
(19)

Europaisches Patentamt

European Patent Office

Office europeen des brevets

(12)

(43) Date of publication:
06.11.1996 Bulletin 1996/45

(21) Application number: 96106729.5

(22) Date of filing: 29.04.1996

sen des brevets (1 1) E P 0 7 4 1 3 8 0 A 2

EUROPEAN PATENT A P P L I C A T I O N

(51) int. ci.6: G09G 1/16, G09G 5 /36

(84) Designated Contracting States: (72) Inventor: Barclay, Bruce Alan
DE FR GB IT NL Gilbert , Arizona 85234 (US)

(30) Priority: 01.05.1995 US 432347 (74) Representative: Spaulding, Sarah Jane et al
Motorola

(71) Applicant: MOTOROLA, INC. European Intellectual Property Operations
Schaumburg, IL 60196 (US) Midpoint

Alencon Link
Basingstoke, Hampshire RG21 1PL (GB)

CM
<
O
CO
CO

(54) A display method for tiled data images

(57) A method for displaying relatively large
amounts of data representing an image has a display
device (28). The display system has a processor (22), a
disk (24), random access memory (RAM)(26), and the
display device(28). First, data to be displayed is
obtained (60). A number of tile are created (34). Each
tile represents a portion of the image. Next, it is deter-

90 -|
|HEAD_PTR| —j

INITIAL LIST, 94-4NULT1
ITAIL-PTRI ZT"^
7c ^
96-)

mined if a particular tile is in RAM (70). A least recently
used tile is swapped out for storing the particular tile in
the RAM (74), if the particular tile is not already stored
in the RAM. The tile is displayed on the display device
(80).

LINKED LIST IN RAM
F I G . 5

ihead-ptri ■ ; — ; — i r102 r1(
DISPLAY TILE 'A' 100— OWLET*— I TILE 'A,H-4nuLT

TAIL PTR L j p U - H
104

106 1.
DISPLAY TILE 'B'

IHEAD-PTRr
I TAIL PTRL

i i' i-

— ; — * r11j_ riu rn(
110 —[NULL"!-— I TILE ■B'QTILE 'A'l-HNULLl

116

IHEAD-PTRP 1 1 1 " r128 130 iHEAD-PTRl t (-124 (-126
DISPLAY TILE 'C 122 -4NDLTKH TILE C TILE B'CUTILE "A" |->TnUll1

I TAIL PTR I »

132 / 1 2 °
IHEAD-PTRT (-142 (-144 IHEAD-PTRl j r138 r140 r144

DISPLAY TILE 'B' 136— TnULLT* — I TILE 1B,eilllLL ■C'EJTILE 'A-l-HlMll
I TAIL PTRI *
1 4 ^
IHEAD-PTRl ; 1 f152 r154 r156 r158

DISPLAY TILE 'D' 150 -TnDlL>H TILE D' TILE 'B' CJTILE 'C |-»4nULL1 DISPLAY TILE
I TAIL PTR 1— 3^

O
Q_
LU

Printed by Rank Xerox (UK) Business Services
2.13.8/3.4

EP 0 741 380 A2

Description

Government License Rights

5 The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the
patent owner to license others on reasonable terms as provided for by the terms of contract No. DAAB07-92C-L001
awarded by the US Army.

Background of the Invention
10

The present invention pertains to raster display of images and more particularly to a method for rapidly changing
views of large amounts of display data.

There are many times in software applications that there is a need for raster data to be displayed on the screen.
Since raster data takes a long time to display because of its nature, there is a need to speed up the display process

15 considerably. Normally, a raster image is larger than the screen. In these cases, the raster image needs to be panned
to see the entire image. To pan this image requires much memory and much time.

For example, in a process for displaying data representing a map, the viewer may wish to look at different portions
of the map in rapid succession. The viewer may wish to rapidly scan a large portion of the map. Further the viewer may
wish to rapidly zoom-in or zoom-out in viewing the map. This requires large amounts of data to be moved rapidly and

20 accurately to avoid loss of visual continuity or loss of map detail.
Accordingly it would be highly desirable to provide a display method which organized the data for rapid and accu-

rate display as a raster image.

Brief Description of the Drawing
25

FIG. 1 is a block diagram of a processor and display arrangement for producing maps in accordance with the
present invention.

FIG. 2 is a flow chart of the actual tiling process in accordance with the present invention.
FIG. 3 is a mapping layout depicting a supermap and tiling of the supermap in accordance with the present inven-

30 tion.
FIG. 4 is a flow chart of the actual process of finding the tile that cover a given area in accordance with the present

invention.
FIG. 5 is a flow diagram that depicts the process of storing and retrieving map tiles in memory in accordance with

the present invention.
35

Description of the Preferred Embodiment

FIG. 1 illustrates a block diagram of the map display arrangement for rapid display of the map data using a tiled
approached. This map data is obtained in CD-ROM format from Defense Mapping Agency (DMA). This map data can

40 be any type of raster data. The raster data is read from CD-ROM 20 by processor 22. Processor 22 segments the data
in to tiles (sections) and stores each tiles on disk 24 until the entire raster image is completed.

When a raster map is requested to be displayed, Processor 22 will check whether the tile is already in RAM (Ran-
dom Access Memory) 26. If the tile is already in RAM 26, processor 22 will display the tile to display 28. If the tile is not
in RAM 26, processor 22 will retrieve the tile from disk 24 and store it in RAM 26. Processor 22 will then display the tile

45 to display 28.
For the preferred embodiment of this invention, processor 22 is implemented with a Sun Sparc board running

SunOS but any Unix® based platform will work. Raster display 28 can be any raster display that can display 256 colors
or more. Processor 22 is coupled to CD-ROM 20 and to raster display 28. Disk 24 and RAM 26 are included in the Sparc
workstation.

50
TILING PROCESS:

Large map images are initially be partitioned into tiles. This may be an off-line or off-line process that is done once
for each map image. This process need not be done in real-time, however. This technique does not limit the image size.

55 If at a later date, an additional image was placed next to an already existing image, the process would still work. Initially,
a map is obtained, as mentioned above, to process. These maps are usually produced in 1° by 1° segments. These
maps have a location on the earth. These maps are too large to fit into main computer memory so the method breaks
the data into 1/2 mega-word (8-bit byte) memory storage tiles. The term "tiles" is used because when laid one next to
another the result resembles tiles. Each one of these tiles has a unique file name and header information telling about

2

EP 0 741 380 A2

the particular tile. If another 1° by 1° map is loaded, it is also broken up into 1/2 mega-word tiles. In order to keep this
flexible and have all the maps work, there is a structure that keeps track of all the supermaps (1° by 1° maps). This
structure is an array of the following data:

Nam? D e s c r i D t i o n
sm_min_long This is the minimum longitude of the entire supermap.

Minimum is defined as the Northwest corner.
sm_min_lat This is the minimum latitude of the entire supermap.

Minimum is defined as the Northwest corner.
sm_max_long This is the maximum longitude of the entire supermap.

Maximum is defined as the Southeast corner.
sm_max_lat This is the maximum latitude of the entire supermap.

Maximum is defined as the Southeast corner.
Pixels_2Pi_long Each pixel represents some distance. This value

represents how many pixels it would take to cover 360°
in the longitude direction.

Pixels_2Pi_lat Each pixel represents some distance. This value
represents how many pixels it would take to cover 360°
in the latitude direction.

Image_name This is the actual first 8 characters of the file name. An
example would be "29N047E" (29 North Latitude and 47
East longitude).

T a b l e 1 - S u p e r m a p h e a d e r

For each supermap, there will be one of the above structures. This allows us to find the correct tiles. Each one of
the tiles has the following information in it:

EP 0 741 380 A2

Name D e s c r i D t i o n
File_size The tiles are usually 1/2 meg tiles. Since the images that

we process usually don't break up evenly, there needs to
be a file size. See figure 1 and compare tile 1 with tile 15.

Pixels wide This is the number of pixels in the width of the tile.
Pixels high This is the number of pixels in the height of the tile.
Minimumjongitude This is the minimum longitude of the map tile. Minimum is

defined as the Northwest corner.
Minimum_Latitude This is the rninimum latitude of the map tile. Minimum is

defined as the Northwest corner.
Maximum_longitude This is the maximum longitude of the map tile. Maximum

is defined as the Southeast corner.
Maximum_Latitude This is me maximum latitude of the map tile. Maximum is

defined as the Southeast corner.
Pixels_2Pi_long Each pixel represents some distance. This value represents

how many pixels it would take to cover 360 in the
longitude direction.

Pixels_2Pi_lat Each pixel represents some distance. This value represents
how many pixels it would take to cover 360° in the latitude
direction.

Data This is the data in the image. This can be up to 1/2 meg o f
data.

T a b l e 2 - T i l e h e a d e r

30

CREATING TILES FROM A MAP

FIG. 2 Is the flow chart for tiling of the supermap into tiles and storing the tiles on disk. Processor 22 is reading the
35 digital map data from CD-ROM 20. This flow is performed by processor 22. Processor 22 takes a large image and

breaks it up into tiles and stores the tiles on disk 24. These tiles are arranged by row and column.
A row counter is initailized to 1 , block 30. A column 1 is initialized to 1 , block 32. The process then goes into a loop

reading all the data in the supermap, block 34. The tiling process checks to see if it is at the end of the row, block 36. If
it is, add 1 to the row, block 38 and reset column to 1 , block 40. Then a filename is created for the tile, block 42. This

40 filename includes of a latitude/longitude position and a row/column ASCII name. Add one to the column, block 44.
Check to see if there is any more data to read, block 46. If there is, go back to block 36 and read another tile, otherwise
stop, block 48.

FIG. 3 illustrates the way the tiles are partitioned. The outside border (heavy line) represents the supermap. In this
example, the supermap is partitioned into 15 tiles. All tiles are 1/2 meg except for 5, and 10-15. The name of the super-

45 map is "29N047E". Each tile uses the "29N047E" and adds a row and a column. This gives the tile a unique name. At
this time, all tile images are in tiles on the disk with headers.

MAP FINDING PROCESS

so This is a critical process because this is how the tiles are found depending on the users view. The user who desires
to view the image will pan through the image. The user will pass the area that he/she is viewing and the tile viewing
process performs as follows.

Processor 22 will receive information in Latitude/longitude concerning an area to display, block 60. From this area,
processor 22 will determine which supermap contains the tiles to display, block 62. Processor 22 now needs to find the

55 tiles that will cover the area so processor 22 calculates the starting row and column, block 64. This calculation is shown
below.

Processor 22 then calculates the ending row and column, block 66. This gives a range of tiles to process. Proces-
sor 22 finds each tile, block 68. Processor 22 checks to see if the tile is already in RAM 26 (See FIG. 5 for more infor-
mation on storage in RAM), block 70. If the tile is not in RAM 26, then processor 22 checks to see if there is available

4

EP 0 741 380 A2

10

memory in RAM 26, block 72. If not, processor 22 swaps out the least recently used tile, block 74. If there is available
memory, processor 22 loads the new map tile from disk 24, block 78. The newly loaded tile is then put at the front of the
linked list (most recently used tile), block 76. The tile is then taken from the linked list in RAM 26 and displayed to display
28, block 80. Processor 22 checks to see if there are any more tiles to display, block 82. If there are, then the above

5 process is repeated for the next tile beginning at block 68. If not, the process is ended, block 84.
The formulas are as follows:
First, the number of pixels in one degree latitude and longitude is calculated. This is important because it is neces-

sary to know how much each pixel takes represents the earth.
, pixels _2PI_lat

10 °~ 2*71
pixels _2.Pl Jong a~ o*Z

Next, some interim calculations are performed. The variables with the 'new/ in front of the name are the area that
15 the raster map needs to display. This display will change with each new requested area. This display will change when

the user views a different part of the raster map.

row_start ={sm_max_lat-new_max_lat)* b

20 column_start = (new_min_long-sm_min_long)* a

row_end =(sm_maxjat-new_minjat) * b

column_end =(new_max_long-sm_min_long)* a
25

30

From the above formulas, the tiled maps to be loaded from the database can be determined. This process deter-
mines the number of tiled maps also.

start row file = (r - ™ ^) ^ - - V 1024 J

. , (column start) vt_column_file =[— J

35

start column file

end row file

end column file

f column _star\
v 1024 1024

end\ H i24-J+1 (row end] H =l-[024-J+1

(column end
v 1024

40

45

At this point, the identities of the tiles that need to be loaded to display the desired area is known. For example, the
variables were set as follows:

start_row_file = 1

start_column_file = 1

end_row_file = 2

end_column_file = 3

then the following maps would need to be loaded (assuming 29N047E):

50 29N047E 29N047E_ 2 9 N 0 4 7 E _
01 01 01 02 01 03

29N047E 29N047E_ 2 9 N 0 4 7 E _
02 01 02 02 02 03

55

5

EP 0 741 380 A2

Least Recently Used (LRU) Display Process

FIG. 5 shows the tiles being added to the linked list in RAM 26. Before there are any tiles in memory, the linked list
is empty. Head_ptr, block 90 and Tail _ptr, block 92 both point to NULL, block 94.

5 When tile 'A' is displayed, it is not in the linked list so, tile 'A' needs to be put in there. At this point, the Head_ptr,
block 96 and Tail_ptr, block 98 both point to tile 'A', block 102. Since tile 'A', block 102 is the only tile in the list, its pre-
vious pointer points to NULL, block 100 and next pointer points to NULL, block 104.

Next, when tile 'B' is displayed, it is also not in the linked list so tile 'B' needs to be put in there. Since tile 'B' is the
newest one (most recently used), it is put at the front of the list, block 112. The Head_ptr, block 106, points to tile 'B'.

10 Now that there are two tiles in the list, the Tail_ptr, block 108, points to the last in the list (least recently used), tile 'A',
block 114. There are no tiles before tile 'B' so tile 'B' points to NULL, block 110. There are no tiles after tile 'A' so tile 'A'
points to NULL, block 116. There is also a link from tiles 'A' to 'B', block 112, and from tiles 'B' to 'A', block 114.

When tile 'C is displayed, it is also not in the linked list, so tile 'C needs to be put in there. Since tile 'C is the newest
one (most recently used), tile 'C is put at the front of the list, block 124. The Head_ptr, block 118, points to tile 'C. Now

15 that there are three in the list, the Tail_ptr, block 1 20, points to the last in the list (least recently used), tile 'A', block 1 28.
There are no tiles before tile 'C so tile 'C points to NULL, block 122. There are no tiles after tile 'A', so tile 'A' points to
NULL, block 130.

Blocks 124, 126, and 128 are all doubly linked to each other so the process can traverse the list. For this example,
it is assumed that the list can only handle 3 elements so the list is now full.

20 When tile 'B' is again requested to be displayed, tile 'B' is already in the linked list so it does not need to be put in
there again. Since tile 'B' is the newest tile (most recently used), tile 'B' is taken out of where it was, block 126 and put
at the front of the list, block 138. The Head_ptr, block 132, points to tile 'B'. Tail_ptr, block 134, points to the last in the
list (least recently used), tile 'A', block 142. There are no tiles before tile 'B' so tile 'B' points to NULL, block 136. There
are no tiles after tile 'A' so tile 'A' points to NULL, block 144.

25 Blocks 138, 140, and 142 are all doubly linked to each other so the process can traverse the list. Tile 'A' is still the
last in the list, block 142. Tile 'B' is the first in the list, block 138.

When tile 'D' is displayed, tile 'D' is not in the linked list so it needs to be inserted. This presents a problem though.
The linked list is already full. Because the list is full, the LRU tile, tile 'A', block 142 needs to be extracted from the list.
This will allow adding tile 'D', since tile 'D' is the newest one (most recently used), it is put at the front of the list, block

30 152. The Head_ptr, block 146, points to tile 'D', block 152. The Tail_ptr, block 148, points to the last tile in the list (least
recently used), tile 'D', block 1 56. There are no tiles before tile 'D' so tile 'D' points to NULL, block 1 50. There are no tiles
after tile 'C so tile 'C points to NULL, block 158.

Blocks 152, 154, and 156 are all doubly linked to each other so the process can traverse the list. If any new tiles
were displayed, tile 'C, block 156 would be the first to be taken out of the linked list because tile 'C is the least recently

35 used.
This process will give at least the area requested. Most of the time, the area requested will be less than all the tiles

(See FIG. 3). For each one of the tiles, there is the header (Table 2) that contains information on how to clip the map.
The map will be displayed in the shaded area of FIG. 3.

The present invention rapidly and efficiently positions the map data to be displayed according to the tile element
40 which is the least recently used tile. In this way the display process finds the proper tile without going through a tree like

process. After the process operates, the tile can be directly extracted from disk. As a result the process can display
these maps in less than one second. This helps keep visual continuity of the user.

Although the preferred embodiment of the invention has been illustrated, and that form described in detail, it will be
readily apparent to those skilled in the art that various modifications may be made therein without departing from the

45 spirit of the invention or from the scope of the appended claims.

Claims

1 . A method for displaying large amounts of data representing an image on a display device (28) by a display system,
so the display system including a processor (22), a disk (24), a random access memory (RAM) (26), and the display

device (28), the method for displaying comprising the steps of:

obtaining (60) the data representing the image from the disk;
creating (62) a plurality of tiles, each tile representing a portion of the image;

55 determining (70) whether a particular tile is already stored in the RAM,
swapping out (74) of the RAM a least recently used tile for storing the particular tile in the RAM, if the particular
tile is not already stored in the RAM; and
displaying (80) on the display device the particular tile.

6

EP 0 741 380 A2

2. A method for displaying large amounts of data as claimed in claim 1 , wherein the step of determining whether a
particular tile is already stored in the RAM includes the step of determining (72) whether there is available memory
in the RAM to store the particular tile.

5 3. A method for displaying large amounts of data as claimed in claim 2, wherein there is further included the steps of:

loading (78) the particular tile in the RAM; and
inhibiting (72) the step of swapping out, if there is available memory in the RAM.

10 4. A method for displaying large amounts of data as claimed in claim 3, wherein there is further included a step of indi-
cating (76) in link list that the particular tile is a most recently loaded tile in the RAM.

5. A method for displaying large amounts of data as claimed in claim 4, wherein the step of indicating in a link list
includes the steps of:

15
linking (96) in the link list the most recently loaded tile in the RAM to a next most recently loaded tile in the
RAM; and
indicating (98) in the link list the least recently used tile.

20 6. A method for displaying large amounts of data as claimed in claim 5, wherein there is further include the steps of:

determining (82) whether any more tiles are to be loading in the RAM; and
obtaining (68) a new tile from the disk to loaded in the RAM.

25 7. A method for displaying large amounts of data as claimed in claim 1 , wherein the step of creating a plurality of tiles,
each tile representing (1 ,2,3,6,7,8) a portion of the image includes the step of segmenting (34) the image of the plu-
rality of tiles into blocks of a predetermined size in an off-line process by the processor.

8. A method for displaying large amounts of data as claimed in claim 7, wherein the step of segmenting the image of
30 the plurality of tiles into blocks of a predetermined size in an off-line process by the processor includes the step of

segmenting (34) the image of the plurality of tiles into blocks of approximately one/half mega-words in length in an
off-line process by the processor.

9. A method for displaying large amounts of data as claimed in claim 1 , wherein the step of creating a plurality of tiles,
35 each tile representing a portion of the image includes the step of segmenting (34) the image of the plurality of tiles

into blocks of a predetermined size in an on-line process by the processor.

10. A method for displaying large amounts of data as claimed in claim 7, wherein the step of segmenting the image of
the plurality of tiles into blocks of a predetermined size in an off-line process by the processor includes the step of

40 segmenting (34) the image of the plurality of tiles into blocks of approximately one/half mega-words in length in an
on-line process by the processor.

7

EP 0 741 380 A2

2 0 2 2
2 8 — f

C D - R O M P R O C E S S O R

R O W = 1
2 4 -

D I S K RAM
MEMORY

D I S P L A Y
/ /

□
2 6

' 3 0

COLUMN=1 | - 3 2

READ UP T O
.5 MEG O F
S U P E R M A P

k 3 4

YES

3 8

ADD 1
TO ROW

COLUMN=1 h - 4 0

CREATE T I L E
USING COLUMN

AND ROW

ADD 1 TO ,
COLUMN ~

F I G . 2

4 4

YES

1

(29N047E.0 -01) (29N047E_01_02) (29N047E_01_03)

8

(29N047E_02_01) (29N047E_02_02)

1 0

11

(29N047E_03_01)

1 2 1 3 1 4 1 5

8

EP 0 741 380 A2

GET A R E A
TO D I S P L A Y

k 6 0

D E T E R M I N E
S U P E R M A P

k 6 2

C A L C U L A T E
S T A R T I N G R O W

AND C O L U M N
6 4

C A L C U L A T E
E N D I N G R O W k 6 6
AND COLUMN |

FOR E A C H
T I L E FOUND ~ K - 6 8

7 4

SWAP O U T
L E A S T R E C E N T L Y

USED M A P

PUT AT F R O N T
OF L I S T

IN M E M O R Y

±
D I S P L A Y T I L E

TO D I S P L A Y

LOAD NEW
MAP T I L E

7
7 8

k 8 0

8 2
^ A N Y ^ \

' — < M O R E T I L E S >

NO

END 1 - 8 4

9

o
ro r

=

CO
<

<N p1

t o _
^ — i u
^ p

Z h

s J _ s i

— 1 UJ "*| Li

Z (— h

r> UJ **i r> uj r» Ij
_j — i i — i i — i »-
1 — 1 — H

_J _l _l _l
ZD ZD Z
Z Z 2

T T
o o <"
o c

n ffci oo r a x ffei

CN,

HI II— 1 1 h-H

t o l t ^ i t
X ^ r n lo M

J UJ UJ
j i — i H I— t t-H
- h— I —

J r» UJ UJ
J — I — I -I I— I t— I

i I I
J I I
J I —J
3 ZD ZD
z. z z
r t t
g co o
g to LO

r— h o r — i i — n ^- r — i i — h oo on ZT. az on oc a ^
Q_ *~ Q_ 0L*T CL CL V

I — I I I I
I , — Q — I , — Q _l

I — I ' <c I— (' <c l— l
<C CM uj •< CO uj ■<
i— I ro ____] [___]]*—

> m o m m
j UJ UJ
J —I —I
H U M

I— I—

>- >■
c < <
J — 1 — I L Q_ Q.
T CO CO
H I— I H
3 O O

-I I —I — 1 1 nl J-4 t— 1 1

j 00 i f CN I t
■J. k> J-J| m jLJ,

j I* uj uj
_t — i — i - i i — i i — i
- i — i —

E I I
J I I
J I — J
z. z z
r t t
M to O
>j to m

r— h o r — i i — n ^- r — i i — h oo on zr. on on on on I I
i - S j h- i— l2 *- i- 21
Q_ *~ Q_ Q_*T CL Q. 7

I — I I I I
I /— O — I , — Q _l

i — i ' <c i— i <: i — i
<c CM uj •< to uj ■<
i— | ro ____] [___]]*—

} m o

J UJ UJ
J — I — I H U M
- I— I—

- >- >-
t < <
J — 1 — I L D_ D_
0 CO CO
H M H
3 Q Q

j ~- |_|_| J — l — l H I — I I — I

I I I
J I I
J I — J D ZD ZD
z. z z
T i t
Nl CO o
si ro m

r— h o r — i i — \ ^- r — i i — h oo on zr. on on oc a I
i - S j h- i— l2 h-
o_ *~ Q_ 0L*T CL Cl V

i — i i i i
I /— O — I , — Q _l

i — i ' <c i— i <: i — i
<c CM uj •< CO uj ■<
i— | ro ____] [___]]*—

* m o

J UJ UJ
J — I — I H U M
- I— I—

>- >■
c < <
J — 1 — I L D_ D_
T CO CO
H M H
3 O O

M to O
to i n

r— h o r — i i — n ^- r — i i — h oo on zr. on on on a I
i - S j h- i— l2 h-
q_ *~ cl q _ * t cl q. 7

I — I I I I
I /— O — I , — Q _l

i — i ' <c i— i <: i — i
<C CM uj •< to uj ■<
i— I ro ____] [___]]*—

* m o

J UJ UJ
J — I — I H U M
- I— I—

>- >-
c < <
J — 1 — I L D_ D_
T CO CO
H M H
3 O O

	bibliography
	description
	claims
	drawings

