012] "Deposition of gum" is known to be deeply involved in the problems common to the
above rotary cutting tools for cutting of woods, such as finger cutter, moulding cutter,
tipped saw, and drill for deep hole drilling. Specifically, when a wood or a wood-based
composite material is cut by rotary cutting, components of the wood scattered from
the cutting portion are deposited, solidified, and accumulated on each face of the
edge. This phenomenon is usually called "deposition of gum." The deposition of gum
is observed also in tools wherein the cutting edge is made of a cemented carbide,
a tool steel, or other high-strength materials. Fundamentally, the deposition of gum
is regardless of the sharpness of the edge and occurs even when the edge is fresh.
When the material to be cut is of certain type, the finger cutter and the tipped saw
often become unusable in spite of no significant abrasion of the edge. In this case,
simple removal of the gum makes it possible to continuously use the cutter and the
saw.
[0013] The gum is not in merely deposited and accumulated state but in a densely solidified
state and is considered to be formed by hardening through polymerization of components
of the wood. The gum is strongly deposited on the surface of the edge tool and can
hardly be wiped off by mechanical means.
[0014] At the present time, in order to remove the gum, the tool is immersed in an alkaline
solution or a commercial detergent and carefully wiped off. This is a troublesome
work requiring a lot of time. Further, the deposition of the gum requires frequent
replacement of the tool and the like, lowering the productivity.
[0015] Reducing the surface roughness as much as possible, i.e., smoothing the surface,
has hitherto been regarded as effective in lowering the coefficient of friction by
direct contact between the edge and the wood to thereby solve the problem associated
with the gum. This method, however, has no effect of preventing the scattered gum
from being deposited. Further, covering of a fluororesin (PTFE) which has a low coefficient
of friction and is less likely to cause the deposition of gum is also known in the
art. In this case, however, the thickness of the PTFE covering should be as large
as several tens of µm to several hundred of µm, and the abrasion resistance of the
covering is so low that the covering in its portion very near the edge which is strongly
abutted against the material to be cut is easily abraded. The remaining covering adversely
affects and renders the clearance of the side cutting edge unsatisfactory. This results
in increased lateral pressure and consequently deteriorated sharpness, making it impossible
to attain the contemplated purpose.
[0016] The gum is deposited also on the rake. Since, however, only chips having low rigidity
are passed through the rake, any adverse effect such as increase in cutting resistance
is not observed. The gum which raise a problem is one deposited on the flank in the
side cutting edge. When the clearance angle of the side cutting edge is so large that
the clearance is satisfactory, most of the gum scattered from the cutting portion
is scattered in the air and, hence, the deposited gum, if any, has no significant
influence on the cutting. On the other hand, when the clearance angle in the side
cutting edge is so small that clearance is unsatisfactory, the scattered gum is deposited
and accumulated on the flank or base metal portion somewhat away from the edge. The
progress of the accumulation causes the gum to be thickly spread to the vicinity of
the edge, creating friction between the accumulated gum and the cut surface of the
material to be cut. This results in increased cutting resistance and scorch of the
cut surface. Further, in some cases, abnormal heat generation occurs in the edge portion
and the base metal, resulting in abnormal abrasion or breaking of the edge, deformation
of the base metal and the like.
[0017] In the case of the finger cutter, since the material is worked into a narrow and
long finger form, the finger undergoes side pressure and, consequently, is deflected,
making is impossible to carry out cutting into a contemplated exact shape. Also in
the case of working by means of the moulding cutter, the cut surface temperature is
raised due to friction, causing scorch or burning. This results in increased cutting
resistance.
[0018] In the case of the tipped saw, the side pressure of the saw edge becomes so large
that vibration or deflection of the saw body or an increase in cutting resistance
occurs. Also in the case of the drill for deep hole drilling, the deposition of gum
on the side face of the edge causes an increase in side pressure and, consequently,
oblique advance even in the case of a sharp edge, making the drill unusable. In all
the above cases, it becomes impossible to carry out cutting before the tools become
unusable due to the service life of the tools derived from the abrasion of the edge.
Further, the deposition of gum on the base metal makes it impossible to accurately
conduct re-grinding.
[0019] The present inventors have repeated various experiments and studies on the prevention
of deposition of the gum rather than on the removal of deposited gum. As a result,
they have found that the regulation of the roughness of the flank in the side cutting
edge followed by covering of the flank having a regulated roughness with chromium
or a chromium-based material enables the deposition of gum to be reduced to such an
extent as will pose no problem for practical use.
[0020] An object of the present invention is to provide, based on the above studies, a rotary
cutting tool, for a wood or wood-based composite material, which is less likely to
cause the deposition of gum and has a small clearance angle in the direction of rotation.
DISCLOSURE OF INVENTION
[0021] The rotary cutting tool for working of a wood or a wood-based composite material
according to the present invention is defined by claim 1.
[0022] The expression "separately from each other" used herein refers to such a state that,
like a finger cutter, the peripheral cutting edge and the side cutting edge are provided
so as to be clearly distinguishable from each other. On the other hand, the expression
"formed continuously with each other" used herein refers to such a state that the
peripheral cutting edge and the side cutting edge are provided so as to be in smooth
range with and indistinguishable from each other.
[0023] Shot blasting forms no part of the claimed invention
BRIEF DESCRIPTION OF THE DRAWINGS
[0024]
Fig. 1a is a side view of a finger cutter, comprising a combination of a plurality
of fingers, for forming a finger joint,
Fig. 1b is a front view of an edge, Fig. 1c is a plan view of an edge, Fig. 1d is
a cross-sectional view taken on line A-A of Fig. 1 a, and Fig. 1 e is a cross-sectional
view taken on line B-B of Fig. 1 a;
Fig. 2a is a front view illustrating a cutting test method, and Fig. 2b is a side
view illustrating the cutting test method;
Fig. 3a is a diagram showing the direction of grinding, of a flank of a side cutting
edge, with a straight grinding wheel, and Fig. 3b is a diagram showing the direction
of grinding using a straight cup grinding wheel;
Figs. 4a to 4e are diagrams showing the results of evaluation on the deposition of
gum on the flank in a side cutting edge in a cutting test, wherein the evaluation
grade is F for Fig. 4a, E for Fig. 4b, D for Fig. 4c, C for Fig. 4d, and B for Fig.
4e;
Fig. 5 is a diagram showing the relationship between the direction of grinding and
the surface roughness influencing the evaluation on the deposition of gum in a cutting
test;
Fig. 6 is a diagram showing the relationship between the surface roughness Rmax of
the flank in a side cutting edge and the deposition of gum;
Fig. 7 is a diagram showing the relationship between the direction of grinding of
the flank in a side cutting edge and the deposition of gum;
Fig. 8a is a side view of a spare edge of a finger cutter, Fig. 8b is a front view
of the spare edge, and Fig. 8c is a plan view of the spare edge;
Fig. 9 is a diagram showing the deposition of gum in the cutting of a wood with the
finger cutter shown in Fig. 8;
Fig. 10 is a diagram showing a tipped saw;
Fig. 11a is a side view of a spare edge of a finger cutter with a diamond film, synthesized
in a gas phase, laminated on a front face of the spare edge, and Fig. 11b is a plan
view of the spare edge shown in Fig. 11a;
Fig. 12a is a side view of a spare edge of a finger cutter with a polycrystalline
diamond sinter bonded to a front face of the spare edge, and Fig. 12b is a plan view
of the spare edge shown in Fig. 12a;
Fig. 13 is a diagram showing a drill for deep hole drilling; and
Fig. 14a is a side view of a moulding cutter, Fig. 14b is a front view of the moulding
cutter, Fig. 14c is a plan view of the moulding cutter, and Fig. 14d is a rear view
of a spare edge.
BEST MODE FOR CARRYING OUT THE INVENTION
[0025] The present invention will now be described in more detail with reference to the
following examples.
Example 1
[0026] Finger cutters which have a small clearance angle in a side cutting edge and are
likely to cause deposition of gum were tested for deposition of gum with varied materials
for a spare edge, conditions for finishing of a side cutting edge, surface roughness,
covering layer and the like. Testing methods, test results, and evaluation will be
described.
(1) Cutters under test
[0027] Various clamp type spare edges provided with a finger having a size of 4 mm in width
x 0.6 mm in point width x 7° in oblique angle and having a spare edge length of 11.4
mm were prepared and mounted on a rotary block to provide cutters under test.
[0028] Conditions common to the cutters were edge nose circle diameterØ 160 mm, rake angle
20° , clearance angle in peripheral cutting edge 25° , clearance angle in nose of
peripheral cutting edge 10° , and clearance angle in side cutting edge (inclined face
cutting section) 3.6°
[0029] As shown in Fig. 2a, in a spare edge 13 for a finger cutter for practical use, two
to four edges are disposed in the periphery of a body of the tool 12. In the present
test, however, only one edge was used for convenience.
(2) Material for spare edge and covering
[0030] As shown in Table 1, high-speed tool steel SKH51 (hardness: HRC63) and cemented carbide
K30 were used as the material for the spare edge. The flank in the side cutting edge
was finished under various conditions, and a covering was applied thereon by physical
vapor deposition (PVD) or hard chromium plating (Cr plating). For comparison, a spare
edge without any covering was also tested. For samples Nos. 4 and 10, "surface Cr/CrN"
represents that a 0.4 µm-thick Cr was covered on a 2.3 µm-thick CrN covering.
(3) Finishing of side cutting edge
[0031] The side cutting edge was finished by using abrasive materials, such as CBN (borazon),
WA (white alundum), and GC (green carborundom). Regarding grinding methods, a cup
grinding wheel and a straight (flat) grinding wheel was used. The grinding methods
used are given in Table 1. The grinding direction is defined by θ
0 as shown in Fig. 3a. In the grinding using a cup grinding wheel, a streak created
by the grinding is in a circular arc form. Therefore, the grinding direction was expressed
in terms of the average value as shown in Fig. 3b. "Without zero grinding" for sample
NO. 26 represents that grinding was carried out without spark out. For the other samples,
spark out was carried out. The term "spark out" used herein is intended to mean that,
at the time of completion of infeed, grinding is continued for a while with the infeed
of the grinding sheet being zero to carry out grinding by a clearance created by the
deflection of a workpiece or the like. Grinding derived from the recovery from the
deflection creates sparks for a while and is terminated when the sparks are no longer
observed.
(4) Surface roughness
[0032] Surface roughness Rmax was measured according to JIS B0601. Surfcom 470A manufactured
by Tokyo Seimitsu Co., Ltd. was used as equipment for measuring the surface roughness.
(5) Cutting method
[0033] As shown in Fig. 2a, cutting of one side of a cut end 11 a of a wood 11 was carried
out with a spare edge 13 of a finger cutter under conditions of 0.3 mm per pass and
depth of cut 11.4 mm. A force dried material of a rubber tree was used as a material
to be cut, and cutting conditions were number of revolutions of main spindle N = 3600
rpm and feed rate F = 2.5 m/min.
(6) Evaluation method
[0034] Cutting was carried out using each spare edge under test until the cutting distance
reached 700 m, and the deposition of gum was observed by visual inspection, and the
results were reduced to the following six alphabetical grades.
F: The whole spare edge was thickly covered with brown gum, and deep brown gum was
deposited particularly on a portion near the edge nose (Fig. 4a).
E: Brown gum was thickly deposited on the whole spare edge (Fig. 4b).
D: Brown gum was largely spread and deposited on the spare edge (Fig. 4c).
C: Somewhat brownish gum was thinly deposited on the spare edge (Fig. 4d).
B: Slightly clear gum was discontinuously deposited on the spare edge (Fig. 4e).
A: No deposition of gum was observed.
Table 1
| Sample No |
Material for spare edge |
Finishing of side cutting edge |
Surface roughness Rmax (µm) |
Covering layer |
Evaluation |
Inv. |
| . |
|
Abrasive material |
Grain size |
Grinding method |
Grinding direction |
|
Material |
Thickness (µm) |
|
|
| 1 |
SKH51 |
CBN |
#230 |
Cup |
+5° |
0.30 |
None |
- |
F |
- |
| 2 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
CrN |
2.3 |
D |
- |
| 3 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Hard Cr plating |
2.5 |
D |
- |
| 4 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Surface Cr/CrN |
0.4/2.3 |
D |
- |
| 5 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
TiN |
2.9 |
E |
- |
| 6 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
TiC |
2.7 |
E |
- |
| 7 |
SKH51 |
CBN |
#140 |
Straight |
+25° |
5.12 |
None |
- |
E |
- |
| 8 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
CrN |
2.3 |
A |
○ |
| 9 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Hard Cr plating |
2.5 |
B |
○ |
| 10 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Surface Cr/CrN |
0.4/2.3 |
B |
○ |
| 11 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
TiN |
2.9 |
D |
- |
| 12 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
TiC |
2.7 |
D |
- |
| 13 |
SKH51 |
CBN |
#600 |
Straight |
+25° |
1.52 |
CrN |
0.6 |
B |
○ |
| 14 |
Ditto |
Ditto |
#230 |
Ditto |
Ditto |
3.09 |
Ditto |
Ditto |
A |
○ |
| 15 |
Ditto |
Ditto |
#140 |
Cup |
+45° |
2.90 |
Ditto |
Ditto |
B |
○ |
| 16 |
Ditto |
Ditto |
Ditto |
Ditto |
-20° |
Ditto |
Ditto |
Ditto |
A |
○ |
| 17 |
Ditto |
Ditto |
Ditto |
Straight |
+25° |
5.12 |
Ditto |
Ditto |
A |
○ |
| 18 |
Ditto |
Ditto |
Ditto |
Ditto |
+50° |
Ditto |
Ditto |
Ditto |
B |
○ |
| 19 |
Ditto |
Ditto |
Ditto |
Ditto |
-50° |
Ditto |
Ditto |
Ditto |
B |
○ |
| 20 |
Ditto |
Ditto |
Ditto |
Ditto |
-65° |
Ditto |
Ditto |
Ditto |
C |
○ |
| 21 |
Ditto |
Ditto |
Ditto |
Ditto |
±90° |
Ditto |
Ditto |
Ditto |
C |
○ |
| 22 |
Ditto |
WA |
#60 |
Ditto |
+25° |
8.2 |
Ditto |
Ditto |
B |
○ |
| 23 |
Ditto |
Ditto |
Ditto |
Ditto |
Ditto |
17.5 |
Ditto |
Ditto |
D |
- |
| 24 |
Cemented carbide |
Diamond |
#500 |
Cup |
+5° |
0.30 |
CrN |
2.3 |
D |
- |
| 25 |
Ditto |
Ditto |
#120 |
Ditto |
Ditto |
0.80 |
Ditto |
Ditto |
C |
○ |
| 26 |
Ditto |
Ditto |
Ditto (without zero grining) |
1.98 |
Ditto |
Ditto |
B |
○ |
| 27 |
Ditto |
Ditto |
#500 |
Cup |
+5° |
0.30 |
None |
- |
F |
- |
| 28 |
Ditto |
Ditto |
#120 |
Ditto Ditto |
0.80 |
None |
- |
E |
- |
| 29 |
SKH51 |
GC |
#80 |
Shot blast |
5.45 |
CIN |
2.1 |
B |
○ |
| 30 |
Ditto |
WA |
#60 |
Ditto |
7.42 |
Ditto |
Ditto |
B |
○ |
| 31 |
Ditto |
Ditto |
#46 |
Ditto |
10.42 |
Ditto |
Ditto |
C |
O |
[0035] Then, test results on sample Nos. 1 to 31 will now be discussed.
[0036] For sample Nos. 1 to 12, SKH51 was used as the material for the spare edge, the covering
was formed with varied covering material and thickness, and Rmax was 0.30 µm and 5.12
µm. The test results reveal that (1) covering has no effect when Rmax is small, (2)
when Rmax is large, gum is less likely to deposit, (3) A combination of hard chromium
plating or Cr and CrN by PVD with Rmax offers a large effect of preventing the deposition
of gum, and (4) although TiN and TiC are somewhat effective, the effect thereof is
not satisfactory for practical use.
[0037] For sample Nos. 13 to 23, the grinding of SKH51 was carried out by means of various
grinding wheels with varied Rmax and grinding direction, and CrN was relatively thinly
covered. Test results reveal that (1) the CrN covering is effective even when the
thickness is small and (2) gum is less likely to deposit independently of the grinding
direction when Rmax is in the range of 1 to 10 µm.
[0038] For sample No. 23, gum began to deposit in irregularities of the surface, and the
gum deposition was then spread.
[0039] For sample Nos. 24 to 28, Rmax of the cemented carbide was varied. Test results reveal
that the relationship between the effect of surface roughness and the effect of covering
was the same as that in the case of SKH51. Specifically, it was found that a surface
roughness Rmax of 0.3 µm gave rise to gum deposition and had no satisfactory effect.
[0040] For sample Nos. 29 to 31, nonoriented surface roughness was adopted. The material
was ground in the same manner as described in connection with the spare edge of sample
Nos. 1 to 6, shot-blasted to increase the surface roughness, and covered with CrN.
Test results reveal that blasting offers the effect of surface roughness as in grinding.
[0041] Fig. 5 shows the relationship, based on the test results on CrN covering given in
Table 1, between the grinding direction and surface roughness Rmax influencing the
evaluation. ⓞ, ○ , and Δ (corresponding to evaluations A, B, and C) were evaluated
as effective. Further, ⓞ and ○ were evaluated as favorable. From Fig. 5, it was judged
that when Rmax is in the range of from 1 to 10 µm, satisfactory effect can be attained
independently of the grinding direction and that the surface roughness Rmax 1.5 to
8.2 µm and grinding direction -50° to +50° (including nonoriented grinding) are preferred.
[0042] Fig. 6 shows the relationship between the surface roughness Rmax and the deposition
of gum in grinding direction -25° to +25° (including nonoriented grinding). Fig. 7
shows the relationship between the grinding direction and the deposition of gum in
the surface roughness Rmax 2.9 to 5.2 µm.
[0043] Regarding the roughness of the ground surface, the recognition in the art was such
that the surface roughness of both two faces constituting the edge nose, that is,
the rake and the flank, is preferably as small as possible. Regarding the side cutting
edge of a finger cutter, integrated by brazing, commonly used in the art, the edge
is subjected to rough grinding under conditions for sample No. 25 and then finished
under conditions for sample No. 24. Spec
ifically, the material is ground with diamond #120 grinding stone to a contemplated
dimension, zero grinding is carried out in this state until no spark is observed,
thereby lowering the surface roughness. Then, further grinding is carried out with
a #500 grinding wheel to further lower the surface roughness. For sample No. 26, the
zero grinding was not carried out in the grinding operation.
[0044] In cutters ranging from general cutters for domestic use to cutters for industrial
use, general recognition is such that, as the smoothness of the ground surface increases
and is closer to a specular surface, the slipperiness improves and the sharpness of
the edge nose increases. Such finishing is commonly used also from the viewpoint of
commercial values including good appearance. The present invention is contrary to
the above conventional common knowledge, and the present inventors have found that
proper regulation of the ground surface roughness by taking advantage of the effect
attained by a combination of the grinding with a chromium or chromium nitride covering
enables the deposition of gum in rotary cutting of a wood and a wood-based composite
material to be prevented and, in particular, the service life of a cutter with a flank
having a small clearance angle to be prolonged.
Example 2
[0045] The present inventors have already proposed the use of an edge replacement type finger
cutter for finger working which has hitherto been carried out with a cemented carbide-brazed
cutter (Japanese Patent Laid-Open No. 122104/1994). In this example, a practical test
on the deposition of gum was carried out using the edge replacement type finger cutter
as a material under test.
[0046] The shape of a spare edge 13 used in the practical test was as shown in Fig. 8a.
A clearance angle of 10° in the nose of peripheral cutting edge was provided to increase
the point edge angle of the peripheral cutting edge to 60° , thereby increasing the
strength and enhancing the shape retention of the point of the finger. As shown in
Fig. 9, the flank 4 in the side cutting edge of the spare edge 13 mounted on a tool
body 12 was finished under conditions of sample Nos. 7 to 12 specified in Table 1.
The flank of the peripheral cutting edge was finally finished under conditions of
Sample Nos. 1 to 6 and covered with CrN in a thickness of 3 µm by PVD. Thereafter,
the rake 3 was ground to remove the covering in the rake to prepare a spare edge sample.
[0047] Test conditions and test results were as follows.
(1) Specifications of cutter
[0048] The edge was nose circle diameter⌀ 210 mm x 4.0 mm in thickness x 4 in number of
edges, the shape of the finger was 4 mm in width x 0.6 mm in point width x 7° in oblique
angle x 11.4 mm in length. The edge angle was rake angle 20° , clearance angle in
peripheral cutting edge 25° , clearance angle in nose of peripheral cutting angle
10°, and clearance angle in side cutting edge 3.6° .
(2) Test conditions
[0049] The test sample was mounted on one axis among two axes of finger cutter axes in a
horizontal finger working machine, and the conventional cemented carbide-brazed cutter
was mounted on the other one axis to compare the durability of the two samples. In
the horizontal finger working, the number of cutters laminated varies depending upon
the thickness of the material to be cut. In the present test, the minimum number of
cutters and the maximum number of cutters were 7 and 10, respectively.
(3) Cutting conditions
[0050] Rubber wood and beech wood were used as materials to be cut, and cutting was carried
out under conditions of number of revolutions of main spindle 3400 rpm and material
feed rate 12 m/min.
(4) Test results
[0051] The service life of the conventional cemented carbide-brazed cutter was 3 days on
average due to increased cutting noise, fitting failure of the finger and the like,
and the cutter was replaced for each 3 days for this reason. Observation of the cutter
replaced due to the service life revealed that gum was thickly and widely deposited
on the side of the cemented carbide tip and widely deposited also on the tool body.
[0052] By contrast, observation of the spare edge 13 having a CrN covering after continuous
use for 46 clear days revealed that gum was thinly deposited on the flank 4 in the
side cutting edge in its portion in contact with the tool body 12. Further, no cutting
problem occurred. As shown in Fig. 9, however, a large amount of gum was deposited
on a protrusion 12a of tapered cross section having no covering, formed in a circumference
form from the rear of a groove for fitting of a spare edge in the tool body 12. Further,
the deposition of gum was observed also on the peripheral flank. The deposition of
gum on these portions raised no cutting problems.
[0053] From the above test results, it was confirmed that the service life of the tool according
to the present invention was about 15 times longer than that of the conventional cemented
carbide-brazed cutter.
[0054] It was found that, by virtue of the prolongation of the tool according to the present
invention, marked shortening of the time taken for replacement of cutter and adjustment
accompanying the replacement, that is, the period of suspension of working line, can
be realized resulting in significantly improved productivity in laminated wood production
line. The deposition of gum on the spare edge and the tool body was as shown in Fig.
9.
[0055] The above effect lowers the running cost of the spare edge, enabling the spare edge
to be disposed after use, that is, thrown away and, hence, can improve the troublesome
control of the cutters. In this connection, it should be noted that the prevention
of the deposition of gum on the tool body is preferred because the tool body is used
repeatedly. In this case as well, the deposition of gum can be prevented by a combination
of the regulation of the surface roughness of the protrusion 12a with the covering
of chromium or a nitride, carbide, or carbonitride of chromium by PVD.
[0056] For hard chromium plating, homogeneous electrodeposition is difficult, and focus
of overcurrent on a sharp edge or a protrusion occurs, which is likely to cause the
creation of the so-called "scorch plating" or "spitting." Therefore, in the case of
the edge replacement type finger cutter, this plating raises a problem associated
with the precision of the groove for fitting a spare edge and a problem associated
with dimensional accuracy in the lamination of the tool body. In order to prevent
these unfavorable phenomena, it is necessary to dispose auxiliary negative electrodes
in a complicated manner in the plating, to minutely regulate the shape of the tool
body, to use masking, or to use other means. These methods are unsuitable for practical
use. On the other hand, PVD has no fear of heterogeneous coating (covering) and, hence,
is suitable for use in the prevention of the deposition of gum on the body of the
finger cutter.
[0057] Further, in order to improve the resistance to abrasion against materials to be cut,
such as laminated wood containing an adhesive, it is also possible to cover the internal
layer with TiN with the upper layer, that is, the outermost surface, being covered
with chromium or a nitride, carbide, or carbonitride of chromium. This technique can
be applied to all rotary cutting tools.
Example 3
[0058] A base metal surface is ground with a proper grinding wheel so that the streak created
by the grinding is -50° to +50° to the direction of rotation. Thereafter, a tip seat
is prepared by cutting, and, as shown in Fig. 10, a cemented carbide tip 20 is brazed.
Then, a side 21 of the cemented carbide tip was ground to a surface roughness Rmax
of 1 to 10 µm so that a streak created by the grinding is - 50° to +50° to the direction
of rotation. The ground surface is then covered with chromium or a nitride, carbide,
or carbonitride of chromium by PVD. After brazing, the deposition of silver as a brazing
filler metal around the tip or the formation of an oxide film generally occurs. For
this reason, the bond strength of the covering is ensured by regulating the surface
roughness of the silver braze or removing the oxide film. For this purpose, this portion
can be shot-blasted after brazing. In this case as well, the blasting conditions are
regulated so that the surface roughness Rmax is brought to 1 to 10 µm.
[0059] After covering, a rake 22 and a peripheral flank 23 in the cemented carbide tip is
finished by grinding. The covering may have a multi-layer structure, and chromium
or a nitride, carbide, or carbonitride of chromium is covered on at least the outermost
surface. The thickness of the covering may vary depending upon the material to be
cut. For example, a covering thickness of 0.1 to 0.3 µm suffices for cutting of general
woods, and a covering thickness of 3 to 10 µm is used for cutting of wood-based boards
which have strong abrasive action. In this case, the bond strength between the covering
and the cemented carbide tip is unsatisfactory in the case of hard chromium plating,
making it necessary to form the covering by PVD.
Example 4
[0060] A polycrystalline diamond sinter comprising a cemented carbide alloy as a substrate
and a polycrystalline diamond laminated and sintered thereon has been used as a tool
material having a very long service life. In recent years, a gas phase synthesized
diamond film formed by chemical vapor deposition has also been used as a tool material.
The present invention can be provided by utilizing these diamond materials in a tipped
saw to prolong the service life.
[0061] Specifically, in the tipped saw described in Example 3, a polycrystalline diamond
sinter or gas phase synthesized diamond film having a thickness of not more than 0.5
mm is laminated on the surface of a rake 22 of a cemented carbide tip to from an edge
nose. In this case, since the diamond layer is electrically insulated, the diamond
layer cannot be covered with chromium or a nitride, carbide, or carbonitride of chromium
by PVD wherein the bond strength is ensured by the application of a negative voltage.
[0062] Since, however, gum is not deposited in a region which comes into strong contact
with the material to be cut during cutting, that is, in a region of 0.5 mm from the
side cutting edge line in the direction of rotation, the deposition of gum on the
side of the tip does not occur when the thickness of the diamond layer is not more
than 0.5 mm.
Example 5
[0063] A substrate 15 for a spare edge 13 of a finger cutter is made of a cemented carbide,
a tool steel, such as a high-speed tool steel or a high-chromium alloy tool steel,
or other high-strength materials, for example, a cast stellite, a sintered stellite,
or a cermet. As shown in Fig. 11 a, a gas phase synthesized diamond film 16 having
a thickness of not more than 0.5 mm is as such laminated on the surface of the substrate
15 on the rake side thereof to form an edge nose. Alternatively, as shown-in Fig.
12a, a substrate 17 with a polycrystalline diamond sinter 18 laminated on the surface
thereof is laminated to from an edge nose. Specifically, a tip seat is formed by grinding
or cutting on a rake of the substrate 15 for a spare edge, and the substrate 17 with
a polycrystalline diamond sinter 18, having a thickness of not more than 0.5 mm, laminated
on the surface thereof is brazed thereto. In this case, the brazing filler material
is preferably used in a previously determined minimum amount so that the brazing filler
material does not significantly flow on the side of the substrate.
[0064] Subsequently, the diamond layer including the substrate 17, together with the substrate
15 for a spare edge, is finished by grinding so that the surface roughness Rmax of
the side cutting edge flank and the peripheral cutting edge flank is 1 to 10 µm. In
the case of brazing in the air, the oxide film on the surface in a region heated in
a brazing is removed by shot blasting. In this case, the grain size of the shot is
selected so that the surface roughness does not become large. Then, for example, CrN
is covered in a thickness of several µm by PVD. The rake in the diamond layer may
be finished by grinding after covering or alternatively finished by grinding before
covering. In any event, since the covering is not strongly adhered to the diamond
layer, the covering on the rake and the side face are removed in an early stage of
cutting operation. However, CrN on the side of the substrate for a spare edge remains
unremoved and functions to prevent the deposition of gum.
Example 6
[0065] An edge nose of a drill as shown in Fig. 13 is made of a cemented carbide, a tool
steel, such as a high-speed tool steel or a high-chromium alloy tool steel, or other
high-strength materials. The roughness Rmax of the tool in its peripheral surface
26 near an axial point nose 25 is brought to 1 to 10 µm. A hard layer of chromium
or a nitride, carbide, or carbonitride of chromium is provided as the outermost surface.
After covering of the hard layer, the axial point edge portion is finished by grinding.
This can prevent the deposition of gum on the peripheral surface of the drill, ensuring
the straight advance of the drill.
Example 7
[0066] Fig. 14a shows an example of a moulding cutter wherein a stiffening plate 29 and
an edge nose plate 30 in a spare edge portion are separably put on top of the other.
In the laminated state, the stiffening plate corresponds to the substrate for a spare
edge, and the edge plate corresponds to a nose material. The shape of the edge line
in the present example is suitable for use in finishing of the edge of a plate material
to be cut into a circular arc form. A side cutting edge flank 31 near the maximum
cutting diameter of the edge line is in such a state that the oblique angle is close
to substantially 0° such as found in the finger cutter. For this reason, the clearance
angle θ
4 in the side cutting edge should be positively provided. Therefore, the initiation
of re-grinding from the rake results in a change in shape. The application of the
present invention to such a moulding cutter enables gum to be less likely to be deposited
on the side cutting edge flank. Therefore, the use of the cutter in an identical shape
for a long period of time becomes possible.
[0067] Further, since the gum is less likely to be deposited, the clearance angle in the
side cutting edge may be small, so that re-grinding gives rise to no significant change
in shape. In applications where a change in shape is unacceptable or re-grinding is
unfavorable, the cutter can be designed so that the edge nose plate alone is replaceable.
Further, when there is no edge line portion, that is, when the oblique angle is close
to 0° , the clearance angle in the side cutting edge can be naturally set by providing
a usual peripheral cutting edge clearance angle θ
5 over the whole edge line. Therefore, even when the side edge clearance angle is small,
the application of the present invention can provide a cutter which has a prolonged
service life and undergoes no shape change upon being re-ground.
1. A rotary cutting tool for working of a wood or wood-based composite material, comprising
a peripheral cutting edge and a side cutting edge, the peripheral cutting edge and
the side cutting edge being formed separately so as to be distinguishable clearly
from each other or formed continuously with each other, wherein the surface roughness
Rmax is 1 to 10 µm at least for the flank of the side cutting edge, that the grinding
direction for creating the surface roughness of the flank of the side cutting edge
is -50° to +50° to the direction of rotation for cutting, that the side cutting edge
has a clearance angle of 0,8° to 5°, and that the outermost surface of the flank of
the side cutting edge has a covering of one member selected from the group consisting
of chromium and a nitride, a carbide, and a carbonitride of chromium, so as to prevent
deposition of gum on the flank of a side cutting edge.
2. The rotary cutting tool for working of a wood or wood-based composite material according
to claim 1 which is a finger joint cutter having a side cutting edge , the edge integral
with a substrate or a base metal for an exchangeable knife being composed of a cemented
carbide, a tool steel selected from the group consisting of a high speed tool steel
and a high chromium alloy tool steel, or other high-strength material.
3. The rotary cutting tool for working of a wood or wood-based composite material according
to claim 1, which is a finger joint cutter having a side cutting edge, wherein the
said surface roughness Rmax is on at least the flank of the side cutting edge in an
edge integral with a substrate or a base metal for an exchangeable knife and on the
surface of the substrate or base metal for the exchangeable knife adjacent thereto.
4. A rotary cutting tool for working of a wood or wood-based composite material according
to claim 2, which is an edge replacement type finger joint cutter having a substrate
for an exchangeable knife of the cutter being composed of a cemented carbide, a tool
steel selected from the group consisting of a high speed tool steel and a high chromium
alloy tool steel, or other high-strength material, a not more than 0.5 mm-thick polycrystalline
diamond sinter or gas phase synthesized diamond film being laminated to the surface
on the front face side of the substrate for an exchangeable knife to thereby form
an edge the surface roughness Rmax of at least the substrate portion in the flank
of the side cutting edge being 1 to 10 µm, the outermost surface thereof having a
covering, of one member selected from the group consisting of chromium and a nitride,
a carbide, and a carbonitride, formed by physical vapor deposition, so as to prevent
deposition of gum on the flank of a side cutting edge.
5. A body of a finger joint cutter of edge replacement type finger joint cutter according
to any of the preceding claims characterized in that it comprises a structural steel or a tool steel as a base material and has a protrusion
of tapered cross section formed in a circumference form from the rear of a groove
for fitting of an exchangeable knife, the protrusion, at least in its tapered face,
is finished to have a surface roughness Rmax of 1 to 10 µm by cutting or grinding
in such a manner that a streak created by the cutting or grinding has an angle of
-50° to +50° to the tangential direction with respect to rotation and the outermost
surface thereof has a covering of one member selected from the group consisting of
chromium and a nitride, a carbide, and a carbonitride of chromium, so as to prevent
deposition of gum on the tapered face of the protrusion.
6. A rotary cutting tool for working of a wood or wood-based composite material, which
is an edge replacement type finger joint cutter having the side cutting edge, its
clearance angle being 0.8° to 5°, a substrate for an exchangeable knife of the cutter
being composed of a cemented carbide, a tool steel selected from the group consisting
of a high speed tool steel and a high chromium alloy tool steel, or other high-strength
material, a not more than 0.5 mm-thick polycrystalline diamond sinter or gas phase
synthesized diamond film being laminated to the surface on the front face side of
the substrate for an exchangeable knife to thereby form an edge, the surface roughness
Rmax of at least the substrate portion in the flank of the side cutting edge being
1 to 10 µm, the outermost surface thereof having a covering, of one member selected
from the group consisting of chromium and a nitride, a carbide, and a carbonitride,
formed by physical vapor deposition, so as to prevent deposition of gum on the flank
of a side cutting edge.
7. A body of a finger joint cutter of edge replacement type finger joint cutter having
the side cutting edge, its clearance angle being 0.8° to 5°, characterized in that it comprises a structural steel or a tool steel as a base material and has a protrusion
of tapered cross section formed in a circumference form from the rear of a groove
for fitting of an exchangeable knife, the protrusion, at least in its tapered face,
is finished to have a surface roughness Rmax of 1 to 10 µm by cutting or grinding
in such a manner that a streak created by the cutting or grinding has an angle of
-50° to +50° to the tangential direction with respect to rotation or by nonoriented
blasting and the outermost surface thereof has a covering of one member selected from
the group consisting of chromium and a nitride, a carbide, and a carbonitride of chromium,
so as to prevent deposition of gum on the tapered face of the protrusion.
8. A tipped saw for cutting of a wood and a wood-based composite material, characterized in that the surface roughness Rmax of the side face, of a tip composed of a cemented carbide
tip or other high-strength material, and a base metal adjacent to the side face is
1 to 10 µm and the outermost surface thereof has a covering, of one member selected
from the group consisting of chromium and a nitride, a carbide, and a carbonitride
of chromium, formed by physical vapor deposition, so as to prevent deposition of gum
on the side face of the tip and a base metal adjacent to the side face.
9. The tipped saw for cutting of a wood and a wood-based composite material according
to claim 8, wherein a not more than 0.5 mm-thick polycrystalline diamond sinter or
gas phase synthesized diamond film is laminated to the surface on the rake side of
the cemented carbide tip to form an edge.
10. A drill for working of a wood and a wood-based composite material, characterized in that the clearance angle in the direction of rotation of a peripheral face of the tool
near an axial point edge is 5° or less, the surface roughness Rmax of a peripheral
face of the tool is 1 to 10 µm and the outermost surface thereof has a covering of
one member selected from the group consisting of chromium and a nitride, a carbide,
and a carbonitride of chromium, formed by physical vapor deposition, so as to prevent
deposition of gum on the peripheral face of the tool.
11. A rotary cutting tool for working of a wood and a wood-based composite material, which
is a flooring cutter or a moulding cutter, characterized in that an edge integral with a substrate or a base metal for an exchangeable knife is composed
of a cemented carbide, a tool steel selected from the group consisting of a high speed
tool steel and a high chromium alloy tool steel, or other high-strength material,
the surface roughness Rmax is 1 to 10 µm at least for the flank in the direction of
rotation and the outermost surface thereof has a covering of one member selected from
the group consisting of chromium and a nitride, a carbide, and a carbonitride of chromium,
formed by physical vapor deposition, so as to prevent deposition of gum on the flank
in the direction of rotation.
1. Rotierendes Schneidwerkzeug (Drehschneidwerkzeug) zum Bearbeiten von Holz oder einem
auf Holz basierenden Verbundwerkstoff (Holzverbundwerkstoff), aufweisend eine Umfangsschneide
und eine Seitenschneide, wobei die Umfangsschneide und die Seitenschneide separat
ausgebildet sind, derart, daß sie klar unterscheidbar oder ineinander übergehend geformt
sind, bei welchem die Rautiefe Rmax zumindest der Flanke der Seitenschneide 1 bis
10 µm beträgt, die Schleifrichtung für das Erzeugen der Rautiefe der Flanke der Seitenschneide
-50 Grad bis +50 Grad zur Drehrichtung für das Schneiden beträgt, die Seitenschneide
einen Freiwinkel von 0,8 Grad bis 5 Grad besitzt, und die äußerste Oberfläche der
Flanke der Seitenschneide einen Überzug aus einem Stoffelement aufweist, ausgewählt
aus der Gruppe bestehend aus Chrom und einem Nitrid, einem Karbid und einem Kohlenstoffnitrid
bzw. Karbonitrid von Chrom, um die Ablagerung eines gummiartigen Klebemittels oder
Klebers (gum) auf der Flanke einer Seitenschneide zu verhindern.
2. Rotierendes Schneidwerkzeug (Drehschneidwerkzeug) zum Bearbeiten von Holz oder einem
auf Holz basierenden Verbundwerkstoff (Holzverbundwerkstoff) nach Anspruch 1, welches
ein Zinkenfugenschneider ist mit einer Seitenschneide, wobei die mit einem Substrat
oder einem Grundmetall für ein austauschbares Messer integrale Schneide aus einem
Sinterkarbid bzw. Karbidhartmetall, einem Werkzeugstahl, ausgewählt aus der Gruppe
bestehend aus einem Werkzeugschnellstahl und einem hochchromlegiertem Werkzeugstahl,
oder einem anderen hochfesten Material besteht.
3. Rotierendes Schneidwerkzeug (Drehschneidwerkzeug) zum Bearbeiten von Holz oder einem
auf Holz basierenden Verbundwerkstoff (Holzverbundwerkstoff) nach Anspruch 1, welches
ein Zinkenfugenschneider ist mit einer Seitenschneide, bei welchem die genannte Rautiefe
Rmax sich zumindest auf der Flanke der Seitenschneide bei einer mit einem Substrat
oder einem Grundmetall für ein austauschbares Messer integralen Schneide und auf der
Oberfläche des Substrats oder Grundmetalls für das benachbarte austauschbare Messer
befindet.
4. Rotierendes Schneidwerkzeug (Drehschneidwerkzeug) zum Bearbeiten von Holz oder einem
auf Holz basierenden Verbundwerkstoff (Holzverbundwerkstoff) nach Anspruch 2, welches
ein Zinkenfugenschneider mit austauschbarer Schneide ist und ein Substrat für ein
austauschbares Messer des Schneiders besitzt, daß aus einem Sinterkarbid bzw. Karbidhartmetall,
einem Werkzeugstahl, ausgewählt aus der Gruppe bestehend aus einem Werkzeugschnellstahl
und einem hochchromlegiertem Werkzeugstahl, oder einem anderen hochfesten Material
besteht, wobei ein nicht mehr als 0,5 mm dicker polykristalliner Diamantsinteroder
gasphasensynthetisierter Diamantfilm auf die Oberfläche an der vorderen Stirnfläche
des Substrats für ein austauschbares Messer auflaminiert ist, um dadurch eine Schneide
zu bilden.
5. Körper eines Zinkenfugenschneiders mit austauschbarer Schneide nach einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, daß er einen Baustahl oder einen Werkzeugstahl als ein Grundmaterial und einen Vorsprung
aufweist, der einen verjüngten Querschnitt hat, der, ausgehend von der Rückseite einer
Nut zum Befestigen eines austauschbaren Messers, in einer Umfangsform ausgebildet
ist, wobei der Vorsprung zumindest in seiner konisch zulaufenden Fläche so endbearbeitet
ist, daß er durch Schneiden oder Schleifen derart, daß ein durch Schneiden oder Schleifen
entstandener Streifen einen Winkel von -50 Grad bis +50 Grad zur tangentialen Richtung
in Bezug auf die Drehung aufweist, eine Rautiefe von 1 bis 10 µm besitzt, und daß
seine äußerte Oberfläche einen Überzug aus einem Stoffelement aufweist, ausgewählt
aus der Gruppe bestehend aus Chrom und einem Nitrid, einem Karbid, und einem Karbonitrid
von Chrom, derart, daß die Ablagerung eines gummiartigen Klebemittels oder Klebers
(gum) auf der konischen Fläche des Vorsprungs verhindert wird.
6. Rotierendes Schneidwerkzeug zum Bearbeiten von Holz oder einem Holzverbundwerkstoff,
das ein Zinkenfugenschneider mit austauschbarer Schneide ist und die Seitenschneide
aufweist, wobei sein Anstellwinkel 0.8° bis 5° beträgt, wobei ein Substrat für ein
austauschbares Messer des Schneiders aus einem Sinterkarbid bzw. Karbidhartmetall,
einem Werkzeugstahl, ausgewählt aus der Gruppe bestehend aus einem Werkzeugschnellstahl
und einem hochchromlegierten Werkzeugstahl oder einem anderen hochfesten Material,
besteht, wobei ein nicht mehr als 0,5 mm dicker polykristalliner Diamantsinter- oder
durch Gasphase synthetisierter Diamantfilm auf die Oberfläche an der vorderen Seite
des Substrats für ein austauschbares Messer geschichtet ist, um so eine Schneide zu
bilden, wobei die Rauhtiefe Rmax zumindest des Substratabschnitts in der Flanke der
Seitenschneide 1 bis 10 µm beträgt, und wobei dessen äußerste Oberfläche einen Überzug
aus einem Stoffelement, ausgewählt aus der Gruppe bestehend aus Chrom und einem Nitrid,
einem Karbid und einem Karbonitrid aufweist, der durch ein physikalisches Dampfniederschlagungsverfahren
gebildet wurde, um die Ablagerung eines gegebenenfalls gummiartigen Klebemittels oder
Klebers (gum) auf der Flanke einer Seitenschneide zu vermeiden.
7. Körper eines Zinkenfugenschneiders mit austauschbarer Schneide, der die Seitenschneide
aufweist, wobei sein Anstellwinkel 0,8° bis 5° beträgt, dadurch gekennzeichnet, daß er einen Baustahl oder einen Werkzeugstahl als ein Grundmaterial und einen Vorsprung
aufweist, der einen konischen Querschnitt hat, der ausgehend von der Rückseite einer
Nut zum Befestigen eines austauschbaren Messers in seiner Umfangsform ausgebildet
ist, wobei wenigstens seine konisch zulaufende Fläche so endbearbeitet ist, daß er
durch Schneiden oder Schleifen derart, daß ein durch das Schneiden oder Schleifen
entstandener Streifen einen Winkel von -50° bis +50° zur tangentialen Richtung in
Bezug auf die Drehung aufweist, oder durch nicht ausgerichtetes (nichtkornorientiertes)
Blasen oder Strahlen eine Rauhtiefe Rmax von 1 bis 10 µm aufweist, und daß dessen
äußerste Oberfläche einen Überzug aus einem Stoffelement, ausgewählt aus der Gruppe
bestehend aus Chrom und einem Nitrid, einem Karbid und einem Karbonitrid von Chrom
aufweist, um die Ablagerung eines gegebenenfalls gummiartigen Klebemittels oder Klebers
(gum) auf der konischen Seite des Vorsprungs zu vermeiden.
8. Mit Spitzen versehene Säge zum Schneiden von Holz und einem Holzverbundwerkstoff,
dadurch gekennzeichnet, daß die Rauhtiefe Rmax der Seitenfläche, einer Spitze bestehend aus einer Sinterkarbid-
bzw. Karbidhartmetallspitze oder einem anderen hochfesten Material, und eines sich
neben der Seitenfläche befindlichen Grundmetalls 1 bis 10 µm beträgt, und daß dessen
äußerste Oberfläche einen Überzug aus einem Stoffelement, ausgewählt aus der Gruppe
bestehend aus Chrom und einem Nitrid, einem Karbid und einem Karbonitrid von Chrom
aufweist, der durch physikalisches Dampfniederschlagungsverfahren gebildet wurde,
um eine Ablagerung eines gegebenenfalls gummiartigen Klebemittels oder Klebers (gum)
an der Seitenfläche der Spitze und einem Grundmetall nahe der Seitenfläche zu vermeiden.
9. Die mit Spitzen versehene Säge zum Schneiden von Holz und einem Holzverbundmaterial
nach Anspruch 8, dadurch gekennzeichnet, daß ein nicht mehr als 0,5 mm dicker polykristalliner Diamantsinter- oder durch Gasphase
synthetisierter Diamantfilm auf die Oberfläche an der abgeschrägten Seite der Spitze
aus Sinterkarbid bzw. Karbidhartmetall geschichtet ist, um eine Schneide zu bilden.
10. Bohrer zum Bearbeiten von Holz und einem Holzverbundstoff, dadurch gekennzeichnet, daß der Anstellwinkel in Richtung der Drehung einer Umfangsfläche des Werkzeugs nahe
der Kante einer axialen Spitze oder einer axial spitz zulaufenden Kante 5° oder weniger
beträgt, die Rauhtiefe Rmax einer Umfangsfläche des Werkzeugs 1 bis 10 µm beträgt
und dessen äußerste Oberfläche einen Überzug aus einem Stoffelement, ausgewählt aus
der Gruppe bestehend aus Chrom und einem Ni-trid, einem Karbid und einem Karbonitrid
von Chrom aufweist, der durch physikalisches Dampfniederschlagungsverfahren gebildet
wurde, um die Ablagerung eines gegebenenfalls gummiartigen Klebemittels oder Klebers
(gum) auf der Umfangsfläche des Werkzeugs zu vermeiden.
11. Rotierendes Schneidwerkzeug zum Bearbeiten von Holz und einem Holzverbundstoff, welches
ein Dielungs- oder Fußbodenschneider oder ein Formteil- oder (Deck-) Leistenschneider
ist, dadurch gekennzeichnet, daß eine mit einem Substrat oder einem Grundmetall für ein austauschbares Messer integrale
Schneide aus einem Sinterkarbid bzw. Karbidhartmetall, einem Werkzeugstahl, ausgewählt
aus der Gruppe bestehend aus einem Werkzeugschnellstahl und einem hochchromlegierten
Werkzeugstahl oder einem anderen hochfesten Material, besteht, daß die Rauhtiefe Rmax
zumindest der Flanke in Drehrichtung 1 bis 10 µm beträgt, und daß dessen äußerste
Oberfläche einen Überzug aus einem Stoffelement, ausgewählt aus der Gruppe bestehend
aus Chrom und einem Nitrid, einem Karbid und einem Karbonitrid von Chrom aufweist,
der durch physikalisches Dampfniederschlagungsverfahren gebildet wurde, um die Ablagerung
eines gegebenenfalls gummiartigen Klebemittels oder Klebers (gum) auf der Flanke in
Drehrichtung zu vermeiden.
1. Outil de coupe rotatif pour travailler un bois ou un matériau composite à base de
bois, comportant un bord de coupe périphérique et un bord de coupe latéral, le bord
de coupe périphérique et le bord de coupe latéral étant formés séparément de manière
à pouvoir être clairement distingués l'un de l'autre, ou étant formés dans la continuité
l'un de l'autre, dans lequel la rugosité surfacique Rmax est de 1 à 10 µm au moins
pour le flanc du bord de coupe latéral, en ce que la direction de meulage pour créer
la rugosité surfacique du flanc du bord de coupe latéral est de -50° à + 50° par rapport
à la direction de rotation pour couper, en ce que le bord de coupe a un angle de dépouille
de 0,8° à 5°, et en ce que la surface la plus extérieure du flanc du bord de coupe
latéral comporte un revêtement composé d'un élément sélectionné parmi le groupe constitué
du chrome et d'un nitrure, d'un carbure et d'un carbonitrure de chrome, de manière
à empêcher le dépôt de gomme sur le flanc d'un bord de coupe latéral.
2. Outil de coupe rotatif pour travailler un bois ou un matériau composite à base de
bois selon la revendication 1, qui est un outil de coupe à doigts ayant un bord de
coupe latéral, le bord intégré à un substrat ou métal de base pour une lame échangeable
étant composé d'un carbure cémenté, d'un acier à outil sélectionné parmi le groupe
constitué d'un acier à outil haute-vitesse et d'un acier à outil à alliage à forte
teneur en chrome, ou autre matériau haute-résistance.
3. Outil de coupe rotatif pour travailler un bois ou un matériau composite à base de
bois selon la revendication 1, qui est un outil de coupe à doigts ayant un bord de
coupe latéral, dans lequel ladite rugosité surfacique Rmax est sur au moins le flanc
du bord de coupe latéral dans un bord intégré à un substrat ou un métal de base pour
une lame échangeable et sur la surface du substrat ou métal de base, pour la lame
échangeable, adjacente à celle-ci.
4. Outil de coupe rotatif pour travailler un bois ou un matériau composite à base de
bois selon la revendication 2, qui est un outil de coupe à doigts du type à remplacement
de bord ayant un substrat pour une lame échangeable de l'outil de coupe étant composé
d'un carbure cémenté, d'un acier à outil sélectionné parmi le groupe constitué d'un
acier à outil haute-vitesse et d'un acier à outil en alliage à forte teneur en chrome,
ou autre matériau haute-résistance, un frittage en diamant polycristallin ou un film
de diamant synthétisé en phase gazeuse d'épaisseur non-supérieure à 0,5 mm étant déposé
sur la surface sur le côté face avant du substrat pour une lame échangeable pour former
ainsi un bord.
5. Corps d'outil de coupe à doigts d'un outil de coupe à doigts du type à remplacement
de bord selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un acier structurel ou un acier à outil comme matériau de base et comporte
une protubérance de section transversale évasée en forme de circonférence à partir
de l'arrière d'une gorge de montage d'une lame échangeable, la protubérance, au moins
dans sa face évasée, est finie de manière à avoir une rugosité surfacique Rmax de
1 à 10 µm par découpe ou meulage de manière à ce qu'une rayure créée par la découpe
ou le meulage ait un angle de - 50° à + 50° par rapport à la direction tangentielle
par rapport à la rotation, et sa surface la plus extérieure a un revêtement constitué
d'un élément choisi parmi le groupe constitué du chrome et d'un nitrure, d'un carbure
et d'un carbonitrure de chrome, de manière à empêcher le dépôt de gomme sur la face
évasée de la protubérance.
6. Outil de coupe rotatif pour travailler un bois ou un matériau composite à base de
bois, qui est un outil de coupe à doigts du type à remplacement de bord ayant le bord
de coupe latéral, son angle de dépouille étant de 0,8° à 5°, un substrat pour une
lame échangeable de l'outil de coupe étant composé d'un carbure cémenté, d'un acier
à outil sélectionné parmi le groupe constitué d'un acier à outil haute-vitesse et
d'un acier à outil en alliage à forte teneur en chrome, ou autre matériau haute-résistance,
un frittage en diamant polycristallin ou un film de diamant synthétisé en phase gazeuse
d'épaisseur non-supérieure à 0,5 mm étant déposé sur la surface sur le côté face avant
du substrat pour une lame échangeable pour former ainsi un bord, la rugosité surfacique
Rmax d'au moins la partie substrat dans le flanc du bord de coupe latéral étant de
4 à 10 µm, sa surface la plus extérieure ayant un revêtement, constitué d'un élément
choisi parmi le groupe constitué du chrome et d'un nitrure, d'un carbure, et d'un
carbonitrure, formé par dépôt physique en phase vapeur, de manière à empêcher le dépôt
de gomme sur le flanc d'un bord de coupe latéral.
7. Corps d'outil de coupe à doigts d'un outil de coupe à doigts du type remplacement
de bord ayant le bord de coupe latéral, son angle de dépouille étant de 0,8° à 5°,
caractérisé en ce qu'il comporte un acier structurel ou un acier à outil comme matériau de base et comporte
une protubérance de section transversale évasée en forme de circonférence à partir
de l'arrière d'une gorge de montage d'une lame échangeable, la protubérance, au moins
dans sa face évasée, est finie de manière à avoir une rugosité surfacique Rmax de
1 à 10 µm par découpe ou meulage de manière à ce qu'une rayure créée par la découpe
ou le meulage ait un angle de - 50° à + 50° par rapport à la direction tangentielle
par rapport à la rotation ou par grenaillage non-orienté et sa surface la plus extérieure
a un revêtement constitué d'un élément choisi parmi le groupe constitué du chrome
et d'un nitrure, d'un carbure et d'un carbonitrure de chrome, de manière à empêcher
le dépôt de gomme sur la face évasée de la protubérance.
8. Scie dentelée pour découper un bois et un matériau composite à base de bois, caractérisé en ce que la rugosité surfacique Rmax de la face latérale, d'une pointe composée d'une pointe
de carbure cémenté ou autre matériau haute-résistance, et un métal de base adjacent
à la face latérale est de 1 à 10 µm et sa surface la plus extérieure comporte un revêtement,
constitué d'un élément choisi parmi le groupe constitué du chrome et d'un nitrure,
d'un carbure, et d'un carbonitrure de chrome, formé par dépôt physique en phase vapeur,
de manière à empêcher le dépôt de gomme sur la face latérale de la pointe et un métal
de base adjacent à la face latérale.
9. Scie dentelée pour découper un bois et un matériau composite à base de bois selon
la revendication 8, dans laquelle un frittage en diamant polycristallin ou un film
de diamant synthétisé en phase gazeuse d'épaisseur ne dépassant pas 0,5 mm est déposé
sur la surface sur le côté face en dépouille de la pointe en carbure cémenté pour
former un bord.
10. Foret pour travailler un bois et un matériau composite à base de bois, caractérisé en ce que l'angle de dépouille dans la direction de rotation d'une face périphérique de l'outil
au voisinage d'un bord de pointe axiale est de 5° ou moins, la rugosité surfacique
Rmax d'une face périphérique de l'outil est de 1 à 10 µm et sa surface la plus extérieure
a un revêtement constitué d'un élément choisi parmi le groupe constitué du chrome
et d'un nitrure, d'un carbure, et d'un carbonitrure de chrome, formé par dépôt physique
en phase vapeur, de manière à empêcher le dépôt de gomme sur la face périphérique
de l'outil.
11. Outil de coupe rotatif pour travailler un bois et un matériau composite à base de
bois, qui est un outil de coupe de planchéiage ou un outil de coupe à moulures, caractérisé en ce qu'un bord intégré à un substrat ou un métal de base pour une lame échangeable est composé
d'un carbure cémenté, d'un acier à outil sélectionné parmi le groupe constitué d'un
acier à outil haute-vitesse et d'un acier à outil en alliage à forte teneur en chrome,
ou autre matériau haute-résistance, la rugosité surfacique Rmax est de 1 à 10 µm au
moins pour le flanc dans la direction de rotation et sa surface la plus extérieure
a un revêtement constitué d'un élément choisi parmi le groupe constitué du chrome
et d'un nitrure, d'un carbure, et d'un carbonitrure de chrome, formé par dépôt physique
en phase vapeur, de manière à empêcher le dépôt de gomme sur le flanc dans la direction
de rotation.