Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 740 046 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

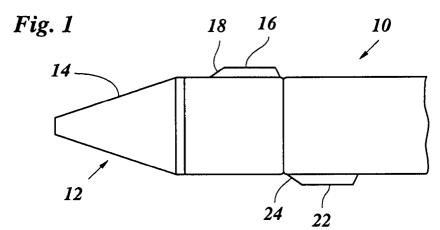
(43) Veröffentlichungstag: 30.10.1996 Patentblatt 1996/44 (51) Int. Cl.6: **E21B** 7/06

(21) Anmeldenummer: 96103330.5

(22) Anmeldetag: 04.03.1996

(84) Benannte Vertragsstaaten: AT CH FR GB IT LI

(30) Priorität: 04.03.1995 DE 19507581


(71) Anmelder: MTM-Technik Helmuth Römer GmbH 57413 Finnentrop-Heggen (DE)

(72) Erfinder: Römer, Helmuth 57413 Finnentrop (DE)

(74) Vertreter: TER MEER - MÜLLER - STEINMEISTER **& PARTNER** Artur-Ladebeck-Strasse 51 33617 Bielefeld (DE)

(54)Lenkvorrichtung für Bohrköpfe

(57)Lenkvorrichtung für Bohrköpfe, mit einer schrägen Ablenkfläche (18), die an einem Teil (12) des Bohrkopfes angebracht und durch Drehen dieses Teils oder des gesamten Bohrkopfes um seine Längsachse auf unterschiedliche Azimutwinkel einstellbar ist, um die Ablenkrichtung zu bestimmen, dadurch gekennzeichnet, daß mindestens eine weitere Ablenkfläche (24) an einem um die Längsachse des Bohrkopfes drehbaren Teil (10) angebracht ist, dessen Winkelstellung relativ zu dem die erste Ablenkfläche (18) tragenden Teil (12) steuerbar ist.

EP 0 740 046 A2

30

Beschreibung

Die Erfindung betrifft eine Lenkvorrichtung für Bohrköpfe, mit einer schrägen Ablenkfläche, die an einem Teil des Bohrkopfes angebracht ist und durch Drehen 5 dieses Teils oder des gesamten Bohrkopfes um seine Längsachse auf unterschiedliche Azimutwinkel einstellbar ist, um die Ablenkrichtung zu bestimmen.

Zum Erstellen von Erdbohrungen für Leitungen aller Alt werden Bohrköpfe verwendet, die beispielsweise als Bodendurchschlagshämmer oder auch als einfache Verdrängungsköpfe ausgebildet sind und durch hydraulische oder pneumatische Schläge, durch kontinuierliches Fressen oder dergleichen - gegebenenfalls unterstützt durch Spüleinrichtungen - im Boden vorgetrieben werden. Damit die gewünschte Bohrtrasse genau eingehalten werden kann, ist es wünschenswert, den Bohrkopf während des Vortriebs zumindest in dem Maße lenken zu können, daß leichte Richtungskorrekturen vorgenommen werden können. Aus US 3 794 128 A ist ein lenkbarer Bohrkopf bekannt, bei dem die Richtungsänderungen durch Lenkflossen bewirkt werden, die um quer zur Längsrichtung des Bohrkopfes verlaufende Achsen verstellbar sind.

Bei relativ kleinen und einfach aufgebauten Bohrköpfen, wie sie für Erdbohrungen mit kleinen Querschnitten eingesetzt werden, ist es jedoch sehr schwierig oder aus Kostengründen nicht praktikabel, den Bohrkopf mit einer konstruktiv aufwendigen Lenkvorrichtung auszustatten.

In der Praxis hilft man sich oft damit, daß der Bohrkopf asymmetrisch gestaltet und mit einer schrägen Ablenkfläche versehen wird, die während des Vortriebs permanent eine Ablenkung des Bohrkopfes in die dem Azimut der Ablenkfläche entgegengesetzte Richtung bewirkt. Um die Bohrung geradlinig vorzutreiben, wird dann der Bohrkopf mit Hilfe des nachgepreßten oder nachgezogenen Bohrgestänges ständig um seine Längsachse gedreht, so daß die Querablenkungen sich im zeitlichen Mittel neutralisieren. Die Lage des Bohrkopfes wird mit Hilfe eines in dem Bohrkopf installierten Senders überwacht, der auch eine Information über den aktuellen Azimutwinkel der Ablenkfläche liefern kann. Eine gezielte Richtungskorrektur oder Richtungsänderung läßt sich dann dadurch erreichen, daß man den Bohrkopf über längere Zeit in einer geeigneten Winkelstellung hält. In US 5 255 749 A wird ein Lenksystem dieser Alt beschrieben, bei dem die Drehung des Bohrkopfes um die Längsachse wiederum durch Lenkflossen gesteuert wird, die wahlweise in eine Position einstellbar sind, in der sie keine Drehung bewirken, sondern die Ablenkwirkung der schrägen Ablenkfäche unterstützen.

In homogenen Böden lassen sich auf diese Weise zumeist zufriedenstellende Ergebnisse erzielen. Wenn der Bohrkopf jedoch auf Hindernisse wie Steine, härtere Bodenformationen oder dergleichen trifft, gerät die Richtungssteuerung leicht außer Kontrolle, und es tre-

ten häufig so starke Richtungsabweichungen auf, daß die Bohrung unbrauchbar wird.

Aufgabe der Erfindung ist es deshalb, eine Lenkvorrichtung zu schaffen, die auch bei inhomogenen Böden eine kontrollierte Beeinflussung der Vortriebsrichtung ermöglicht.

Diese Aufgabe wird erfindungsgemäß durch eine Lenkvorrichtung der eingangs genannten Gattung gelöst, bei der mindestens eine weitere Ablenkfläche an einem um die Längsachse des Bohrkopfes drehbaren Teil angebracht ist, dessen Winkelstellung relativ zu dem die erste Ablenkfläche tragenden Teil steuerbar ist.

Bei geradlinigem Bohrvortrieb werden die Ablenkflächen so eingestellt, daß ihre Wirkungen sich gegenseitig neutralisieren. Wenn eine Richtungsänderung vorgenommen werden soll, werden die Ablenkflächen so gegeneinander verdreht, daß die Resultierende der durch sie erzeugten Ablenkkräfte von null verschieden ist und in die gewünschte Richtung weist.

Ein wesentlicher Vorteil dieser Lösung besteht darin, daß sich die Wirkungen der Ablenkflächen in der Neutralstellung nicht nur im zeitlichen Mittel, sondern zu jedem Zeitpunkt gegenseitig aufheben, so daß auch beim Auftreffen auf härtere Bodenformationen keine starke Richtungsabweichung auftritt. Durch geeignete Steuerung der Winkelstellung des drehbaren Teils des Bohrkopfes läßt sich so erreichen, daß eine Querablenkung nur dann auftritt, wenn sie tatsächlich erwünscht ist. Auf diese Weise läßt sich eine wesentlich genauere Steuerung der Vortriebsrichtung und insbesondere ein wesentlich stabilerer Geradeauslauf erreichen.

Ein weiterer Vorteil besteht darin, daß der Bohrkopf bei geradlinigem Vortrieb nicht ständig gedreht zu werden braucht.

Vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.

Bevorzugt besitzt der Bohrkopf zwei Teile, die in Axialrichtung hintereinander liegen, zumindest in einem begrenzten Winkelbereich relativ zueinander verdrehbar sind und jeweils mindestens einen Ablenknocken aufweisen, an dem die schräge Ablenkfläche ausgebildet ist.

Wenn die beiden Teile des Bohrkopfes jeweils nur einen einzigen Ablenknocken aufweisen, sind diese in der Neutralstellung um 180° gegeneinander verdreht. Wenn dann das hintere Teil mit Hilfe des Bohrgestänges um 180° gedreht wird, liegt sein Ablenknocken im "Schatten" des vorderen Ablenknockens, und es ergibt sich eine Querablenkung in der durch die Position des vorderen Ablenknockens bestimmten Richtung. In dieser Position wird die Drehung des hinteren Teils relativ zu dem vorderen Teil durch einen Anschlag begrenzt, so daß durch Weiterdrehen des Bohrgestänges beide Ablenknocken gemeinsam verdreht werden können. Auf diese Weise läßt sich die gewünschte Ablenkrichtung einstellen. Diese Ausführungsform hat den Vorteil, daß maximal zwei Ablenknocken wirksam sind, so daß sich ein geringer Eindringwiderstand ergibt.

15

25

35

40

In einer anderen Ausführungsform besitzt das vordere Teil des Bohrkopfes zwei einander diametral gegenüberliegende Ablenknocken, und das hintere Teil besitzt einen weiteren Ablenknocken der in der Neutralstellung im Schatten eines der vorderen Ablenknocken 5 liegt und bei einer Richtungskorrektur in eine um 90° zu den vorderen Ablenknocken verdrehte Position gebracht wird. Diese Ausführungsform hat den Vorteil, daß aufgrund des symmetrischen Aufbaus des vorderen Teils ein genauerer Geradeauslauf in der Neutralstellung erreicht wird. Außerdem wird durch die beiden Ablenknocken des vorderen Teils das Erdreich in der Umgebung des Bohrkopfes gelockert, so daß sich das hintere Teil trotz des radial vorspringenden Ablenknokkens leichter drehen läßt.

Zwischen dem vorderen und hinteren Teil des Bohrkopfes kann eine Klauenkupplung vorgesehen sein, die sich durch Zurückziehen des hinteren Teils mit Hilfe des Bohrgestänges auskuppeln läßt, um das hintere Teil zu verdrehen, während das vordere Teil durch seinen oder seine Ablenknocken in der aktuellen Winkellage fixiert wird. Bei eingekuppelter Klauenkupplung lassen sich beide Teile des Bohrkopfes gemeinsam verdrehen.

Im folgenden werden bevorzugte Ausführungsbeispiele anhand der Zeichnungen näher erläutert.

Es zeigen:

eine Seitenansicht des vorderen Teils Fig. 1 eines Bohrkopfes;

Fig. 2 eine Frontansicht des Bohrkopfes;

Fig. 3 und 4 eine Seitenansicht und eine Frontansicht des Bohrkopfes nach Figuren 1 und 2 in einer anderen Betriebsstellung; und

Fig. 5 bis 8 Darstellungen analog Figuren 1 bis 4 für einen Bohrkopf gemäß einem anderen Ausführungsbeispiel.

Der in Figur 1 gezeigte Bohrkopf besitzt ein zylindrisches Basisteil 10 und ein drehbar mit diesem verbundenes Kopfteil 12, das am vorderen Ende eine konische Schlagspitze 14 aufweist. Auf dem zylindrischen Mantel des Kopfteils 12 ist am äußeren Umfang ein radial vorspringender Ablenknocken 16 ausgebildet, der am vorderen Ende eine schräg zur Achse des Bohrkopfes verlaufende Ablenkfläche 18 aufweist. Wie aus Figur 2 hervorgeht, besitzt der Ablenknocken 16 abgeschrägte seitliche Flanken 20.

Ein gleich gestalteter Ablenknocken 22 mit einer Ablenkfläche 24 ist auf der Umfangsfläche des Basisteils 10 angrenzend an dessen vorderes Ende angeord-

An den einander gegenüberliegenden Stirnflächen des Basisteils 10 und des Kopfteils 12 ist an einem dieser Teile, beispielsweise an dem Basisteil 10, ein axial vorspringender Zapfen 26 angeordnet, der in eine Nut 28 des Kopfteils 12 eingreift. Die Enden der Nut 28 bilden Anschläge 30, 32 für den Zapfen 26 und begrenzen so die Relativdrehung zwischen dem Basisteil und dem Kopfteil auf 180°.

In dem in Figuren 1 und 2 gezeigten Zustand liegt der Zapfen 26 an dem Anschlag 30 an, und die Ablenknocken 16, 22 sind um 180° gegeneinander verdreht. Wenn in diesem Zustand der Bohrkopf (nach links in Figur 1) vorgetrieben wird, so wirkt das anstehende Erdreich auf die Ablenkfläche 18 des Ablenknockens 16, und es entsteht eine Kraft, die die Tendenz hat, den Bohrkopf quer zur Vortriebsrichtung (nach unten in Figur 1) abzulenken. Diese Kraft wird jedoch weitgehend kompensiert durch eine entsprechende Kraft, die an dem Ablenknocken 22 entsteht. Wenn der Bohrkopf auf festere oder härtere Bodenformationen trifft. überwiegt zunächst die Ablenkkraft an dem Ablenknocken 16, doch stellt sich wieder ein Gleichgewicht ein, sobald auch der Ablenknocken 22 in das festere Material eindringt. Auf diese Weise wird unabhängig von der Bodenbeschaffenheit ein annähernder Geradeauslauf des Bohrkopfes gewährleistet.

Das Basisteil 10 des Bohrkopfes ist drehfest mit einem nicht gezeigten Bohrgestänge verbunden. Wenn der Bohrkopf aufgrund von Steinen oder dergleichen etwas nach oben in Figur 1 abgelenkt wurde, so wird das Basisteil 10 mit Hilfe des Bohrgestänges um 180° in die in Figuren 3 und 4 gezeigte Position gedreht. In dieser Position liegt der Zapfen 26 an dem Anschlag 32, und der Ablenknocken 22 liegt fluchtend hinter dem vorderen Ablenknocken 16 und ist deshalb weitgehend unwirksam. Es wirkt somit nur noch die von dem Ablenknocken 16 erzeugte Kraft, so daß die Richtungsabweichung korrigiert wird.

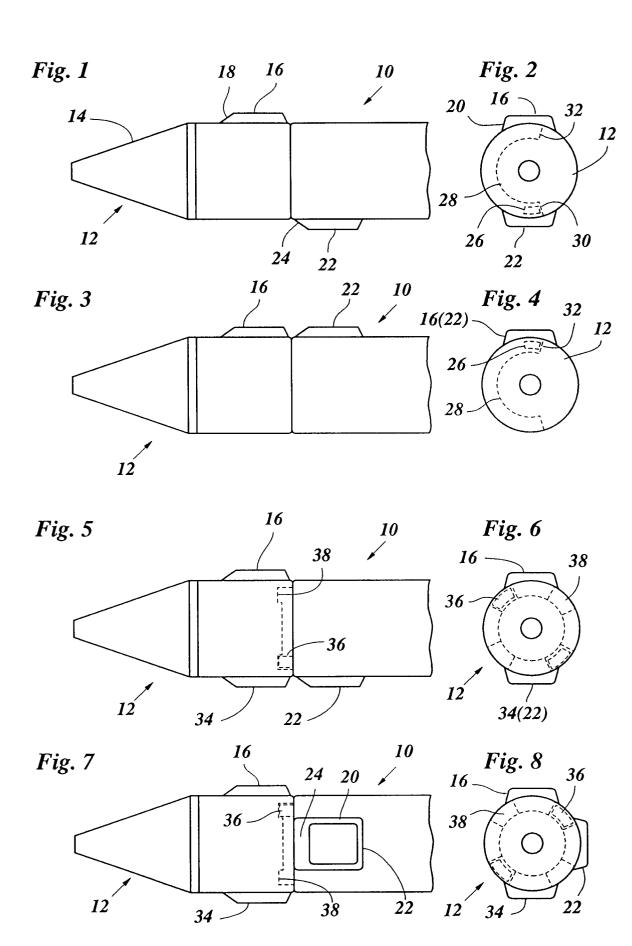
Wenn der Zapfen 26 an einem der Anschläge 30, 32 anschlägt und das Basisteil 10 mit Hilfe des Bohrgestänges weitergedreht wird, so wird das Kopfteil 12 bei der Drehung mitgenommen. Auf diese Weise läßt sich der Azimutwinkel der Ablenknocken 16, 22 um die Längsachse des Bohrkopfes jeweils so einstellen, daß die Querablenkung in der gewünschten Richtung erfolgt.

Die abgeschrägten Flanken 20 der Ablenknocken erleichtern das Drehen des Basisteils und gegebenenfalls des Kopfteils gegen den Widerstand des umgebenden Erdreichs.

Bei dem in Figuren 5 bis 8 gezeigten Ausführungsbeispiel besitzt das Kopfteil 12 zwei achsensymmetrisch angeordnete Ablenknocken 16, 34, deren Wirkungen sich gegenseitig neutralisieren. In dem in Figuren 5 und 6 gezeigten Zustand liegt der Ablenknokken 22 des Basisteils 10 im Schatten des Ablenknokkens 34, so daß er weitgehend wirkungslos bleibt und der Vortrieb des Bohrkopfes annähernd geradlinig erfolgt. In Figuren 7 und 8 ist dagegen der Ablenknokken 22 um 90° gegenüber den beiden vorderen Ablenknocken 16 und 34 verdreht. In diesem Zustand kommt der Ablenknocken 22 zur Wirkung, da er mit seiner Ablenkfläche auf den anstehenden Boden aufläuft und 15

20

seine Ablenkkraft nicht durch einen gegenüberliegenden Nocken kompensiert wird.


Bei dem Ausführungsbeispiel nach Figuren 5 bis 8 sind das Basisteil 10 und das Kopfteil 12 in einem begrenzten Bereich auch axial gegeneinander beweg- 5 lich, und zwischen ihnen wirkt eine Klauenkupplung, die durch Klauen 36 und zugehörige Rasten 38 gebildet wird. Im gezeigten Beispiel gestattet diese Klauenkupplung eine relative Verdrehung des Basisteils 10 und des Kopfteils 12 in Winkelschritten von 90°, so daß der Ablenknocken 22 bei Eingriff der Klauenkupplung entweder mit einem der vorderen Ablenknocken 16, 34 fluchtet oder um 90° verdreht hierzu liegt. Um den Ablenknocken 22 zu verstellen, wird das Basisteil 10 mit Hilfe des Bohrgestänges zurückgezogen und in die gewünschte Position gedreht, während das Kopfteil 12 durch die beiden Ablenknocken 16, 34 festgehalten wird. Da das Basisteil relativ zu dem Kopfteil in jeder Richtung gedreht werden kann, läßt sich die gewünschte Ablenkrichtung rasch einstellen. Die Feineinstellung erfolgt dadurch, daß Basisteil und Kopfteil bei eingerückter Klauenkupplung gemeinsam gedreht werden.

Wahlweise kann die Klauenkupplung auch so gestaltet sein, daß sie eine feinere Winkelverstellung des Basisteils relativ zu dem Kopfteil ermöglicht. Eine solche Klauenkupplung kann auch bei der Ausführungsform nach Figuren 1 bis 4 eingesetzt werden. In diesem Fall ist es möglich, die Ablenknocken 16 und 22 geringfügig gegeneinander verdreht auf derselben Seite anzuordnen, so daß sich ihre Ablenkwirkung addiert.

Patentansprüche

- 1. Lenkvorrichtung für Bohrköpfe, mit einer schrägen Ablenkfläche (18), die an einem Teil (12) des Bohrkopfes angebracht und durch Drehen dieses Teils oder des gesamten Bohrkopfes um seine Längsachse auf unterschiedliche Azimutwinkel einstellbar ist, um die Ablenkrichtung zu bestimmen, dadurch gekennzeichnet, daß mindestens eine weitere Ablenkfläche (24) an einem um die Längsachse des Bohrkopfes drehbaren Teil (10) angebracht ist, dessen Winkelstellung relativ zu dem die erste Ablenkfläche (18) tragenden Teil (12) steuerbar ist.
- 2. Lenkvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das die erste Ablenkfläche (18) tragende Teil des Bohrkopfes ein Kopfteil (12) ist und daß das drehbare Teil (10) ein mit einem Bohrgestänge verbundenes Basisteil ist, das in Vortriebsrichtung hinter dem Kopfteil (10) liegt und einen radial über den Umfang des Kopfteils vorspringenden Ablenknocken (22) aufweist, an dem die zweite Ablenkfläche (24) ausgebildet ist.

- 3. Lenkvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das Kopfteil (12) einen radial von seinem Umfang vorspringenden Ablenknocken (16) aufweist, an dem die erste Ablenkfläche (18) ausgebildet ist.
- 4. Lenkvorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß das Basisteil (10) relativ zu dem Kopfteil (12) aus einer Position, in der die Ablenknocken (16, 22) um 180° gegeneinander verdreht sind, in eine Position drehbar ist, in der die Ablenknocken axial miteinander ausgerichtet sind.
- Lenkvorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Verstellbereich des Basisteils (10) zwischen den Positionen, in denen sein Ablenknocken (22) mit dem Ablenknocken (16) des Kopfteils ausgerichtet oder um 180° gegenüber diesem verdreht ist, durch Anschläge (30, 32) begrenzt ist.
- 6. Lenkvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das Kopfteil (12) zwei jeweils mit einer Ablenkfläche versehene Ablenknocken (16, 34) aufweist, die einander in gleicher Axialposition diametral gegenüberliegen, daß der Querschnitt des Ablenknockens (22) des Basisteils (10) höchstens gleich dem Querschnitt der Ablenknokken (16, 34) des Kopfteils (12) ist und daß das Basisteil (10) relativ zu dem Kopfteil (12) aus einer Position, in der der Ablenknocken (22) des Basisteils mit einem der Ablenknocken (36, 34) des Kopfteils fluchtet, um mindestens 90° verdrehbar ist.
- Lenkvorrichtung nach einem der Ansprüche 2 bis 6, 35 gekennzeichnet durch eine zwischen dem Basisteil (10) und dem Kopfteil (12) wirkende Klauenkupplung (36, 38).
- Lenkvorrichtung nach Anspruch 7, dadurch 40 gekennzeichnet, daß das Basisteil (10) gegenüber dem Kopfteil (12) in einem begrenzten Bereich axial verschiebbar ist und daß die Klauenkupplung (36, 38) durch Zurückziehen des Basisteils (10) auskup-45 pelbar ist.
 - Lenkvorrichtung nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß jeder Ablenknocken (16, 22, 34) abgeschrägte seitliche Flanken (20) besitzt.

