Industrial Field of the Invention
[0001] The invention relates to a chemically modified human granulocyte colony stimulating
factor polypeptide which is produced by chemically modifying at least one of the amino,
carboxyl, mercapto or guanidino group in a polypeptide molecule having human granulocyte
colony stimulating factor (hereinafter referred to as hG-CSF) activity, and a platelet
production promoting agent comprising said polypeptide, a method for treating a patient
with decreased platelet counts comprising administering an effective amount of said
polypeptide to the patient, the use of said polypeptide for the production of pharmaceutical
compositions which are useful for the treatment of patients with decreased platelet
counts, and compositions for treating patients with decreased platelet counts, which
comprise an effective amount of said polypeptide in a pharmaceutically acceptable
dosage form together with a pharmaceutically acceptable carrier.
Background Art
[0002] Interleukin 6 [
F. Takatsuki et al., Cancer Research, 50, 2885-2890 (1990)], leukemia inhibitory factor [
D. Metcalf et al. Blood, 76, 50-56 (1990)], stem cell factor [
P. Hunt et al. Blood, 80, 904-911 (1992)], macrophage colony stimulating factor (M-CSF; Japanese Published Examines Patent
Application No.
11705/94) and thrombopoietin [
de Sauvage et al. Nature, 369, 533 (1994)] are known as substances which possibly promote platelet production. Furthermore,
conagenin [
Japanese Cancer Association #2235 (1992)], Y25510 [
The 113rd annual meeting of Pharmaceutical Society of Japan, PB13-22 (1993)], 2-pyranone derivatives [Japanese Published Unexamined Patent Application No.
213758/93], and FK565 (
WO93/23066) are known as low molecular weight substances which possibly promote platelet production.
[0003] It is known that hG-CSF is one of the polypeptides essential for hemopoietic stem
cell growth and differentiation leading to the formation of various types of hemocytes,
and exerts growth-promoting effect on most granulocytes and in particular neutrophils.
[0004] As a modified polypeptide exhibiting hG-CSF activity wherein groups are chemically
modified with a chemical modifying agent, a chemically modified hG-CSF obtained by
modifying at least one amino group of the polypeptide exhibiting hG-CSF activity with
a polyethylene glycol derivative is known (Japanese Published Unexamined Patent Application
No.
316400/89,
WO90/06952, Japanese Published Unexamined Patent Application No.
32559/92). It has not been known that these chemically modified hG-CSF polypeptides exert
a platelet production promoting effect.
Disclosure of Invention
[0005] The invention relates to a chemically modified polypeptide wherein at least one of
the amino, carboxyl, mercapto or guanidine group in the polypeptide molecule having
hG-CSF activity is modified chemically, and a platelet production promoting agent
comprising said polypeptide, a method for treating a patient with decreased platelet
counts comprising administering an effective amount of said polypeptide to the patent,
the use of said polypeptide for the production of pharmaceutical compositions which
are useful for the treatment of patients with decreased platelet counts, and compositions
for treating a patient with decreased platelet counts, which comprise an effective
amount of said polypeptide in a pharmaceutically acceptable dosage form together with
a pharmaceutically acceptable carrier.
[0006] More specifically, the invention relates to a chemically modified polypeptide wherein
at least one of the amino, carboxyl, mercapto or guanidino group in the polypeptide
molecule having hG-CSF activity is modified chemically with a polyalkylene glycol
derivative or a styrene-maleic acid copolymer, and a platelet production promoting
agent comprising said polypeptide, a method for treating a patient with decreased
platelet counts comprising administering an effective amount of said polypeptide to
the patient, the use of said polypeptide for production of pharmaceutical compositions
which are useful for the treatment of patients with decreased platelet counts, and
compositions for treating a patient with decreased platelet counts, which comprises
an effective amount of said polypeptide in a pharmaceutically acceptable dosage form
together with a pharmaceutically acceptable carrier.
[0007] The polyalkylene glycol derivatives include, for example, polyethylene glycol derivatives,
polypropylene derivatives, and polyethylene-polypropylene copolymer derivatives.
[0008] With more specific reference to the agents for chemically modifying at least one
of amino, carboxyl, mercapto and guanidino groups, the amino group-chemical modifying
agent includes, for example, polyalkylene glycol derivatives having the formula (I):
R
1-(M)
n-X-R
2 (I)
wherein R
1 represents an alkyl or alkanoyl group; M represents the formula:
-OCH
2CH
2-, -OCH
2CH
2CH
2-,
or
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s-
wherein r and s have any variable positive integral values, which are the same or
different; n has any variable positive integral values; X represents a single bond,
O, NH, or S; and R
2 represents the formula:

wherein R
3 represents OH, halogen, or the formula:
-X
a-(M
a)
na-R
1a
wherein X
a, M
a R
1a and na have the same meanings as the above-mentioned X, M, R
1 and n, respectively, and Y represents halogen or the formula:
-Z-(CH
2)
P-(O)
m-W
wherein Z represents O, S, or NH; W represents a carboxyl group, an active derivative
thereof, or the formula:

wherein R
4 represents an alkyl group; and Hal represents halogen, and p has an integral value
of 1 to 6; and m has a value of 0 or 1,
-(CO)
ma-(CH
2)
t-W
a
wherein W
a and ma have the name meanings as the above-mentioned W and m, respectively; and t
has an integral value of 0 to 6, or

wherein Hal
a, pa and R
4a have the same meanings as the above-mentioned Hal, p and R
4, respectively, and styrene-maleic acid copolymers having the formula (II):

wherein u and v have any variable positive integral values, which are the same or
different; and R
5 represents a hydrogen atom, or an alkyl group. The carboxyl group-chemical modifying
agents include, for example, polyalkylene glycol derivatives having the formula (III):
R
1b-(M
b)
nb-NH
2 (III)
wherein M
b,R
1b and nb have the same meanings as the above-mentioned M, R
1 and n, respectively. The mercapto group-chemical modifying agent are polyalkylene
glycol derivatives having the formula (IV):

wherein M
c, R
1c, and nc have the same meanings as the above-identified M, R
1, and n, respectively, and styrene-maleic acid copolymers having the formula (V):

wherein R
5a, ua, and va have the same meanings as the above-identified R
5, U, and V, respectively, and one of Q and R represents a carboxyl group, and the
other represents the formula:

wherein pb has the same meanings as the above-identified p. The guanidino group-chemical
modifying agent includes, for example, polyalkylene glycol derivatives having the
formula (VI):

wherein q has a value of 1, or 2, and M
d, R
1d, and nd have the same meanings as the above-identified M, R
1, and n, respectively.
[0009] In the chemical modifying group as used in the present invention, the alkyl group
represented by R
1, R
4, and R
5 includes, for example, linear or branched groups having from 1 to 18 carbon atoms
such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl,
pentyl, isopentyl, hexyl, isohexyl, heptyl, octyl, isooctyl, decyl, dodecyl, tetradecyl,
hexadecyl, and octadecyl; the alkanoyl groups represented by R
1 include, for example, linear or branched groups having from 1 to 18 carbon atoms
such as formyl, acetyl, propionyl, butyryl, valeryl, pivaroyl, pentanoyl, lauroyl,
myristoyl, palmitoyl, and stearoyl; the halogen represented by R
3, Y, and Hal includes, for example, chlorine, bromine, and iodine atoms; the active
derivatives of a carboxyl group represented by W includes, for example, acid halides
such as acid chloride and acid bromide, active esters such as p-nitrophenyl ester
and N-oxysuccinimide, and mixed anhydrides including monoethylester carbonate and
monoisobutyl carbonate. The symbols n, r, s, u, and v stand for positive integral
values of 1 to 1,000, and preferably, n is 7 to 500, and r, s, u and v are each between
1 and 200. The molecular weights of chemically modifying groups range from 500 to
100,000, and preferably range from 1,000 to 40,000.
[0010] As the polypeptides having hG-CSF activity of the present invention, any peptide
having hG-CSF activity can be used, and preferably, polypeptides comprising the amino
acid sequence of SEQ ID NO:1, a part of said sequence, or the amino acid sequence,
in which a part of amino acids of said sequence are substituted by other amino acids
[
Nature, 319, 415 (1986), Japanese Published Unexamined Patent Application No.
267292/88, Japanese Published Unexamined Patent Application No.
299/88, and
WO87/01132], can be used. An embodiment of polypeptides comprising the amino acid sequence in
which a part of the sequence is substituted by other amino acids (hG-CSF derivatives)
is illustrated in Table 1.
Table 1
Position from N-terminal amino acid (hG-CSF of SEQ ID NO:1) |
Substituted amino acid in hG-CSF derivatives |
a) |
b) |
c) |
d) |
e) |
f) |
g) |
h) |
i) |
j) |
k) |
l) |
2nd (Thr) |
* |
Val |
Cys |
Tyr |
Arg |
* |
Asn |
Ile |
Ser |
* |
Ala |
* |
4th (Leu) |
Glu |
Ile |
Ile |
Ile |
Thr |
Thr |
Glu |
Thr |
Thr |
* |
Thr |
* |
5th (Gly) |
Lys |
Arg |
Arg |
Arg |
Arg |
Arg |
Arg |
Arg |
Arg |
Arg |
Tyr |
* |
6th (Pro) |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
* |
Arg |
* |
18th (Cys) |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
Ser |
*: unsubstituted amino acid |
[0011] In the molecule of the peptides having hG-CSF activity in which more than one group
is generally present with respect of each of amino, carboxyl, mercapto, and guanidino
groups, one of these groups is enough to be chemically modified.
[0012] The peptides having hG-CSF activity can be chemically modified by the reaction of
the chemical agents including polyalkylene glycol derivatives such as polyethylene
glycol derivatives, polypropylene glycol derivatives and polyethylene glycol-polypropylene
glycol copolymer derivatives, and styrene-maleic acid copolymer derivatives with the
polypeptide (hG-CSF derivatives) comprising amino, carboxyl, mercapto, or guanidino
groups.
[0013] As the method for the reaction of the polypeptide comprising amino, carboxyl, mercapto,
or guanidino groups with polyethylene glycol derivatives or polypropylene glycol derivatives,
the conventional methods [e.g., Japanese Published Unexamined Patent Application No.
316400/89,
Biotech. Lett., 14, 559-564 (1992),
BIO/TECHNOLOGY, 8, 343-346 (1990)] or their modifications can be used.
[0014] As the method for the reaction with polyethylene glycol-polypropylene glycol copolymer
derivatives, the conventional methods [e.g., Japanese Published Unexamined Patent
Application No.
59629/84, Japanese Published Unexamined Patent Application No.
176586/85,
WO89/06546,
EP0539167A2] or their modifications can be used.
[0015] As the method for the reaction with styrene-maleic acid copolymer derivatives, the
conventional methods [e.g.,
BIO INDUSTRY 5, 499-505 (1988), Japanese Published Unexamined Patent Application No.
85922/89, Japanese Published Unexamined Patent Application No.
99573/89] or their modifications can be used.
[0016] As an example of the chemically modified peptide with hG-CSF activity, modified peptides
obtained by binding at least one amino group of hG-CSF with a group described by the
following formula (Ia):
R
1-(OCH
2CH
2)
n-X-R
2a- (Ia)
wherein R
1 represents an alkyl or alkanoyl group; n has any variable positive integral value;
X represents a single bound, O, NH, or S; and R
2a represent the formula:

wherein R
3a represents OH, halogen, or the formula:
-X
a-(CH
2CH
2O)
na-R
1a
wherein X
a, R
1a and na are identical to said X, R
1 and n, respectively, and Y
a represents a single bond or the formula:
-Z-(CH
2)
p-(O)
m-CO-
wherein Z represents O, S, or NH; p has an integral value of 1 to 6; and m has a value
of 0 or 1,
-(CO)
ma-(CH
2)
t-CO-
wherein ma is identical to said m; and t has an integral value of 0 to 6.
[0017] In each group of the formula (Ia), the alkyl group, alkanoyl group, halogen, and
positive integral value are defined similarly to those in said formula (I).
[0018] In addition, a novel chemically modified hG-CSF or chemically modified hG-CSF derivative
can be provided by the present invention.
[0019] As the novel chemically modified hG-CSF, modified peptides obtained by binding at
least one amino group and a group described by the following formula (Ib):

wherein R
1 represents an alkyl or alkanoyl group; M represents the formula:
-OCH
2CH
2-, -OCH
2CH
2CH
2-
or
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s-
wherein r and s have any variable positive integral values, which are the same or
different, n has any variable positive integral value; X represents a single bond,
O, NH, or S; R
3b is identical to R
3a; Z represents O, S, or NH; and p has an integral value of from 1 to 6.
[0020] From 1 to 5 molecules of polyethylene glycol derivatives, polypropylene glycol derivatives,
polyethylene glycol-polypropylene glycol copolymer derivatives or styrene-maleic acid
copolymer derivatives bind to chemically modified hG-CSF or chemically modified hG-CSF
derivatives. Consequently, the chemically modified hG-CSF and chemically modified
hG-CSF derivatives are used in the from of a mixture of 1 to 5 molecular combinations,
or each fractionated combination. In the fractionation of the chemically modified
hG-CSF and chemically modified hG-CSF derivatives, various chromatographies such as
ion-exchange chromatography, gel filtration chromatography, reversed-phase chromatography,
and hydrophobic chromatography, and ammonium sulfate fractionation can be applied,
which are usually used in the fractionation of long-chain polypeptides.
[0021] The degree of chemical modification is confirmed by the reduction in free groups,
which is determined by monitoring the morbidity of chemically modified hG-CSF using
sodium dodecyl sulfate polyacrylamide gel electrophoresis.
[0022] The protein assay in the invention was performed by the following experimental methods.
Experimental method 1
Experimental method 2
[0024] According to the method of Laemmli [
U.K. Laemmli: Nature, 227, 680 (1970)], SDS-polyacrylamide gel electrophoresis was performed, and after staining proteins
separated on said gel with Coomassie brilliant blue, the protein concentration was
determined using a chromatoscanner (CS-930, Shimadzu Corporation).
[0025] The following experimental examples serve to illustrate the pharmacological activity
of the chemically modified hG-CSF and chemically modified hG-CSF derivatives.
Experimental example 1
[0026] G-CSF activity and promoting effect on leukemic cells, NFS-60 cells of the chemically
modified hG-CSF and chemically modified hG-CSF derivatives.
[0027] The activity of the chemically modified hG-CSF and chemically modified hG-CSF derivatives
obtained in following Reference examples 4, 6, 8, 12, 15, 17, 19, 20 and Example 4
to mouse bone marrow cells were determined according to the method of Okabe et al.
[
M. Okabe et al., Blood, 75, 1788 (1990)]. Furthermore, the growth promoting activity against the NSF-60 cells [
K. Holmes et al. Proc. Natl. Acad. Sci. USA, 82, 6687 (1985)] according to the method of Asano et al. [
Asano et al. Jpn. Pharmacol. Ther. 19, 2767 (1991)]. The results are illustrated in Table 2.
Table 2
HG-CSF*1 (Derivatives) |
Chemically modified compounds |
Number of the modified compound molecules binding to one hG-CSF molecule |
Production promoting activity (%)*2 |
Bone marrow cells |
NFS60 cells |
Reference example 3 |
None |
0 |
100 |
100 |
Reference example 3 |
Reference example 4 |
3 |
18 |
21 |
Reference example 3 |
Reference example 6 |
1-4 |
|
15 |
SEQ ID NO:1 |
Reference example 8 |
1-4 |
|
19 |
Reference example 3 |
Reference example 9 |
1-4 |
|
12 |
SEQ ID NO:1 |
Reference example 11 |
1-3 |
|
17 |
Reference example 3 |
Reference example 12 |
1-3 |
|
33 |
Reference example 3 |
Reference example 15 |
1-4 |
|
11 |
Reference example 3 |
Reference example 17 |
3 |
|
24 |
Reference example 3 |
Reference example 17 |
2 |
|
40 |
Reference example 3 |
Reference example 17 |
1 |
|
61 |
Reference example 3 |
Example 4 |
3 |
|
17 |
Reference example 3 |
Example 4 |
2 |
|
24 |
Reference example 3 |
Example 4 |
1 |
|
53 |
*1: Origin of used hG-CSF or hG-CSF derivatives.
*2: Relative activity (%) when the activity of hG-CSF derivative produced in the Reference
example is 100%. |
Experimental example 2
[0028] Promoting effect on the recovery of reduced platelets in total-body irradiated mice
[0029] In the studies illustrated in Tables 3 and 4, 5 male BALB/c mice (10 weeks of age)
were used, and In the study illustrated in Table 5, 4 male BALB/c mice (6 weeks of
age) were used. After 3 Gy of total-body irradiation (hereinafter referred to as Rx)
per mouse from
137Cs radioactive source (RI-433, Toshiba Corporation), these mice were raised in a cleaned
cage in a specific pathogen-free environmental site. Water and feed were available
ad libitum. As untreated controls, mice without irradiation were similarly raised.
[0030] The chemically modified hG-CSF and chemically modified hG-CSF derivatives illustrated
in Tables 3 to 5 were dissolved into physiological saline respectively, and administered
subcutaneously at a single dose of 5 µg/0.2 ml per mouse, wherein the solution of
a chemically modified hG-CSF derivative (tri-type) was administered once on the day
after Rx, or twice on the day after Rx and on the 5th day in the study illustrated
in Table 3, and the chemically modified hG-CSF and chemically modified hG-CSF derivatives
were administered once on the day after Rx in the studies illustrated in Table 4 and
5.
[0031] Blood was sequentially collected from the murine vein of eyegroud, and the platelet
count was determined using an automatic cell counter (CC-180A, TOA MEDICAL ELECTRONICS
CO., Ltd.). The results are shown in Tables 3 to 5.
Table 3
Administration of chemically modified hG-CSF derivatives*1 |
Mean platelet count (%)*2 |
days after start of irradiation |
0 |
5 |
9 |
11 |
13 |
20 |
Untreated |
100 |
95.7 |
37.7 |
53.5 |
59.5 |
80.6 |
Administered on 1st day |
100 |
94.5 |
54.0 |
109.8 |
100.3 |
94.8 |
Administered on 1st and 5th day |
100 |
100.1 |
40.2 |
118.6 |
101.3 |
105.1 |
*1: Chemically modified hG-CSF derivative (tri-type) of Reference example 4.
*2: Relative mean platelet count (%) when the count of non-irradiated control group
is 100. |
Table 4
Administered chemically modified hG-CSF (derivatives) |
Mean platelet count (Z)* |
days after start of irradiation |
0 |
6 |
8 |
9 |
10 |
11 |
12 |
Untreated |
100 |
88.9 |
36.2 |
42.1 |
51.2 |
67.6 |
74.2 |
Reference example 8 |
100 |
101 |
41.1 |
63.2 |
98.5 |
126 |
133 |
Reference example 9 |
100 |
103 |
41.0 |
66.3 |
98.9 |
142 |
159 |
Reference example 11 |
100 |
84.1 |
34.5 |
51.6 |
81.3 |
112 |
130 |
Reference example 12 |
100 |
93.1 |
42.4 |
66.1 |
92.7 |
145 |
140 |
*: Relative mean platelet count (Z) when the count of non-irradiated control group
is 100. |
Table 5
Administered chemically modified hG-CSF (derivatives) |
Mean platelet count (%)* |
days after start of irradiation |
0 |
6 |
8 |
10 |
11 |
12 |
Untreated |
100 |
58.9 |
26.6 |
35.1 |
38.3 |
45.1 |
Reference example 19 |
100 |
55.1 |
30.5 |
62.7 |
98.5 |
103.6 |
Reference example 20 |
100 |
52.4 |
29.1 |
61.3 |
84.6 |
105.1 |
* : Relative mean platelet count (%) when the count of non-irradiated control group
is 100. |
[0032] In the mice receiving 3 Gy of total-body irradiation group, the platelet count markedly
decreased, reached the minimum at the 8th to 9th day of Rx, and subsequently increased
gradually; however, throughout the studies, the platelet count did not recover to
the pre-irradiation level. However, in the mice receiving the chemically modified
hG-CSF and chemically modified hG-CSF derivatives, reduction of platelet count was
suppressed, the count markedly increased at the 8th to 9th day after irradiation,
and the count completely recovered to its pre-irradiation level at the 11th to 12th
day after irradiation. A similar effect was also seen in the group in which the agents
were administered on the day after Rx and on the 5th day.
Experimental example 3
[0033] Promoting effect on the recovery against reduced platelet under anti-cancer drug
treatment
[0034] 5-Fluorouracil (5-FU, Kyowa Hakko Kogyo Co., Ltd.), an anti-tumor agent, was administered
intraperioneally to 5 male BALB/C mice (9 weeks of age) at a dose of 100 mg/kg. On
the day after 5-FU administration, the chemically modified hG-CSF (tri-type) obtained
in Reference example 4 was dissolved into physiological saline, and administered subcutaneously
in a single dose of 5 µg/0.2 ml per mouse. Blood was sequentially collected from the
murine vein of eyeground, and the platelet counts were determined using an automatic
cell counter. The results are shown in Table 6.
Table 6
Administered chemically modified hG-CSF (derivatives)*1 |
Mean platelet count (%)*2 |
days after start of ministration of 5-FU |
0 |
4 |
5 |
6 |
7 |
Untreated |
100 |
31.2 |
27.1 |
39.1 |
60.4 |
Administered at 1st day |
100 |
42.3 |
43.6 |
68.3 |
103.7 |
*1: Chemically modified hG-CSF derivative (tri-type) of Reference example 4.
*2: Relative mean platelet count (%) when the count of non-irradiated control group
is 100. |
[0035] In the 5-FU administration group, the platelet count decreased from the 4th day of
administration, reached the minimum at the 5th day, and then recovered Lo its pre-administration
level at the 9th day. In the chemically modified hG-CSF group, platelet reduction
was suppressed, and a clear promoting effect on the recovery was noted after the 6th
day. On Day 7 after administration, the platelet count recovered to its pre-administration
level.
Experimental example 4
[0036] Promoting effect on the recovery against reduced platelet in bone marrow transplantation
[0037] After 10 Gy of Rx from
137Cs radioactive source (RI-433, Toshiba Corporation), 4 male BALB/c mice (8 weeks of
age) were raised in a cleaned cage in a SPF environmental site. On the day after the
irradiation, they were transplanted with 2 x 10
6 bone marrow cells (without adherent nylon wool) of the same strain. After 2 hours,
the chemically modified hG-CSF (tri-type) obtained in Reference example 4 was dissolved
into physiological saline, and administered subcutaneously at a single dose of 10
µg/0.2 ml, 20 µg/0.2 ml, or 40 µg/0.2 ml per mouse. Blood was sequentially collected
from the murine vein at the eyeground and the platelet counts were determined using
an automatic cell counter. The results are shown in Table 7.
Table 7
Bone marrow transplantation |
Dose of chemically modified hG-CSF derivatives*1 (µg) |
Mean platelet count (%)*2 |
days after start of irradiation |
0 |
7 |
11 |
12 |
13 |
15 |
Untreated |
0 |
100 |
7.1 |
11.3 |
3.2 |
7.1 |
dead |
Transplanted |
0 |
100 |
6.3 |
15.8 |
29.1 |
52.3 |
75.8 |
Transplanted |
40 |
100 |
6.6 |
21.4 |
42.0 |
81.5 |
118.7 |
Transplanted |
20 |
100 |
6.9 |
23.9 |
46.6 |
86.1 |
117.6 |
Transplanted |
10 |
100 |
7.9 |
17.6 |
43.8 |
79.8 |
108.7 |
*1: Chemically modified hG-CSF derivatives (tri-type) of Reference example 4.
*2: Relative mean platelet count (%) when the count of non-irradiated control group
is 100. |
[0038] All of the mice receiving 10 Gy of total-body irradiation experienced seriously reduced
platelet counts, and died within 2 weeks. The mice with transplanted bone marrow cells
did not die, but decrease of platelet count continued for more than 2 weeks. The bone
marrow-transplanted mice receiving chemically modified hG-CSF showed the promoting
effect on the recovery of platelet counts in a dose-dependent manner after the 11th
day, and recover to more than its pre-irradiation level at the 15th day after irradiation.
Experimental example 5 Acute toxicity test
[0039] 4 male BALB/c mice at 5 to 10 weeks of age were received the chemically modified
hG-CSF (tri-type) obtained in Reference example 4 at a single dose of 25 µg per mouse.
In another test, after administration at a dose of 20 µg, further each 20 µg was administered
at the 1st, 5th and 9th day after administration. In both tests, the mortality was
observed to find that the mice underwent no change in the healthy condition and that
no mice died.
[0040] As described in the experimental examples, the chemically modified hG-CSF and chemically
modified hG-CSF derivatives show a clear promoting effect toward the recovery of platelet
counts from seriously reduced platelet counts caused by irradiation, chemotherapy
for cancer, or bone marrow transplantation, thus indicating its usefulness as a platelet
production promoter.
[0041] In addition to the chemically modified hG-CSF and chemically modified hG-CSF derivatives,
other cytokines or low-molecular platelet production promoters may be used. As the
other cytokines, there are interleukin 3, interleukin 6, leukemia inhibitory factor,
stem cell factor, macrophage colony stimulating factor, thrombopoietin. As low-molecular
platelet production promoter, there are conagenin, Y25510, 2-pyranone derivatives,
FK565.
[0042] The chemically modified hG-CSF and chemically modified hG-CSF derivatives can be
used by themselves or in various dosage forms. The pharmaceutical compositions of
the present invention can be produced by uniformly mixing an effective dose as an
active component of the chemically modified hG-CSF and chemically modified hG-CSF
derivatives and a pharmacologically acceptable carrier. Preferably, these pharmaceutical
compositions are in a dosage form suitable for administration through injection.
[0043] Injectable preparations can be prepared using the chemically modified hG-CSF or chemically
modified hG-CSF derivatives, and carriers such as distilled water, a salt solution,
a glucose solution, or a mixture of a salt solution and a glucose solution. In this
preparation, according to a conventional method, the preparations can be prepared
in the form of a solution, suspension or dispersion, using a suitable auxiliary agent.
Furthermore, lyophilized preparations can be prepared by lyophilizing said preparations.
While the condition of lyophilization is not specifically restricted, usually, said
preparations are frozen at less than -50°C for 1 to 5 hours, dried at a shelf temperature
of from -20°C to 0°C, and at a vacuum of 50 to 150 mTorr for 24 to 48 hours, and subsequently
at a shelf temperature of 10°C to 30°C, and at a vacuum of 50 to 100 mTorr for 16
to 24 hours to obtain the lyophilized preparation.
[0044] The platelet production promoter of the invention can include various common pharmaceutical
carriers, remedium constituents, diluents, stabilizers, or adsorption inhibitors.
[0045] While the dose and administration frequency are decided depending to the dosage form,
the patient's age, body weight, subjective disease and conditions, usually, in an
adult, 15 µg to 1.5 mg, preferably 25 to 500 µg of the chemically modified hG-CSF
or chemically modified hG-CSF derivatives are administered 1 to 7 times per week.
As the route of administration, intravenous or subcutaneous injection is used. The
platelet production promoter of the present invention, furthermore, is used as a suppository
or nasal drops.
[0046] The invention is further illustrated through the following examples.
Best Mode for Carrying Out the Invention
Example 1 Injection
[0047] The injection composed of the following compositions was prepared by the method described
below.
[0048] 10 mg of the chemically modified hG-CSF derivative obtained in Reference example
4 were dissolved into 80 ml of PBS solution, and added 2 mg of polysorbate 80 (Wako
Pure Chemical Industries, Ltd.), 100 mg of human serum albumin (Sigma, Ltd.), and
1.5 g of D-mannitol, and adjusted to a volume of 100 ml with PBS. After aseptic filtration
through a disposable membrane filter with a pore size of 0.22 µm, each 2 ml of the
resulting solution was aseptically added to a glass vial to obtain the injection (containing
0.2 mg of active ingredients per vial).
Prescription
Chemically modified hG-CSF derivative (tri-type) |
0.2 mg |
Polysorbate 80 |
0.04 mg |
Human serum albumin |
2.0 mg |
D-mannitol |
30 mg |
NaCl |
16 mg |
KCl |
0.4 mg |
KH2PO4 |
0.4 mg |
Na2HPO4 12-hydrate |
5.8 mg |
|
2.0 ml |
Example 2 Injection
[0049] The injection composed of the following compositions was prepared by the method described
below.
[0050] 50 mg of the chemically modified hG-CSF derivative obtained in Reference example
4 was dissolved into 80 ml of PBS solution, and added 2 mg of polysorbate 80 (Wako
Pure Chemical Industries, Ltd.), and 1.5 g of D-mannitol, and adjusted to a volume
of 100 ml with PBS. After aseptic filtration through a disposable membrane filter
with a pore size of 0.22 µm, each 2 ml of the resulting solution was aspetically added
to a glass vial to obtain the injection (containing 1.0 mg of active ingredients per
vial).
Prescription
Chemically modified hG-CSF derivative (tri-type) |
1.0 mg |
Polysorbate 80 |
0.04 mg |
D-mannitol |
30 mg |
NaCl |
16 mg |
KC1 |
0.4 mg |
KH2PO4 |
0.4 mg |
Na2HPO4 12-hydrate |
5.8 mg |
|
2.0 ml |
Example 3 Injection
[0051] The injection composed of the following compositions was prepared by the method described
below.
[0052] 10 mg of the chemically modified hG-CSF derivative obtained in Reference example
4 was dissolved into 80 ml of PBS solution, and added 2 mg of polysorbate 80 (Wako
Pure Chemical Industries, Ltd.), 100 mg of human serum albumin (Sigma Ltd.), and 1.5
g of D-mannitol, and adjusted to about pH 5 with phosphoric acid and a volume of 100
ml with distilled water for injection. After aseptic filtration through a disposable
membrane filter with a pore size of 0.22 µm, each 2 ml of the resulting solution was
aspetically added to a glass vial to obtain the injection (containing 0.2 mg of active
ingredients per vial).
Prescription
Chemically modified hG-CSF derivative (tri-type) |
0.2 mg |
Polysorbate 80 |
0.04 mg |
Human serum albumin |
2.0 mg |
D-mannitol |
30 mg |
NaCl |
12.8 mg |
KCl |
0.32 mg |
KH2PO4 |
0.32 mg |
Na2HPO4 12-hydrate |
4.64 mg |
Phosphoric acid |
q.s. |
|
2.0 ml |
Example 4
[0053] 35 ml of 50 mM phosphate buffer (pH 7.3) containing 31.5 mg of the hG-CSF derivative
obtained in Reference example 3 were adjusted to pH 8.7 with 5% sodium hydroxide,
and added 5.0 g of 2,4-bis (o-methoxypolyethylene glycol)-6-(1-aminopropyloxycarbonyloxy-4'-nitrophenyl)-s-triazine,and
the reaction was performed at 4°C for 7 days. To said reaction solution, ammonium
sulfate was added at a final concentration of 0.7 M, and loaded onto a column (2.5
cm x 6.1 cm = 30 ml) of Butyl-Toyopearl 650M (Tosoh Corporation) equilibrated with
10 mM Tris-HCl buffer (pH 7.5) containing 0.7M ammonium sulfate at a flow rate of
30 ml/hr. After washing the column with 90 ml of 10 mM Tris-HCl buffer (pH 7.5) containing
0.7M ammonium sulfate at a flow rate of 30 ml/hr, the elution was performed with a
decreasing linear gradient of ammonium sulfate concentration of from 0.7 to 0 M in
10 mM Tris-HCl buffer (pH 7.5) in a total volume of 180 ml at a flow rate of 30 ml/hr.
The desired substance was eluted aL ammonium sulfate concentrations of between 0.47
M and 0.16 M.
[0054] Ammonium sulfate was added at a final concentration of 0.7 M to the eluted fraction,
and loaded onto a column (2.5 cm × 12 cm = 60 ml) of Butyl-Toyopearl 650M (Tosoh Corporation)
equilibrated with 10 mM Tris-HCl buffer (pH 7.5) containing 0.7 M ammonium sulfate
at a flow rate of 60 ml/hr. After washing the column with 180 ml of 10 mM Tris-HCl
buffer (pH 7.5) containing 0.7 M ammonium sulfate at a flow rate of 60 ml/hr, the
elution was performed with a decreasing linear gradient of ammonium sulfate concentration
of from 0.7 to 0 M in 10 mM Tris-HCl buffer (pH 7.5) in a total volume of 600 ml at
a flow rate of 60 ml/hr. The desired substance was eluted at ammonium sulfate concentrations
of between 0.38 M and 0.11 M. 200 ml of the eluted fraction was ultrafiltrated [cutoff
Mr or nominal molecular weight limit 10,000: YM10 (Amicon Co., Ltd.)] and concentrated
to 6.5 ml. Said concentrated solution was loaded onto a column (2.5 cm x 45 cm = 220
ml) of Sephacryl S-300 (Pharmacia Co., Ltd.) equilibrated with PBS at a flow rate
of 44 ml/hr, and then PBS was passed at the same flow rate.
[0055] After the initiation of PBS, the chemically modified hG-CSF derivative (tri-type)
wherein 3 molecules of carboxylic acids of polyethylene glycol bound to one molecule
of hG-CSF was eluted at between 92 ml and 100 ml, the chemically modified hG-CSF derivative
(di-type) wherein 2 molecules of carboxylic acids of polyethylene glycol bound was
eluted at between 100 ml and 104 ml, the chemically modified hG-CSF derivative (mono-type)
wherein one molecule of carboxylic acids of polyethylene glycol bound was eluted at
between 116 ml and 120 ml, with 1.0 mg (yield, 3.0%), 1.4 mg (Yield, 4.4%), and 1.1
mg (yield, 3.6%).
[0056] The number of molecules of polyethylene glycol derivatives binding to one molecule
of the hG-CSF derivative in mono-type, di-type, and tri-type were confirmed by SDS-polyacrylamide
gel electrophoresis.
[0057] Also, in the following reference examples, the number of molecules of binding polyethylene
glycol derivatives and purity of the chemically modified hG-CSF derivative were confirmed
by SDS-polyacrylamide gel electrophoresis.
Reference example 1
Production of 6-chloro-2,4-bis(o-methoxypolyethylene glycol)-s-triazine
[0058] 20 g of methoxypolyethylene glycol with a mean molecular weight of 4,000 (Nippon
Oil and Fats Co., Ltd.) were dissolved into 100 ml of anhydrous toluene containing
10 g of anhydrous sodium carbonate, and heated at 110°C for 30 minutes, and then added
500 mg of cyanuric chloride, and heated at 110°C for 24 hours. The residual substances
were removed, and 300 ml of petroleum ether were added for precipitation, and the
said precipitates were washed several times with petroleum ether, and 10 g of the
objective chloride were obtained (yield, 50%).
Reference example 2
Production of N-hydroxysuccinimide ester of 6-(3-carboxy propylamino)-2,4-bis(o-methoxypolyethylene
glycol)-s-triazine
[0059] 500 mg of chlorides obtained in Reference example 1 was dissolved into 9 ml of anhydrous
tetrahydrofuran. On the other hand, the above solution was added to a solution wherein
10 mg of gamma-amino butyric acid and 28 µl of triethylamine were dissolved into 1
ml of anhydrous N,N-dimethylformamide, and then stirred at room temperature for 16
hours. After exsiccation under reduced pressure, 30 ml of methylene chloride and 15
ml of 10 mM phosphate buffer (pH 10) for distribution. Their upper phase was adjusted
to pH 1 with 2N hydrochloric acid, then 30 ml of methylene chloride were added, and
the distribution was conducted again. The lower phase was fractionated, dried with
anhydrous sodium sulfate, then filtered, concentrated under reduced pressure, and
150 mg of the objective carboxylic acid were obtained (yield, 30%).
[0060] 150 mg of said carbonic acid and 3 mg of N-hydroxysuccinimide were dissolved into
1 ml of anhydrous methylene chloride, and after addition of 6 mg of N,N'-dicyclohexylcarbodiimide
(DCC) on ice, was stirred at room temperature for 12 hours. The generating dicyclohexylurea
(DCU) was filtered, exsiccated under reduced pressure, and 100 mg of the objective
ester were obtained (yield, 67%).
Reference example 3
[0061] The hG-CSF derivatives (Table 1, compound k), which comprise the amino acid sequence
defined in SEQ ID NO:1 wherein the first amino acid, threonine was replaced by alanine,
the third amino acid, leucine was replaced by threonine, the forth amino acid, glycine
was replaced by tyrosine, the fifth amino acid, proline was replaced by arginine,
and the seventeenth amino acid, cysteine. was replaced by serine respectively, was
obtained as follows:
[0062] E. coli W3110
str A (
Escherichia coli ECfBD28 FERM BP-1479) possessing plasmid pCfBD28 comprising DNA encoding said hG-CSF
derivative was cultivated in LG medium [10 g of Bacto-tryptone, 5 g of yeast extract,
5 g of sodium chloride, and 1 g of glucose was dissolved into 1,000 ml of water, and
adjusted to pH 7.0 with NaOH] at 37°C for 18 hours, and 5 ml of the culture was inoculated
into 100 ml of MCG medium (0.6% Na
2HPO
4, 0.3% KH
2PO
4, 0.5% sodium chloride, 0.5% casamino acids, 1 mM MgSO
4, 4 µg/ml vitamin B
1, pH 7.2) containing 50 µg/ml of ampicillin, at 30°C for 4 to 8 hours, and then 10
µg/ml of 3 β-indoleacrylic acid (hereinafter referred to as IAA), a tryptophan derivative
was added, further the cultivation was continued for 2 to 12 hours. The culture was
centrifuged at 8,000 rpm for 10 minutes, the cells were collected, and washed with
30 mM sodium chloride and 30 mM Tris-HCl buffer (pH 7.5). The washed cells were suspended
in 30 ml of said buffer, and ultrasonicated (BRANSON SONIC POWER COMPANY SONIFIER
CELL DISRUPTOR 200, OUTPUT CONTROL 2) at 0°C for 10 minutes. Said ultrasonicated debris
was centrifuged at 9,000 rpm for 30 minutes to obtain pellets of the cells. From the
pellet, according to the method of Marston et al. [F.A.O. Marston
et al.: BIO/TECHNOLOGY,
2, 800 (1984)], the hG-CSF derivative was extracted purified, solubilized, and refolded.
Reference example 4
[0063] To 100 ml of 50 mM phosphate buffer (pH 7.2) containing 300 mg of the hG-CSF derivative
obtained in Reference example 3, 800 mg of the activated ester obtained in Reference
example 2 were added, and the reaction was performed at 4°C for 24 hours. After the
addition of 100 ml of 10 mM Tris-HCl buffer (pH 8.0) containing 0.7 M ammonium sulfate,
the reacted mixture was loaded onto a column (2.2 cm x 26 cm) of Butyl-Toyopearl 650M
(Tosoh Corporation) equilibrated with 10 mM Tris-HCl buffer (pH 8.0) containing 0.35
ammonium sulfate at a flow rate of 100 ml/hr. After washing the column with 100 ml
of 10 mM Tris-HCl buffer (pH 8.0) containing 0.35 M ammonium sulfate at a flow rate
of 100 ml/hr, elution was performed with a decreasing linear gradient of ammonium
sulfate concentration from 0.35 to 0 M in 10 mM Tris-HCl buffer (pH 8.0) in a total
volume of 400 ml at a flow rate of 100 ml/hr. The desired substance was eluted at
ammonium sulfate concentrations between 0 mM and 250 mM. 250 ml of the eluted fraction
was ultrafiltrated [Cutoff Mr or nominal molecular weight limit 10,000: YM10 (Amicon
Co., Ltd.)] and concentrated to 10 ml. Said concentrated solution was loaded onto
a column (5.6 cm x 40 cm) of Sephacryl S-200 (Pharmacia Co., Ltd.) at a flow rate
of 160 ml/hr, and then PBS was passed at the same flow rate.
[0064] After passing PBS, the chemically modified hG-CSF derivative (tri-type) wherein 3
molecules of carboxylic acids of polyethylene glycol bound to one molecule of hG-CSF
was eluted at between about 360 ml and about 400 ml, the chemically modified hG-CSF
derivative (di-type) wherein 2 molecules of carboxylic acids of polyethylene glycol
bound was eluted at between about 420 ml and about 450 ml, the chemically modified
hG-CSF derivative (mono-type) wherein one molecule of carboxylic acids of polyethylene
glycol bound was eluted at between about 500 ml and about 530 ml, with 2.1 mg (yield:
7%), 1.5 mg (yield: 5%), and 1.5 mg (yield: 5%). The levels of purities of the mono-type,
di-type, and tri-type are all more than 90%.
Reference example 5
Production of N-hydroxysuccinimide ester of carboxyl methyl monomethoxypolyethylene
glycol
[0065] 4 g of sufficiently dehydrated carboxyl methyl monomethoxypolyethylene glycol (Nippon
Oil and Fats Co., Ltd.) (0.8 mmol) with an average molecular weight of 5,000 and 184
mg of N-hydroxysuccinimide (HONSu) were dissolved into 40 ml of anhydrous methylene
chloride, and added 300 mg of DCC on ice in a stream of argon, and stirred for 30
minutes. Subsequently, returning to room temperature, after stirring for 1.5 hours,
an insoluble material (DCU) was filtered out, and the filtrate was concentrated to
16 ml under reduced pressure. The resulting solution was added dropwise to 240 ml
of anhydrous diethyl ether to generate a precipitate, and after washing the precipitate
with anhydrous diethyl ether, the solvent was removed under reduced pressure, and
2.8 g of the objective compound (0.56 mmol) was obtained (yield: 70%).
Reference example 6
[0066] 225 ml of 50 mM phosphate buffer (pH 7.3) containing 202.5 mg of the hG-CSF derivative
obtained in Reference example 3 was adjusted to pH 8.1 with 5% sodium hydroxide, and
1.1 g of N-hydroxysuccinimide ester of carboxyl methyl monomethoxypolyethylene glycol
obtained in Reference example 5 was added to said hG-CSF containing solution, and
the reaction was performed at 4°C for 6 hours. Subsequently, the reaction solution
was obtained by adding 0.5 ml of an aqueous solution containing 26.7 mg of tris(hydroxymethyl)-amino
methane. The reaction solution was centrifuged at 8,000 rpm, 4°C, for 40 minutes,
and ammonium sulfate was added to 370 ml of the supernatant at a final concentration
of 0.68 M, and the solution was loaded onto a column (5 cm × 6.6 cm = 130 ml) of Butyl-Toyopearl
650M (Tosoh Corporation) at a flow rate of 130 ml/hr.
[0067] After washing the column with 390 ml of 10 mM Tris-HCl buffer (pH 7.5) containing
0.68 M ammonium sulfate at a flow rate of 130 ml/hr, the elution was conducted with
390 ml of 10 mM Tris-HCl buffer (pH 7.5) at a flow rate of 130 ml/hr. The desired
substance was eluted at between 35 ml and 80 ml. 45 ml of the eluted fraction were
ultrafiltrated [cutoff Mr of nominal molecular weight limit 10,000: YM10] and concentrated
to 30 ml. Said concentrated solution was loaded onto a column (5 cm x 51 cm = 1000
ml) of Sephacryl S-200 (Phamacia Co., Ltd.) equilibrated with PBS at a flow rate of
200 ml/hr, and then PBS was passed at the same flow rate. The chemically modified
hG-CSF polypeptide was eluted at between about 200 ml and about 380 ml after passing
PBS, which was a mixture of the combinations of 1 to 4 molecules of polyethylene glycol
(mono-type to tetra-type) (total weight: 158 mg; yield: 78%).
Reference example 7
Production of N-hydroxysuccinimide ester of carboxyl methyl monomethoxypolyethylene
glycol
[0068] 12 g of sufficiently dehydrated carboxyl methyl monomethoxypolyethylene glycol (Nippon
Oil and Fats Co., Ltd.) (1.2 mmol) with an average molecular weight of 10,000 and
276 mg of HONSu were dissolved into 120 ml of anhydrous methylene chloride, and added
495 mg of DCC on ice in a stream of argon, and stirred for 30 minutes. Subsequently,
returning to room temperature, after stirring for 1.5 hours, an insoluble material
(DCU) was filtered out, and the filtrate was concentrated to 48 ml under reduced pressure.
The resulting solution was added dropwise to 720 ml of anhydrous diethyl ether to
generate a precipitate, and after washing the precipitate with anhydrous diethyl ether,
the solvent was removed under reduced pressure, and 10.0 g of the objective compound
(1.0 mmol) were obtained (yield: 83%).
Reference example 8
[0069] 30 ml of 50 mM phosphate buffer (pH 7.3) containing 40.8 mg of hG-CSF comprising
the amino acid sequence of SEQ ID NO:1 was adjusted to pH 8.3 with 5% sodium hydroxide,
and added to 326 mg of N-hydroxysuccinimide ester of carboxyl methyl monomethoxypolyethylene
glycol obtained in Reference example 7 on ice, and the reaction was conducted at 4°C
for 6 hours. Subsequently, the reaction solution was obtained by adding 0.1 ml of
an aqueous solution of 3.9 mg of tris-(hydroxymethyl)amino methane. Ammonium sulfate
was added to the reaction solution at a final concentration of 0.7 M, and loaded onto
a column (2.5 cm x 8.1 cm = 40 ml) of Butyl-Toyopearl 650M (Tosoh Corporation) at
a flow rate of 40 ml/hr.
[0070] After washing the column with 120 ml of 10 mM Tris-HCl buffer (pH 7.5) containing
0.7 M ammonium sulfate at a flow rate of 40 ml/hr, the elution was performed with
a decreasing linear gradient of ammonium sulfate concentration of 0.7 to 0 M in 10
mM Tris-HCl buffer (pH 7.5) in a total volume of 240 ml at a flow rate of 40 ml/hr.
The desired substance was eluted at ammonium sulfate concentration of between 0.33
M and 0.05 M. 90 ml of the eluted fraction was ultrafiltrated [cutoff Mr or nominal
molecular weight limit 10,000: YM10 (Amicon Co., Ltd.)] and concentrated to 6 ml.
Said concentrated solution was loaded onto a column (2.5 cm x 45 cm = 220 ml) of Sephacryl
S-300 (Pharmacia Co., Ltd.) equilibrated with PBS at a flow rate of 44 ml/hr, and
then PBS was passed at the same flow rate. The chemically modified hG-CSF polypeptide
was eluted at between about 60 ml and about 102 ml after beginning PBS, which was
a mixture of the combinations of 1 to 4 molecules of polyethylene glycol (mono-type
to tetra-type) (total weight, 9.5 mg; yield, 23%).
Reference example 9
[0071] 338 ml of 50 M phosphate buffer (pH 7.3) containing 304.2 mg of the hG-CSF derivative
obtained in Reference example 3 was adjusted to pH 8.1 with 5% sodium hydroxide, and
4.8 g of N-hydroxysuccinimide ester of carboxyl methyl monomethoxypolyethylene glycol
obtained in Reference example 7 was added to said hG-CSF containing solution on ice,
and the reaction was performed at 4°C for 6 hours. Subsequently, the reaction solution
was obtained by adding 0.5 ml of an aqueous solution containing 58.1 mg of tris(hydroxymethyl)amino
methane. The reaction solution was centrifuged at 8,000 rpm, 4°C, for 40 minutes,
and ammonium sulfate was added to the supernatant at a final concentration of 0.68
M, and the solution was loaded onto a column (5 cm x 7.1 cm = 140 ml) of Butyl-Toyopearl
650M (Tosoh Corporation) equilibrated with 10 mM Tris HCl buffer (pH 8.0) containing
0.68 M ammonium sulfate at a flow rate of 140 ml/hr.
[0072] After washing the column with 420 ml of 10 mM Tris-HCl buffer (pH 8.0) containing
0.68 M ammonium sulfate at a flow rate of 140 ml/hr, the elution was conducted with
420 ml of 10 mM Tris-HCl buffer (pH 8.0) at a flow rate of 140 ml/hr. The aimed substance
was eluted at between 82 ml and 184 ml. The eluted fraction, 102 ml, was loaded onto
a column (10 cm x 50 cm = 3,900 ml) of Sephacryl S-300 (Pharmacia Co., Ltd.) equilibrated
with PBS at a flow rate of 780 ml/hr, and then PBS was passed at the same flow rate.
The chemically modified hG-CSF polypeptide was eluted at between about 1,600 ml and
about 2,070 ml after beginning PBS, which was a mixture of the combinations of 1 to
4 molecules of polyethylene glycol (mono-type to tetra-type) (total weight: 216 mg;
yield: 71%).
Reference example 10
Production of N-hydroxysuccinimide ester of 6-(3-carboxypropylamino)-2,4-bis(o-methoxypolyethylene
glycol)-s-triazine
[0073] 412 mg (4.0 mmol) of gamma-amino butyric acid was dissolved into 300 ml of 0.1 M
borate buffer (pH 10), and 20 g (2 mmol) of 6-chloro-2,4-bis(o-methoxypolyethylene
glycol)-s-triazine (SEIKAGAKU CORPORATION) was added on ice, and stirred at 4°C overnight.
After additionally stirring the mixture at room temperature for 6 hours, the solution
was adjusted to pH 1 with 1 N hydrochloric acid, and extracted using chloroform. The
chloroform phase was dried with anhydrous sodium sulfate, and separated by filtration
after being dried. The solvent was removed under reduced pressure, and the generating
solid was added to dried acetone, and dissolved. Said acetone solution was concentrated
under reduced pressure, and the objective carboxylic acid was recrystallized by leaving
it at room temperature, and 15.8 g (1.6 mmol) of said crystalline was obtained.
[0074] 10 g (1.0 mmol) of said carboxylic acid and 230 mg of N-hydroxysuccinimide were dissolved
into anhydrous methylene chloride, and added to 413 mg of DCC on ice in a stream of
argon, and stirred for 30 minutes. Subsequently, after returning it to room temperature
and stirring for 1.5 hours, an insoluble material (DCU) was filtered out, and the
filtrate was concentrated to 40 ml under reduced pressure. The resulting solution
was added dropwise into 600 ml of anhydrous diethyl ether to generate a precipitate,
and after washing the precipitate with anhydrous diethyl ether, the solvent was removed
under reduced pressure, and 7.7 g (0.77 mmol) of the objective compound was obtained
(yield: 77%).
Reference example 11
[0075] 30 ml of 50 mM phosphate buffer (pH 7.3) containing 40.8 mg of hG-CSF comprising
the amino acid sequence of SEQ ID NO:1 were adjusted to pH 7.2 with 5% sodium hydroxide,
and 326 mg of N-hydroxysuccinimide ester of 6-(3-carboxypropylamino)-2,4-bis(o-methoxypolyethylene
glycol)-s-triazine obtained in Reference example 10 was added on ice, and the reaction
was conducted at 4°C for 48 hours. Subsequently, the reaction solution was obtained
by adding 0.1 ml of an aqueous solution of 3.9 mg of tris(hyrdoxymethyl)amino methane.
Ammonium sulfate was added to the reaction solution at a final concentration of 0.7
M, and load onto a column (2.5 cm × 8.1 cm = 40 ml) of Butyl-Toyopearl 650M (Tosoh
Corporation) at a flow rate of 40 ml/hr.
[0076] After washing the column with 120 ml of 10 mM Tris-HCl buffer (pH 7.5) containing
0.7 M ammonium sulfate at a flow rate of 40 ml/hr, the elution was conducted with
a decreasing linear gradient of ammonium sulfate concentration of from 0.7 to 0 M
in 10 mM Tris-HCl buffer (pH 7.5) in a total volume of 240 ml at a flow rate of 40
ml/hr. The desired substance was eluted at ammonium sulfate concentration between
0.35 M and 0.07 M. 90 ml of the eluted fraction was ultrafiltrated [cutoff Mr or nominal
molecular weight limit 10,000: YM10 (Amicon Co., Ltd.)] and concentrated to 6 ml.
Said concentrated solution was loaded onto a column (2.5 cm x 47 cm = 230 ml) of Sephacryl
S-300 (Pharmacia Co., Ltd.) equilibrated with PBS at a flow rate of 46 ml/hr, and
then PBS was passed at the same flow rate. The chemically modified hG-CSF polypeptide
was eluted at between about 110 ml and about 145 ml after beginning PBS, which was
a mixture of the combinations of 1 to 3 molecules of polyethylene glycol (mono-type
to tri-type) (total weight, 7.8 mg; yield: 19%).
Reference example 12
[0077] 600 ml of 50 mM phosphate buffer (pH 7.3) containing 540 mg of the hG-CSF derivative
obtained in Reference example 3 were adjusted to pH 7.2 with 5% sodium hydroxide,
and 8.7 g of N-hydroxysuccinimide ester of 6-(3-carboxypropylamino)-2,4-bis(o-methoxypolyethylene
glycol)-s-triazine obtained in Reference Example 10 was added on ice, and the reaction
was conducted at 4°C for 48 hours.
[0078] Subsequently, the reaction solution was obtained by adding 0.5 ml of an aqueous solution
of 105 mg of tris-(hydroxymethyl)amino methane. The reaction solution was centrifuged
at 8,000 rpm, 4°C, for 40 minutes, and ammonium sulfate was added to 600 ml of the
supernatant at a final concentration of 0.68 M, and the solution was loaded onto a
column (5 cm x 18 cm = 350 ml) of Butyl-Toyopearl 650M (Tosoh Corporation) equilibrated
with 10 mM Tris-HCl buffer (pH 7.5) containing 0.68 M ammonium sulfate at a flow rate
of 350 ml/hr.
[0079] After washing the column with 700 ml of 10 mM Tris-HCl buffer (pH 7.5) containing
0.68 M ammonium sulfate at a flow rate of 350 ml/hr, the elution was conducted with
a decreasing linear gradient of ammonium sulfate concentration of from 0.68 to 0 M
in 10 mM Tris-HCl buffer (pH 7.5) in a total volume of 2800 ml at a flow rate of 350
ml/hr. The desired substance was eluted at ammonium sulfate concentration of between
0.39 M and 0.20 M. 800 ml of the eluted fraction was ultrafiltrated [cutoff Mr 10,000:
YM10 (Amicon Co., Ltd.)] and concentrated to 100 ml. Said concentrated solution was
loaded onto a column (10 cm x 50 cm = 3900 ml) of Sephacryl S-300 (Pharmacia Co.,
Ltd.) equilibrated with PBS at a flow rate of 780 ml/hr, and then PBS was passed at
the same flow rate. The chemically modified hG-CSF polypeptide was eluted at between
about 1750 ml and about 2250 ml after beginning PBS, which was a mixture of the combinations
of from 1 to 3 molecules of polyethylene glycol (mono-type to tri-type) (total weight:
303 mg; yield: 56%).
Reference example 13
Production of 6-(3-carboxypropylamino)-2,4-bis(o-methoxypolyethylene glycol)-s-triazine
[0080] 100 g (8.33 mmol) of sufficiently dehydrated monomethoxypolyethylene glycol (Nippon
Oil and Fats Co., Ltd.) with an average molecular weight of 12,000, 9.3 g of zinc
oxide (Wako Pure Chemical Industries, Ltd.), 83.5 g of molecular sieve (type 4A) (Wako
Pure Chemical Industries, Ltd.) were dissolved in dried benzene, and left in a stream
of argon overnight at room temperature. Subsequently, the molecular sieve was removed,
and 42 g of molecular sieve were newly added, and the solution was left overnight,
similarly. Next, the molecular sieve was removed, and the solution was distilled at
80°C in a stream of argon using a distillator, and the first distillate, 50 ml, was
removed. Further, using a Soxhlet extractor (for soil) loaded by 100 g of molecular
sieve (type 4A), the solution was dehydrated with refluxing at 80°C in a stream of
argon overnight. After cooling, 36 mg (4.0 mmol) of cyanuric chloride was added to
the reaction solution and similarly dehydrated with refluxing for 5 days. The cyanuric
chloride recrystallized by dried diethyl ether was used in this case. Subsequently,
the solution was cooled at room temperature, 300 ml of dried benzene was added to
the solution, the solution was centrifuged at 3,600 rpm for 10 minutes, and insoluble
materials were removed. The supernatant was concentrated under reduced pressure to
300 ml, and added dropwise to 3,000 ml of dried diethyl ether to generate a precipitate.
Said precipitate was collected, and washed with dried diethyl ether, and then the
solvent was removed under reduced pressure, and the dried precipitate was obtained.
[0081] 100 g of said dried precipitate was added to 1,000 ml of 0.1 M borate buffer solution
(pH 10), in which 24 g (12.0 mmol) of gamma-amino butyric acid were dissolved in 1,000
ml of the buffer, on ice, and stirred at 4°C overnight. After additionally stirring
at room temperature for 6 hours, the solution was adjusted to pH 1.0 with 1N hydrochloric
acid, and extracted with chloroform. The chloroform phase was dried with anhydrous
sodium sulfate, and separated by filtration, and the solvent was removed under reduced
pressure. Dried acetone was added to the generating white solid and the solid was
dissolved. Said acetone solution was concentrated under reduced pressure, and made
to recrystallize by leaving it at room temperature, and 90 g of the rough product
containing about 70 to 80% of the target compound was obtained. This product was dissolved
into 6,000 ml of distilled water, and loaded onto a column of anion exchange resin
HPA-75 (Mitsubishi Chemical Corporation), which was equilibrated with distilled water
after previously passing 12,000 ml of 2N sodium hydride, and the fractions containing
the subject compound as a main ingredient were collected by eluting with distilled
water. The resulting solution was adjusted to pH 1.0 with 1N hydrochloric acid, and
extracted with chloroform. The chloroform phase was dried with anhydrous sodium sulfate
and separated by filtration, and the solvent was removed under reduced pressure, and
43.6 g of the highly purified objective compound were obtained (yield: 43%).
Reference example 14
Production of N-hydroxysuccinimide ester of 6-(3-carboxypropylamino)-2,4-bis(o-methoxypolyethylene
glycol)-s-triazine
[0082] 25 g of 6-(3-carboxypropylamino)-2,4-bis(o-methoxypolyethylene glycol)-s-triazine
which was synthesized and sufficiently dried according to the method of Reference
example 13 and 240 mg of N-hydroxysuccinimide were dissolved into 400 ml of anhydrous
methylene chloride, and added to 431 mg of DCC on ice in a stream of argon, and stirred
for 30 minutes. Subsequently, after returning to room temperature and stirring for
1.5 hours, an insoluble material (DCU) was filtered out, and the filtrate was concentrated
under reduced pressure to 160 ml. The resulting solution was added dropwise to 2,400
ml of anhydrous diethyl ether to generate a precipitate, and after washing said precipitate
with anhydrous diethyl ether, the solvent was removed under reduced pressure, and
21.4 g (0.89 mmol) of the target compound was obtained (yield, 89%).
Reference example 15
[0083] 560 ml of 50 mM phosphate buffer (pH 7.3) containing 504 mg of the hG-CSF derivative
obtained in Reference example 3 were adjusted to pH 7.3 with 5% sodium hydroxide,
and 22.4 g of N-hydroxysuccinimide ester of 6-(3-carboxypropylamino)-2,4-bis(o-methoxypolyethylene
glycol)-s-triazine obtained in Reference example 14 was added on ice, and the reaction
was conducted at 4°C for 48 hours. Subsequently, the reaction solution was obtained
by adding 0.5 ml of an aqueous solution of 113 mg of tris (hydroxymethyl)-amino methane.
Ammonium sulfate was added at a final concentration of 0.7 M to the reaction solution,
and the solution was loaded onto a column (5 cm x 25 cm = 500 ml) of Butyl-Toyopearl
650M (Tosoh Corporation) equilibrated with 10 mM Tris-HCl buffer (pH 7.5) containing
0.7 M ammonium sulfate at a flow rate of 500 ml/hr. After washing the column with
1,500 ml of 10 mM Tris-HCl buffer (pH 7.5) containing 0.7M ammonium sulfate at a flow
rate of 500 ml/hr, the elution was conducted with a decreasing linear gradient of
ammonium sulfate concentration from 0.7 to 0 M in 10 mM Tris-HCl buffer (pH 7.5) in
a total volume of 3,000 ml at a flow rate of 500 ml/hr. The desired substance was
eluted at ammonium sulfate concentration of between 0.55 and 0.08 M. Ammonium sulfate
was added to the eluted fraction at a final concentration of 0.7 M, and loaded onto
a column (5 cm x 15 cm = 300 ml) of Butyl-Toyopearl 650M (Tosoh Corporation) equilibrated
with 10 mM Tris-HCl buffer (pH 7.5) containing 0.7 M ammonium sulfate at a flow rate
of 450 ml/hr. After washing the column with 1,500 ml of 10 mM Tris-HCl buffer (pH
7.5) containing 0.7 M ammonium sulfate at a flow rate of 450 ml/hr, the elution was
conducted with 900 ml of 10 mM Tris-HCl buffer (pH 7.5) at a flow rate of 450 ml/hr.
The desired substance was eluted to between 67 ml and 132 ml. The eluted fraction,
100 ml, was loaded onto a column (5 cm × 50 cm = 1000 ml) of Sephadex G-25 (Pharmacia
Co., Ltd.) equilibrated with PBS at a flow rate of 300 ml/hr. Subsequently, PBS was
passed by at the same flow rate. The chemically modified hG-CSF polypeptide was eluted
at between about 350 ml and about 500 ml after beginning PBS, which was a mixture
of the combinations of 1 to 4 molecules of polyethylene glycol (mono-type to tetra-type)
(total weight: 282 mg; yield: 56%).
Reference example 16
Production of 4-nitrophenyloxycarbonyl (o-methoxypolyethylene glycol)
[0084] 5.5 g of sufficiently dehydrated methoxypolyethylene glycol (Nippon Oil and Fats
Co., Ltd.) (0.55 mmol) with an average molecular weight of 10,000 were dissolved into
27.5 ml of dried methylene chloride, and 0.153 ml of triethylamine and 222 mg of 4-nitrophenyl
chloroformate were added and stirred in a stream of argon at room temperature for
4 hours. During stirring, the pH was kept at between 7.5 and 8.5 by adding triethylamine.
The reaction solution was concentrated to 20 ml under reduced pressure, and added
dropwise to 300 ml of dried diethyl ether to generate a precipitate. Said precipitate
was recrystallized with ethyl acetate, and 4.8 g of the target compound was obtained
by drying under reduced pressure (0.48 mmol) (yield, 87%).
Reference example 17
[0085] 45 ml of 50 mM phosphate buffer (pH 7.3) containing 40.5 mg of the hG-CSF derivative
obtained in Reference example 3 was adjusted to pH 8.7 with 5% sodium hydroxide, and
4.3 g of 4-nitrophenyloxycarbonyl (o-methoxypolyethylene glycol) obtained in Reference
Example 16 was added on ice, and the reaction solution was obtained by reacting them
at 4°C for 3 days. Ammonium sulfate was added to the reaction solution at a final
concentration of 0.7M, and loaded onto a column (2.5 cm x 12 cm = 60 ml) of Butyl-Toyopearl
650M (Tosoh Corporation) equilibrated with 10 mM Tris-HCl buffer (pH 7.5) containing
0.7 ammonium sulfate at a flow rate of 60 ml/hr. After washing the column with 180
ml of 10 mM Tris-HCl buffer (pH 7.5) containing 0.7 M ammonium sulfate at a flow rate
of 60 m/hr, an elution was performed with a decreasing linear gradient of ammonium
sulfate concentration from 0.7 to 0 M in 10 mM Tris-HCl buffer (pH 7.5) in a total
volume of 360 ml at a flow rate of 60 ml/hr.
[0086] Subsequently, the remaining uneluted portion was eluted by passing 180 ml of 10 mM
Tris-HCl buffer (pH 7.5). The desired substance was eluted at ammonium sulfate concentrations
from 0.4 M to 0 M. The eluted fraction, 210 ml, was ultrafiltrated [cutoff Mr 10,000:
YM10 (Amicon Co., Ltd.)] and concentrated to 30 ml. Said concentrated solution was
loaded onto a column (5 cm × 51 cm = 1000 ml) of Sephacryl S-300 (Pharmacia Co., Ltd.)
equilibrated with PBS at a flow rate of 200 ml/hr, and then PBS was passed by at the
same flow rate.
[0087] After beginning PBS, the chemically modified hG-CSF derivative (tri-type) wherein
3 molecules of carboxylic acids of polyethylene glycol bound to one molecule of hG-CSF
was eluted at between about 285 ml and about 305 ml, the chemically modified hG-CSF
derivative (di-type) wherein 2 molecules of carboxylic acids of polyethylene glycol
bound was eluted at between about 325 ml and about 345 ml, the chemically modified
hG-CSF derivative (mono-type) wherein one molecule of carboxylic acids of polyethylene
glycol bound was eluted at between about 365 ml and about 385 ml, with 6.2 mg (yield:
10.9%), 6.8 mg (yield: 11.9%), and 5.0 mg (yield: 8.8%).
Reference example 18
Production of 6-(1-aminopropyloxycarbonyloxy-4'-nitrophenyl)-2,4-bis(o-methoxypolyethylene
glycol)-s-triazine
[0088] 120 mg (1.6 mmol) of 3-amino-1-propanol was dissolved into 200 ml of 0.1 M borate
buffer (pH 10), and 8 g (0.8 mmol) of 6-chlor-2,4-bis(o-methoxypolyethylene glycol)-s-triazine
(SEIKAGAKU CORPORATION) was added on ice, and stirred at 4°C overnight. The reaction
solution was adjusted to pH 1.0 with 2 N hydrochloric acid, and extracted with chloroform.
After washing twice with 2 N hydrochloric acid, the chloroform phase was dried with
anhydrous sodium sulfate, and filtered. The solvent was removed under reduced pressure,
and dried acetone was added to the generating solid, and the solid was dissolved.
Said acetone solution was concentrated under reduced pressure, and polyethylene glycol
derivative was recrystallized by leaving it at room temperature, and 5.5 g of said
crystalline substance was obtained (yield: 69%).
[0089] Subsequently, 5.3 g (0.53 mmol) of said polyethylene glycol derivative sufficiently
dried was dissolved into 26.5 ml of dried methylene chloride, 0.147 ml of triethylamine
was added, and further 214 mg (1.06 mmol) of 4-nitrophenyl chloroformate was added,
and stirred at 4°C for 4 hours. Subsequently, the reaction solution was concentrated
to 20 ml under reduced pressure, and added dropwise to 300 ml of dried diethyl ether
to generate a precipitate. The precipitate was washed with dried diethyl ether, and
after removing the solvent under reduced pressure, recrystallized by dried ethyl acetate,
and 4.6 g (0.46 mmol) of the objective compound was obtained by drying it under reduced
pressure (yield, 87%).
Reference example 19
[0090] 287 mg of activated polyethylene glycol M-SCM-20,000 (Shearwater Polymer, Inc.) was
added to 6.5 ml of 50 mM phosphate buffer (pH 7.5) containing 29.25 mg of the hG-CSF
derivative obtained in Reference example 3, and the reaction was performed at 4°C
for 6 hours, and then the reaction solution was obtained by adding 35 µl of 50 mg/ml
tris(hydroxymethyl)amino methane. Said reaction solution was loaded onto a column
(2.5 cm x 45 cm = 220 ml) of Sephacryl S-300 (Pharmacia Co., Ltd.) equilibrated with
PBS at a flow rate of 44 ml/hr, and then PBS was passed by at the same flow rate.
[0091] After beginning PBS, the chemically modified hG-CSF polypeptide (di-type), wherein
2 molecules of carboxylic acids of polyethylene glycol bound, was eluted at between
about 96 ml and about 104 ml, and 3.8 mg of said di-type was obtained (yield: 13.0%).
Reference example 20
[0092] 98 mg of activated polyethylene glycol M-SSPA-20,000 (Shearwater Polymer Inc.) was
added to 6.7 ml of 50 mM phosphate buffer (pH 7.5) containing 28.8 mg of the hG-CSF
derivative obtained in Reference example 3, and the reaction was performed at 4°C
for 24 hours, and then the reaction solution was obtained by adding 30 µl of 40 mg/ml
tris-(hydroxymethyl)amino methane. Said reaction solution was loaded onto a column
(2.5 cm x 45 cm = 220 ml) of Sephacryl S-300 (Pharmacia Co., Ltd.) equilibrated with
PBS at a flow rate of 44 ml/hr, and then PBS was passed by at the same flow rate.
[0093] After beginning PBS, the chemically modified hG-CSF polypeptide (tri-type) wherein
3 molecules of carboxylic acids of polyethylene glycol bound, was eluted at between
about 78 ml and about 98 ml, and 2.0 mg of said tri-type was obtained (yield: 6.6%).
Industrial utilization
[0094] The present invention can provide a chemically modified polypeptide, wherein at least
one group of amino, carboxyl, mercapto and guanidino groups in a polypeptide molecule
having hG-CSF is modified chemically, and an excellent platelet production promoting
agent comprising said modified polypeptide.
SEQUENCE LISTING
[0095]
<110> Kyowa Hakko Kogyo Co., Ltd.
<120> Platelet Growth Accelerator
<130> M/37274
<140> 95 909 967.2
<141> 1995-02-23
<150> JP H06-25735
<151> 1995-02-23
<160> 1
<170> PatentIn version 3.2
<210> 1
<211> 175
<212> PRT
<213> Homo sapiens
<400> 1

1. Use of a chemically modified polypeptide wherein at least one group of the amino,
carboxyl, mercapto or guanidino group in the molecule of a polypeptide having human
granulocyte colony stimulating activity is chemically modified with a polyalkylene
glycol derivative or styrene-maleic acid copolymer for the production of pharmaceutical
compositions for promoting the platelet production of the patients with decreased
platelet counts.
2. Use of the chemically modified polypeptide according to claim 1 wherein the polypeptide
having human granulocyte colony stimulating activity comprises an amino acid sequence
of SEQ ID NO: 1 or an amino acid sequence selected from the groups of (a) to (l):
(a) an amino acid sequence wherein the fourth amino acid, leucine is replaced by glutamic
acid, the fifth amino acid, glycine is replaced by lysine, the sixth amino acid, proline
is replaced by serine and the eighteenth amino acid, cysteine is replaced by serine,
respectively in SEQ ID NO: 1;
(b) an amino acid sequence wherein the second amino acid, threonine is replaced by
valine, the fourth amino acid, leucine is replaced by isoleucine, the fifth amino
acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced by
serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(c) an amino acid sequence wherein the second amino acid, threonine is replaced by
cysteine, the fourth amino acid, leucine is replaced by isoleucine, the fifth amino
acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced by
serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(d) an amino acid sequence wherein the second amino acid, threonine is replaced by
tyrosine, the fourth amino acid, leucine is replaced by isoleucine, the fifth amino
acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced by
serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(e) an amino acid sequence wherein the second amino acid, threonine is replaced by
arginine, the fourth amino acid, leucine is replaced by threonine, the fifth amino
acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced by
serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(f) an amino acid sequence wherein the fourth amino acid, leucine is replaced by threonine,
the fifth amino acid, glycine is replaced by arginine the sixth amino acid, proline
is replaced by serine and the eighteenth amino acid, cysteine is replaced by serine,
respectively in SEQ ID NO: 1;
(g) an amino acid sequence wherein the second amino acid, threonine is replaced by
asparagine, the fourth amino acid, leucine is replaced by glutamic acid, the fifth
amino acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced
by serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(h) an amino acid sequence wherein the second amino acid, threonine is replaced by
isoleucine, the fourth amino acid, leucine is replaced by threonine, the fifth amino
acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced by
serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(i) an amino acid sequence wherein the second amino acid, threonine is replaced by
serine, the fourth amino acid, leucine is replaced by threonine, the fifth amino acid,
glycine is replaced by arginine, the sixth amino acid, proline is replaced by serine
and the eighteenth amino acid, cysteine is replaced by serine, respectively in SEQ
ID NO: 1;
(j) an amino acid sequence wherein the fifth amino acid, glycine is replaced by arginine
and the eighteenth amino acid, cysteine is replaced by serine, respectively in SEQ
ID NO: 1;
(k) an amino acid sequence wherein the second amino acid, threonine is replaced by
alanine, the fourth amino acid, leucine is replaced by threonine, the fifth amino
acid, glycine is replaced by tyrosine, the sixth amino acid, proline is replaced by
arginine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1; and
(l) an amino acid sequence wherein the eighteenth amino acid, cysteine is replaced
by serine in SEQ ID NO: 1.
3. Use of the chemically modified polypeptide according to claim 1 or 2 wherein a polyalkylene
glycol derivative is a polyethylene glycol derivative, polypropylene glycol derivative,
or derivative of polyethylene glycol-polypropylene glycol copolymer.
4. Use of the chemically modified polypeptide according to claim 1 or 2 wherein the chemical
modifying agent of the amino group is polyalkylene glycol derivative having the formula
(I):
R
1-(M)
n-X-R
2 (I)
wherein R
1 represents alkyl or alkanoyl group; M presents the formula:
-OCH
2CH
2-, -OCH
2CH
2CH
2-,
or
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s-
wherein r and s have any variable positive integral values, which are the same or
different; n has any variable positive integral values; X represents a single bond,
O, NH, or S; and R
2 represents the formula:

wherein R
3 represents OH, halogen, or the formula:
X
n-(M
a)
na-R
1a
wherein X
a, M
a, R
1a and na have the same definition as above-defined X, M, R
1 and n, respectively; and Y represents halogen or the formula:
-Z-(CH
2)
p-(O)
m-W
wherein Z represents O, S, or NH; W represents a carboxyl group, an active derivative
thereof, or the formula:

wherein R
4 represents an alkyl group; and Hal represents halogen; p has an integral value of
1 to 6; and m has a value of 0 or 1,
- (CO)ma-(CH2)1-Wa
wherein W
a and ma have the same definition as above-defined W and m, respectively; and t has
an integral value of from 0 to 6, or

wherein Hal
a, pa and R
4a have the same definition as above-defined Hal, p and R
4, respectively, or a derivative of the styrene-maleic acid copolymer having the formula
(II):

wherein u and v have any variable positive integral values, which are the same or
different; and R
5 represents a hydrogen atom or an alkyl group.
5. Use of the chemically modified polypeptide according to claim1 or 2 wherein the chemical
modifying agent of the carboxyl group is a polyalkylene glycol derivative having the
formula (III):
R1b-(Mb)nb-NH2 (III)
wherein Mb, R1b and nb have the same definition as above-defined M, R1 and n, respectively.
6. Use of the chemically modified polypeptide according to claim1 or 2 wherein the chemical
modifying agent of the mercapto group is a polyalkylene glycol derivative having the
formula (IV):

wherein M
c, R
1c and nc have the same definition as above-defined M, R
1, and n, respectively, or styrene-maleic acid copolymer having the formula (V):

wherein R
5a, ua, and va have the same definition as above-defined R
5, u, and v, respectively, and one of Q and R represents a carboxyl group, and the
other of Q and R represents the formula:

wherein pb has the same definition as above-defined p.
7. Use of the chemically modified polypeptide according to claim 1 or 2 wherein the chemical
modifying agent of the guanidino group is a polyalkylene glycol derivative having
the formula (VI):

wherein q has a value of 1 or 2, and M
d, R
1d, and nd have the same definition as above-defined M, R1, and n, respectively.
8. Use of a chemically modified polypeptide for the production of pharmaceutical compositions
for promoting the platelet production of the patients with decreased platelet counts
wherein at least one of the amino groups in the molecule of the polypeptide having
human granulocyte colony stimulating activity is bound to a group represented by the
following formula (Ia)
R
1-(OCH
2CH
2)
n-X-R
2a- (Ia)
wherein R
1 represents an alkyl or alkanoyl group; n has any variable positive integral value;
X represents a single bond, O, NH, or S; R
2a represents the formula:

wherein R
3a represents OH, halogen, or the formula:
-X
a-(M
a)
nn-R
1a
wherein X
a, R
1a and na have the same definition as above-defined X, R
1 and n, respectively;M
a represents the formula:
-OCH
2CH
2-, -OCH
2CH
2CH
2-
or
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s-
wherein r and s have any variable positive integral values, which are the same or
different; and Y
a represents a single bond, the formula:
-Z-(CH
2)
p-(O)
m-CO-
wherein Z represents O, S, or NH; p has an integral value of from 1 to 6; and m has
a value of 0 or 1, or the formula:
-(CO)
ma-(CH
2)
1-CO-
wherein ma has the same definition as above-defined m; and t has an integral value
of from 0 to 6.
9. A chemically modified polypeptide comprising a polypeptide having human granulocyte
colony stimulating activity wherein at least one amino group in the molecule is bound
to a group of the formula (Ib):

wherein R
1 represents an alkyl or alkanoyl group; M represents the formula:
-OCH
2CH
2-, -OCH
2CH
2CH
2-
or
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s-
wherein r and s have any variable positive integral values, which are the same or
different; n has any variable positive integral value; X represents a single bond,
O, NH, or S; R
3b represents OH, halogen, or the formula:
-X
a-(M
a)
na-R
1a
wherein X
a, M
a, R
1a and na have the same definition as above-defined X, M, R
1 and n, respectively; Z represents O, S, or NH; and p has an integral value of from
1 to 6.
10. The chemically modified polypeptide according to claim 9 wherein the polypeptide having
human granulocyte colony stimulating activity comprises an amino acid sequence of
SEQ ID NO: 1 or an amino acid sequence selected from the group of (a) to (1):
(a) an amino acid sequence wherein the fourth amino acid, leucine is replaced by glutamic
acid, the fifth amino acid, glycine is replaced by lysine, the sixth amino acid, proline
is replaced by serine and the eighteenth amino acid, cysteine is replaced by serine,
respectively in SEQ ID NO: 1;
(b) an amino acid sequence wherein the second amino acid, threonine is replaced by
valine, the fourth amino acid, leucine is replaced by isoleucine, the fifth amino
acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced by
serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(c) an amino acid sequence wherein the second amino acid, threonine is replaced by
cysteine, the fourth amino acid, leucine is replaced by isoleucine, the fifth amino
acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced by
serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(d) an amino acid sequence wherein the second amino acid, threonine is replaced by
tyrosine, the fourth amino acid, leucine is replaced by isoleucine, the fifth amino
acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced by
serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(e) an amino acid sequence wherein the second amino acid, threonine is replaced by
arginine, the fourth amino acid, leucine is replaced by threonine, the fifth amino
acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced by
serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(f) an amino acid sequence wherein the fourth amino acid, leucine is replaced by threonine,
the fifth amino acid, glycine is replaced by arginine the sixth amino acid, proline
is replaced by serine and the eighteenth amino acid, cysteine is replaced by serine,
respectively in SEQ ID NO: 1;
(g) an amino acid sequence wherein the second amino acid, threonine is replaced by
asparagine, the fourth amino acid, leucine is replaced by glutamic acid, the fifth
amino acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced
by serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(h) an amino acid sequence wherein the second amino acid, threonine is replaced by
isoleucine, the fourth amino acid, leucine is replaced by threonine, the fifth amino
acid, glycine is replaced by arginine, the sixth amino acid, proline is replaced by
serine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1;
(i) an amino acid sequence wherein the second amino acid, threonine is replaced by
serine, the fourth amino acid, leucine is replaced by threonine, the fifth amino acid,
glycine is replaced by arginine, the sixth amino acid, proline is replaced by serine
and the eighteenth amino acid, cysteine is replaced by serine, respectively in SEQ
ID NO: 1;
(j) an amino acid sequence wherein the fifth amino acid, glycine is replaced by arginine
and the eighteenth amino acid, cysteine is replaced by serine, respectively in SEQ
ID NO: 1;
(k) an amino acid sequence wherein the second amino acid, threonine is replaced by
alanine, the fourth amino acid, leucine is replaced by threonine, the fifth amino
acid, glycine is replaced by tyrosine, the sixth amino acid, proline is replaced by
arginine and the eighteenth amino acid, cysteine is replaced by serine, respectively
in SEQ ID NO: 1; and
(l) an amino acid sequence wherein the eighteenth amino acid, cysteine is replaced
by serine in SEQ ID NO: 1.
11. A composition for treating, patients with decreased platelet counts, which comprises
the chemically modified polypeptide according to claim 9 or 10 in the pharmaceutically
acceptable dosage form with a pharmaceutically acceptable carrier.
12. Use of the chemically modified polypeptide according to claim or 10 for the production
of pharmaceutical compositions for promoting the platelet production of the patients
with decreased platelet counts.
1. Verwendung eines chemisch modifizierten Polypeptids, wobei wenigstens eine Gruppe
der Amino-, Carboxyl-, Mercapto- oder Guanidinogruppe in dem Molekül eines Polypeptids
mit menschliche Granulozyten-Kolonie-stimulierender Aktivität mit einem Polyalkylenglycol-Derivat
oder einem Styrol-Maleinsäure-Copolymer chemisch modifiziert ist, zur Herstellung
pharmazeutischer Zusammensetzungen zur Steigerung der Plättchenbildung bei Patienten
mit verringerten Plättchenzahlen.
2. Verwendung des chemisch modifizierten Polypeptids gemäß Anspruch 1, wobei das Polypeptid
mit menschliche Granulozyten-Kolonie-stimulierender Aktivität eine Aminosäuresequenz
gemäß SEQ ID NO:1 oder eine Aminosäuresequenz umfasst, die ausgewählt ist unter der
Gruppe (a) bis (I):
(a) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die vierte Aminosäure, Leucin, durch
Glutaminsäure ersetzt ist, die fünfte Aminosäure, Glycin, durch Lysin ersetzt ist,
die sechste Aminosäure, Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure,
Cystein, durch Serin ersetzt ist;
(b) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Valin ersetzt ist, die vierte Aminosäure, Leucin, durch Isoleucin ersetzt ist,
die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(c) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Cystein ersetzt ist, die vierte Aminosäure, Leucin, durch Isoleucin ersetzt
ist, die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(d) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Tyrosin ersetzt ist, die vierte Aminosäure, Leucin, durch Isoleucin ersetzt
ist, die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(e) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Arginin ersetzt ist, die vierte Aminosäure, Leucin, durch Threonin ersetzt ist,
die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(f) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die vierte Aminosäure, Leucin, durch
Threonin ersetzt ist, die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die
sechste Aminosäure, Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure,
Cystein, durch Serin ersetzt ist;
(g) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Asparagin ersetzt ist, die vierte Aminosäure, Leucin, durch Glutaminsäure ersetzt
ist, die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(h) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Isoleucin ersetzt ist, die vierte Aminosäure, Leucin, durch Threonin ersetzt
ist, die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(i) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Serin ersetzt ist, die vierte Aminosäure, Leucin, durch Threonin ersetzt ist,
die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(j) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die fünfte Aminosäure, Glycin, durch
Arginin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin ersetzt ist;
(k) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Alanin ersetzt ist, die vierte Aminosäure, Leucin, durch Threonin ersetzt ist,
die fünfte Aminosäure, Glycin, durch Tyrosin ersetzt ist, die sechste Aminosäure,
Prolin, durch Arginin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist; und
(l) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die achtzehnte Aminosäure, Cystein,
durch Serin ersetzt ist.
3. Verwendung des chemisch modifizierten Polypeptids gemäß Anspruch 1 oder 2, wobei ein
Polyalkylenglycol-Derivat ein Polyethylenglycol-Derivat, ein Polypropylenglycol-Derivat
oder ein Polyethylenglycol-Polypropylenglycol-Copolymer-Derivat ist.
4. Verwendung des chemisch modifzierten Polypeptids gemäß Anspruch 1 oder 2, wobei das
chemisch modifizierende Agens der Aminogruppe ein Polyalkylenglycol-Derivat der Formel
(I):
R
1-(M)
n-X-R
2 (I)
ist,
wobei R
1 für eine Alkyl- oder Alkanoylgruppe steht; M für die Formel:
-OCH
2CH
2-, -OCH
2CH
2CH
2-
oder
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s-
steht,
wobei r und s für alle beliebigen variablen positiven ganzzahligen Werte stehen, die
gleich oder verschieden sind; n für jeden beliebigen variablen positiven ganzzahligen
Wert steht; X für eine Einfachbindung, O, NH, oder S steht; und R
2 für die Formel:

steht,
wobei R
3 für OH, Halogen oder die Formel:
X
n-(M
a)
na-R
1a
steht,
wobei für X
a, M
a, R
1a und na die gleiche Definition gilt wie für das oben definierte X, M, R
1 beziehungsweise n;
und Y für Halogen oder die Formel:
-Z-(CH
2)
p-(O)
m-W
steht,
wobei Z für O, S oder NH steht; W für eine Carboxylgruppe, ein aktives Derivat davon
oder für die Formel:

steht,
wobei R
4 für eine Alkylgruppe steht; und Hal für ein Halogen steht; p einen ganzzahligen Wert
von 1 bis 6 annimmt; und m einen Wert von 0 oder 1 annimmt,
für die Formel
-(CO)
ma-(CH
2)
t-W
a
steht,
wobei für W
a und ma die gleiche Definition gilt wie für das oben definierte W beziehungsweise
m; und t einen ganzzahligen Wert von 0 bis 6 annimmt,
oder für die Formel

steht,
wobei für Hal
a, pa und R
4a die gleiche Definition gilt wie für das oben definierte Hal, p beziehungsweise R
4,
oder für ein Derivat des Styrol-Maleinsäure-Copolymers mit der Formel (II):

steht,
wobei u und v beliebige variable positive ganzzahlige Werte annehmen, die gleich oder
verschieden sind; und R
5 für ein Wasserstoffatom oder eine Alkylgruppe steht.
5. Verwendung des chemisch modifizierten Polypeptids gemäß Anspruch 1 oder 2, wobei das
chemisch modifizierende Agens der Carboxylgruppe ein Polyalkylenglycol-Derivat der
Formel (III)
R1b-(Mb)nb-NH2 (III)
ist,
wobei für Mb, R1b und nb die gleiche Definition gilt wie für das oben definierte M, R1 beziehungsweise n.
6. Verwendung des chemisch modifizierten Polypeptides gemäß Anspruch 1 oder 2, wobei
das chemisch modifizierende Agens der Mercaptogruppe ein Polyalkylenglycol-Derivat
mit der Formel (IV):

ist,
wobei für M
c, R
1c und nc die gleiche Definition gilt wie für das oben definierte M, R
1 beziehungsweise n,
oder ein Styrol-Maleinsäure-Copolymer der Formel (V):

ist,
wobei für R
5a, ua, und va die gleiche Definition gilt wie für das oben definierte R
5, u beziehungsweise v, und ein Vertreter von Q und R für eine Carboxylgruppe steht,
und der andere Vertreter von Q und R für die Formel

steht,
wobei für pb die gleiche Definition gilt wie für das oben definierte p.
7. Verwendung des chemisch modifizierten Polypeptids gemäß Anspruch 1 oder 2, wobei das
chemisch modifizierende Agens der Guanidinogruppe ein Polyalkylenglycol-Derivat mit
der Formel (VI):

ist,
wobei q einen Wert von 1 oder 2 annimmt, und für M
d, R
1d und nd die gleiche Definition gilt wie für das oben definierte M, R
1 beziehungsweise n.
8. Verwendung eines chemisch modifizierten Polypeptids zur Herstellung von pharmazeutischen
Zusammensetzungen zur Steigerung der Plättchenbildung bei Patienten mit verringerten
Plättchenzahlen, wobei wenigstens eine der Aminogruppen im Molekül des Polypeptids
mit menschliche Granulozyten-Kolonie-stimulierender Aktivität an eine Gruppe gebunden
ist, die durch die folgende Formel (la) dargestellt wird:
R
1-(OCH
2CH
2)
n-X-R
2a (la),
wobei R
1 für eine Alkyl- oder Alkanoylgruppe steht; n für jeden beliebigen variablen positiven
ganzzahligen Wert steht; X für eine Einfachbindung, O, NH oder S steht; R
2a für die Formel:

steht,
wobei R
3a für OH, Halogen oder die Formel:
-X
a-(M
a)
na-R
1a
steht,
wobei für X
a, R
1a und na die gleiche Definition gilt wie für das oben definierte X, R
1 beziehungsweise n; M
a für die Formel:
-OCH
2-CH
2-, O-CH
2CH
2CH
2-
oder
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s
steht,
wobei r und s beliebige variable positive ganzzahlige Werte annehmen, die gleich oder
verschieden sind; und Y
a für eine Einfachbindung, die Formel:
-Z-(CH
2)
p-(O)
m-CO-
steht,
wobei Z für O, S oder NH steht; p einen ganzzahligen Wert von 1 bis 6 annimmt; und
m einen Wert von 0 oder 1 annimmt, oder für die Formel:
-(CO)
ma-(CH
2)
t-CO-
steht,
wobei für ma die gleiche Definition gilt wie für das oben definierte m; und t einen
ganzzahligen Wert von 0 bis 6 annimmt.
9. Chemisch modifiziertes Polypeptid, umfassend ein Polypeptid mit menschliche Granulozyten-Kolonie-stimulierender
Aktivität, wobei wenigstens eine Aminogruppe in dem Molekül gebunden ist an eine Gruppe
der Formel (Ib):

wobei R
1 für eine Alkyl- oder Alkanoylgruppe steht; M für die Formel
-OCH
2CH
2-, -OCH
2CH
2CH
2-
oder
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s-
steht,
wobei r und s beliebige variable positive ganzzahlige Werte annehmen, die gleich oder
verschieden sind; n jeden beliebigen variablen positiven ganzzahligen Wert annimmt;
X für eine Einfachbindung, O, NH oder S steht; R
3b für OH, Halogen oder die Formel :
-X
a-(M
a)
na-R
1a
steht,
wobei für X
a, M
a, R
1a und na die gleiche Definition gilt wie für das oben definierte X, M, R
1 beziehungsweise n; Z für O, S oder NH steht; und p einen ganzzahligen Wert von 1
bis 6 annimmt.
10. Chemisch modifiziertes Polypeptid gemäß Anspruch 9, wobei das Polypeptid mit menschliche
Granulozyten-Kolonie-stimulierender Aktivität eine Aminosäuresequenz gemäß SEQ ID
NO:1 oder eine Aminosäuresequenz umfasst, die ausgewählt ist unter der Gruppe (a)
bis (I):
(a) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die vierte Aminosäure, Leucin, durch
Glutaminsäure ersetzt ist, die fünfte Aminosäure, Glycin, durch Lysin ersetzt ist,
die sechste Aminosäure, Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure,
Cystein, durch Serin ersetzt ist;
(b) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Valin ersetzt ist, die vierte Aminosäure, Leucin, durch Isoleucin ersetzt ist,
die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(c) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Cystein ersetzt ist, die vierte Aminosäure, Leucin, durch Isoleucin ersetzt
ist, die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(d) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Tyrosin ersetzt ist, die vierte Aminosäure, Leucin, durch Isoleucin ersetzt
ist, die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(e) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Arginin ersetzt ist, die vierte Aminosäure, Leucin, durch Threonin ersetzt ist,
die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(f) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die vierte Aminosäure, Leucin, durch
Threonin ersetzt ist, die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die
sechste Aminosäure, Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure,
Cystein, durch Serin ersetzt ist;
(g) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Asparagin ersetzt ist, die vierte Aminosäure, Leucin, durch Glutaminsäure ersetzt
ist, die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(h) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Isoleucin ersetzt ist, die vierte Aminosäure, Leucin, durch Threonin ersetzt
ist, die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(i) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Serin ersetzt ist, die vierte Aminosäure, Leucin, durch Threonin ersetzt ist,
die fünfte Aminosäure, Glycin, durch Arginin ersetzt ist, die sechste Aminosäure,
Prolin, durch Serin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist;
(j) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die fünfte Aminosäure, Glycin, durch
Arginin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin ersetzt ist;
(k) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die zweite Aminosäure, Threonin,
durch Alanin ersetzt ist, die vierte Aminosäure, Leucin, durch Threonin ersetzt ist,
die fünfte Aminosäure, Glycin, durch Tyrosin ersetzt ist, die sechste Aminosäure,
Prolin, durch Arginin ersetzt ist und die achtzehnte Aminosäure, Cystein, durch Serin
ersetzt ist; und
(l) eine Aminosäuresequenz, wobei in SEQ ID NO:1 die achtzehnte Aminosäure, Cystein,
durch Serin ersetzt ist.
11. Zusammensetzung zur Behandlung von Patienten mit verringerten Plättchenzahlen, die
das chemisch modifizierte Polypeptid gemäß Anspruch 9 oder 10 in der pharmazeutisch
verträglichen Dosierungsform mit einem pharmazeutisch verträglichen Träger umfasst.
12. Verwendung des chemisch modifizierten Polypeptids gemäß Anspruch 9 oder 10 zur Herstellung
von pharmazeutischen Zusammensetzungen zur Steigerung der Plättchenbildung bei Patienten
mit verringerten Plättchenzahlen.
1. Utilisation d'un polypeptide modifié chimiquement où au moins un groupe parmi le groupe
amino, carboxyle, mercapto ou guanidino dans la molécule d'un polypeptide ayant une
activité stimulant les colonies de granulocytes humains est modifié chimiquement avec
un dérivé de polyalkylèneglycol ou un copolymère styrène-acide maléique pour la production
de compositions pharmaceutiques pour favoriser la production de plaquettes des patients
ayant des numérations plaquettaires diminuées.
2. Utilisation du polypeptide modifié chimiquement selon la revendication 1, où le polypeptide
ayant une activité stimulant les colonies de granulocytes humains comprend une séquence
d'aminoacides de SEQ ID NO : 1 ou une séquence d'aminoacides choisie dans le groupe
de (a) à (I) :
(a) une séquence d'aminoacides où le quatrième aminoacide, la leucine, est remplacé
par l'acide glutamique, le cinquième aminoacide, la glycine, est remplacé par la lysine,
le sixième aminoacide, la proline, est remplacé par la sérine et le dix-huitième aminoacide,
la cystéine, est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(b) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par la valine, le quatrième aminoacide, la leucine, est remplacé par l'isoleucine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(c) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par la cystéine, le quatrième aminoacide, la leucine, est remplacé par l'isoleucine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(d) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par la tyrosine, le quatrième aminoacide, la leucine, est remplacé par l'isoleucine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(e) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par l'arginine, le quatrième aminoacide, la leucine, est remplacé par la thréonine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(f) une séquence d'aminoacides où le quatrième aminoacide, la leucine, est remplacé
par la thréonine, le cinquième aminoacide, la glycine, est remplacé par l'arginine,
le sixième aminoacide, la proline, est remplacé par la sérine et le dix-huitième aminoacide,
la cystéine, est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(g) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par l'asparagine, le quatrième aminoacide, la leucine, est remplacé par l'acide glutamique,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(h) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par l'isoleucine, le quatrième aminoacide, la leucine, est remplacé par la thréonine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(i) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par la sérine, le quatrième aminoacide, la leucine, est remplacé par la thréonine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(j) une séquence d'aminoacides où le cinquième aminoacide, la glycine, est remplacé
par l'arginine et le dix-huitième aminoacide, la cystéine, est remplacé par la sérine,
respectivement dans SEQ ID NO : 1 ;
(k) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par l'alanine, le quatrième aminoacide, la leucine, est remplacé par la thréonine,
le cinquième aminoacide, la glycine, est remplacé par la tyrosine, le sixième aminoacide,
la proline, est remplacé par l'arginine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ; et
(l) une séquence d'aminoacides où le dix-huitième aminoacide, la cystéine, est remplacé
par la sérine dans SEQ ID NO : 1.
3. Utilisation du polypeptide modifié chimiquement selon la revendication 1 ou 2, où
un dérivé de polyalkylèneglycol est un dérivé de polyéthylèneglycol, un dérivé de
polypropylèneglycol, ou un dérivé de copolymère polyéthylèneglycol-polypropylèneglycol.
4. Utilisation du polypeptide modifié chimiquement selon la revendication 1 ou 2, où
l'agent modificateur chimique du groupe amino est un dérivé de polyalkylèneglycol
ayant la formule (I) :
R
1-(M)
n-X-R
2 (I)
où R
1 représente un groupe alkyle ou alcanoyle ; M présente la formule :
-OCH
2CH
2-, -OCH
2CH
2CH
2-
ou
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s-
où r et s ont des valeurs entières positives variables quelconques, qui sont identiques
ou différentes ; n a des valeurs entières positives variables quelconques ; X représente
une simple liaison, O, NH ou S ; et R
2 représente la formule :

où R
3 représente OH, un halogène ou la formule :
X
a-(M
a)
na-R
1a
où X
a, M
a, R
1a et na ont la même définition que X, M, R
1 et n définis ci-dessus, respectivement ; et Y représente un halogène ou la formule
:
-Z-(CH
2)
p-(O)
m-W
où Z représente O, S ou NH ; W représente un groupe carboxyle, un dérivé actif de
celui-ci, ou la formule :

où R
4 représente un groupe alkyle ; et Hal représente un halogène ; p a une valeur entière
de 1 à 6 ; et m a une valeur de 0 ou 1,
-(CO)
ma-(CH
2)
t-W
a
où W
a et ma ont la même définition que W et m définis ci-dessus, respectivement ; et t
a une valeur entière de 0 à 6, ou

où Hal
a, pa et R
4a ont la même définition que Hal, p et R
4 définis ci-dessus, respectivement, ou un dérivé du copolymère styrène-acide maléique
ayant la formule (II) :

où u et v ont des valeurs entières positives variables quelconques, qui sont identiques
ou différentes ; et R
5 représente un atome d'hydrogène ou un groupe alkyle.
5. Utilisation du polypeptide modifié chimiquement selon la revendication 1 ou 2, où
l'agent modificateur chimique du groupe carboxyle est un dérivé de polyalkylèneglycol
ayant la formule (III) :
R1b-(Mb)nb-NH2 (III)
où Mb, R1b et nb ont la même définition que M, R1 et n définis ci-dessus, respectivement.
6. Utilisation du polypeptide modifié chimiquement selon la revendication 1 ou 2, ou
l'agent modificateur chimique du groupe mercapto est un dérivé de polyalkylèneglycol
ayant la formule (IV) :

où M
c, R
1c et nc ont la même définition que M, R
1 et n définis ci-dessus, respectivement, où un copolymère styrène-acide maléique ayant
la formule (V) :

où R
5a, ua et va ont la même définition que R
5, u et v définis ci-dessus, respectivement, et l'un parmi Q et R représente un groupe
carboxyle et l'autre parmi Q et R représente la formule :

où pb a la même définition que p défini ci-dessus.
7. Utilisation du polypeptide modifié chimiquement selon la revendication 1 ou 2, où
l'agent modificateur chimique du groupe guanidino est un dérivé de polyalkylèneglycol
ayant la formule (VI) :

où q a une valeur de 1 ou 2, et M
d, R
1d et nd ont la même définition que M, R1 et n définis ci-dessus, respectivement.
8. Utilisation d'un polypeptide modifié chimiquement pour la production de compositions
pharmaceutiques pour favoriser la production de plaquettes des patients ayant des
numérations plaquettaires diminuées où au moins l'un des groupes amino dans la molécule
du polypeptide ayant une activité stimulant les colonies de granulocytes humains est
lié à un groupe représenté par la formule (Ia) suivante :
R
1-(OCH
2CH
2)
n-X-R
2a- (Ia)
où R
1 représente un groupe alkyle ou alcanoyle ; n a une valeur entière positive variable
quelconque ; X représente une simple liaison, O, NH ou S ; R
2a représente la formule :

où R
3a représente OH, un halogène, ou la formule :
-X
a-(M
a)
na-R
1a
où X
a, R
1a et na ont la même définition que X, R
1 et n définis ci-dessus, respectivement ; M
a représente la formule :
-OCH
2CH
2-, -OCH
2CH
2CH
2-
ou
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s-
où r et s ont des valeurs entières positives variables quelconques, qui sont identiques
ou différentes ; et Y
a représente une simple liaison, la formule :
-Z-(CH
2)
p-(O)
m-CO-
où Z représente O, S ou NH ; p a une valeur entière de 1 à 6 ; et m a une valeur de
0 ou 1, ou la formule :
-(CO)
ma-(CH
2)
t-CO-
où ma a la même définition que m défini ci-dessus ; et t a une valeur entière de 0
à 6.
9. Polypeptide modifié chimiquement comprenant un polypeptide ayant une activité stimulant
les colonies de granulocytes humains où au moins un groupe amino dans la molécule
est lié à un groupe de formule (Ib) :

où R
1 représente un groupe alkyle ou alcanoyle ; M représente la formule :
-OCH
2CH
2-, -OCH
2CH
2CH
2-
ou
-(OCH
2CH
2)
r-(OCH
2CH
2CH
2)
s-
où r et s ont des valeurs entières positives variables quelconques, qui sont identiques
ou différentes ; n a une valeur entière positive variable quelconque ; X représente
une simple liaison, O, NH ou S; et R
3b représente OH, un halogène, ou la formule :
-X
a-(M
a)
na-R
1a
où X
a, M
a, R
1a et na ont la même définition que X, M, R
1 et n définis ci-dessus, respectivement ; Z représente O, S ou NH ; et p a une valeur
entière de 1 à 6.
10. Polypeptide modifié chimiquement selon la revendication 9, où le polypeptide ayant
une activité stimulant les colonies de granulocytes humains comprend une séquence
d'aminoacides de SEQ ID NO : 1 ou une séquence d'aminoacides choisie dans le groupe
de (a) à (I) :
(a) une séquence d'aminoacides où le quatrième aminoacide, la leucine, est remplacé
par l'acide glutamique, le cinquième aminoacide, la glycine, est remplacé par la lysine,
le sixième aminoacide, la proline, est remplacé par la sérine et le dix-huitième aminoacide,
la cystéine, est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(b) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par la valine, le quatrième aminoacide, la leucine, est remplacé par l'isoleucine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(c) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par la cystéine, le quatrième aminoacide, la leucine, est remplacé par l'isoleucine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(d) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par la tyrosine, le quatrième aminoacide, la leucine, est remplacé par l'isoleucine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(e) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par l'arginine, le quatrième aminoacide, la leucine, est remplacé par la thréonine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(f) une séquence d'aminoacides où le quatrième aminoacide, la leucine, est remplacé
par la thréonine, le cinquième aminoacide, la glycine, est remplacé par l'arginine,
le sixième aminoacide, la proline, est remplacé par la sérine et le dix-huitième aminoacide,
la cystéine, est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(g) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par l'asparagine, le quatrième aminoacide, la leucine, est remplacé par l'acide glutamique,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(h) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par l'isoleucine, le quatrième aminoacide, la leucine, est remplacé par la thréonine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(i) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par la sérine, le quatrième aminoacide, la leucine, est remplacé par la thréonine,
le cinquième aminoacide, la glycine, est remplacé par l'arginine, le sixième aminoacide,
la proline, est remplacé par la sérine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ;
(j) une séquence d'aminoacides où le cinquième aminoacide, la glycine, est remplacé
par l'arginine et le dix-huitième aminoacide, la cystéine, est remplacé par la sérine,
respectivement dans SEQ ID NO : 1 ;
(k) une séquence d'aminoacides où le second aminoacide, la thréonine, est remplacé
par l'alanine, le quatrième aminoacide, la leucine, est remplacé par la thréonine,
le cinquième aminoacide, la glycine, est remplacé par la tyrosine, le sixième aminoacide,
la proline, est remplacé par l'arginine et le dix-huitième aminoacide, la cystéine,
est remplacé par la sérine, respectivement dans SEQ ID NO : 1 ; et
(l) une séquence d'aminoacides où le dix-huitième aminoacide, la cystéine, est remplacé
par la sérine dans SEQ ID NO : 1.
11. Composition pour traiter les patients ayant des numérations plaquettaires diminuées,
qui comprend le polypeptide modifié chimiquement selon la revendication 9 ou 10 dans
la forme galénique pharmaceutiquement acceptable avec un vecteur pharmaceutiquement
acceptable.
12. Utilisation du polypeptide modifié chimiquement selon la revendication 9 ou 10, pour
la production de compositions pharmaceutiques pour favoriser la production de plaquettes
des patients ayant des numérations plaquettaires diminuées.