(19)
(11) EP 0 750 549 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
18.12.2002 Bulletin 2002/51

(21) Application number: 95915394.1

(22) Date of filing: 17.03.1995
(51) International Patent Classification (IPC)7B32B 3/00, B32B 7/00, B32B 15/00, C23C 18/31
(86) International application number:
PCT/US9503/574
(87) International publication number:
WO 9502/5008 (21.09.1995 Gazette 1995/40)

(54)

BISMUTH COATING PROTECTION FOR COPPER

SCHUTZBESCHICHTUNG FÜR KUPFER AUS BISMUTH

REVETEMENT PROTECTEUR A BASE DE BISMUTH DESTINE AU CUIVRE


(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 17.03.1994 US 214050

(43) Date of publication of application:
02.01.1997 Bulletin 1997/01

(73) Proprietor: FRY'S METALS, INC.
Providence, RI 02903 (US)

(72) Inventor:
  • PIANO, Anthony M.
    Lodi, NJ 07644 (US)

(74) Representative: Bjerre, Nils B.J. et al
AWAPATENT AB, P.O. Box 5117
200 71 Malmö
200 71 Malmö (SE)


(56) References cited: : 
US-A- 5 306 335
   
  • DATABASE WPI Week 7809 27 June 1977 Derwent Publications Ltd., London, GB; AN 78-17296a XP002018818 & SU-A-549 500 (BUBNOV)
  • DATABASE WPI Week 7938 18 December 1978 Derwent Publications Ltd., London, GB; AN 79-69378b XP002018819 & SU-A-637 457 (BUBNOV)
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] The present invention is related to the protection of copper-containing surfaces, and is more particularly concerned with the novel use of protective bismuth coatings for such surfaces and with methods of coating application. The invention is especially advantageous in connection with the protection of copper surfaces of substrates used in electronics assembly, such as printed circuit substrates.

Background of the Invention



[0002] The use of protective coatings for copper-containing surfaces is well known. Coatings may be applied for such purposes as to prevent tarnishing, to improve/preserve solderability, to improve corrosion resistance, and to reduce contact resistance between mating parts.

[0003] Printed circuit substrates for electronics applications, for example, generally include copper connectors such as copper pads for the mounting of surface-mount type electronic devices and/or copper plated through holes for receiving the leads of pin-in-hole type electronic devices. The surfaces of such connectors are commonly provided with a lead-tin alloy coating in practice. Tin-containing coatings are problematic, however, in that they may degrade with time due to the formation of copper-tin intermetallics. These intermetallic compounds form at the boundary between the copper and tin-containing coating and grow through the coating. The inter-metallic compounds form even at room temperature. Heating, such as during soldering, serves to accelerate the process. The problem of intermetallic compound formation becomes even more significant in connection with emerging electronics manufacturing technologies, wherein printed circuit substrates are subjected to multiple heating cycles.

[0004] Organic coatings, such as imidazoles, benzimidazoles, and triazoles have been considered as possible alternatives to lead-tin coatings. However, such coatings are subject to oxidation or volatilization when exposed to the heat of electronics manufacturing processes, with a resultant loss of protection. Moreover, organic coatings fall short of hole-fill requirements after wave soldering, particularly with the use of no-clean type soldering fluxes which are seeing increasing use in the electronics industry.

[0005] DATABASE WPI Week 7938 18 December 1978 Derwent Publications Ltd., London, GB; AN 79-69378b XP002018819 & SU-A-637 457 (BUBNOV) discloses an aqueous solution for chemical deposition of bismuth coatings on copper and its alloys, for use in radio, electronics and computer engineering, which is used to prepare surfaces for metal spraying and soldering. It comprises Bi(III)salt, mineral acid, sodium nitrate, ammonium chloride, thiourea in well defined amounts.

Summary of the Invention



[0006] In accordance with the present invention, it has been discovered that the above-discussed deficiencies of tin-containing and organic coatings can be overcome, and that superior and cost-effective surface protection can be achieved, through the use of bismuth as a protective coating material. Bismuth has been found to provide a number of significant advantages over tin-containing and organic coatings. Unlike tin-containing coatings, bismuth does not form intermetallics with copper. Thus, a bismuth coating is not subject to the degradation by intermetallics which characterizes tin-containing coatings. Bismuth is also not subject to the oxidation/volatilization problems which characterize organic coatings. Furthermore, due to its high surface energy, bismuth exhibits highly effective wetting during wave soldering, drawing molten solder up into plated through-holes by capillary force to provide excellent hole-fill. When a bismuth coating is applied by so-called immersion plating, as described hereinafter, the invention achieves a very flat coating which is ideally suited for surface mount assembly.

[0007] In accordance with another of its principal aspects, the invention provides a method of protecting a copper-containing surface, comprising the step of coating the surface with bismuth.

[0008] In accordance with still another of its principal aspects, the invention provides a method of protecting a copper-containing surface, wherein the surface is treated with a solution containing an acid solubilized bismuth salt and an iodide wherein the pH of said solution does not exceed 4.

[0009] The foregoing and other aspects of the invention will be more fully appreciated from the description of the preferred embodiments hereinafter.

Description of the Preferred Embodiments



[0010] The present invention will now be described in detail with respect to the illustrative case of protecting a copper surface, such as of a printed circuit substrate or the like, although it will be readily appreciated that the invention is not limited to such applications.

[0011] Broadly speaking, in accordance with the preferred practice of the invention, bismuth is deposited on the copper surface in an immersion plating bath (solution) containing a acid solubilized bismuth salt and an iodide wherein the pH of said bath (solution) does not exceed 4. Immersion plating is a well known process which involves the use of a plating bath containing one or more ingredients which act to change the relative electropotentials of the base metal and the plating metal such that a plating reaction proceeds in which atoms on the surface of the base metal are displaced by atoms of the plating metal, thereby forming a deposit of the plating metal on the base metal. Although other coating techniques, such as electroplating or electroless plating, may be useful to provide a bismuth coating on copper or copper-containing surfaces, the immersion plating process is used in the practice of the invention because it requires no external electric current and no reducing agent for metal deposition to occur, in addition to providing a very flat coating which is highly desirable for surface mounting of components.

[0012] The bismuth used in the coating solution of the present invention is preferably in the form of a bismuth salt such as bismuth trioxide, and the like. The bismuth salt is dissociated in an acidic solution to form bismuth ions that are then deposited on the copper surface.

[0013] Preferred coating solutions in accordance with the present invention are generally strongly acidic, with a pH most preferably less than 1, and contain halide, such as chloride or bromide. Although the invention may be practiced with plating solutions of higher pH, the plating rate will be reduced. The pH should ordinarily be less than about 3. A pH exceeding 4 is not preferred, because at such levels satisfactory bismuth plating rate and coating thickness may not be achieved. It is noteworthy that the preferred low pH formulations in accordance with the invention are characteristically stable and therefore do not require the addition of stabilizers, such as ammonium ion and the like.

[0014] The halide is quite conveniently provided as a constituent of the acid, hydrochloric acid being preferred. Another suitable halogen-acid is hydrobromic acid. The acid solubilizes the bismuth salt, and the halide raises the potential of the copper above that of bismuth, thus allowing the plating reaction to proceed. (It is knows that halides complex with copper in strongly acidic conditions.) The use of non-halogen acids, such as sulfuric acid, would of course require a suitable supplemental source of halide, as will be appreciated by those skilled in the art. The halide is present in an amount effective to cause the bismuth to plate substantially uniformly over the entire copper surface to be coated, preferably in an amount substantially in excess of the stoichiometric amount (of bismuth).

[0015] It has been found in the practice of the invention that exposure of the copper surface to iodide greatly enhances the adhesion of the deposited bismuth coating, as well as significantly improving the metallic appearance of the coating. The mechanism by which these improved properties are brought about is not fully understood. It is believed, however, that the iodide complexes with the copper surface and operates to direct the course of the plating reaction so as to ensure optimum crystal structure of the subsequent bismuth deposit. The iodide is preferably provided in the form of potassium iodide, sodium iodide, hydriodic acid, or organic iodide. The iodide may be added either directly to the plating solution, or to a pre-plating solution with which the copper surface is treated prior to immersion plating. When the iodide is incorporated directly in the plating solution, a concentration, as iodide, of from about .04 to about 4 g/l is preferred, with from about .1 to about .2 g/l being most preferred.

[0016] Wetting agents, preferably in an amount less than 1 g/l, may be added to lower the surface tension of the solution and to ensure uniform wetting of surfaces.

[0017] Basic parameters of preferred plating bath formulations of the invention are as follows:
Bismuth Salt 5 - 20 g/l
Halogen Acid (concentrated) 50 - 500 ml/l
Iodide (as iodide) 0 - 4 g/l
Wetting Agent, etc. < 1 g/l
Deionized Water (remainder)
pH < 1 (most preferred)
Operating Temperature 49°C - 93°C (120° - 200° F)
60°C - 71°C (140° - 160° F) most preferred)
Immersion Time 30 sec - 5 min


[0018] The following parameters are exemplary of specific working baths in accordance with the foregoing basic parameters:
Bismuth Trioxide 5 - 20 g/l
Hydrochloric Acid, 37% 50 - 200 ml/l
Potassium Iodide .05 - 5.0 g/l
Wetting Agent 0 - 1 g/l
Deionized Water (remainder)
pH <1
Operating Temperature 49°C - 93°C (120° - 200° F)
Immersion Time 30 sec - 5 min


[0019] Grain refiners and other additives may also be used in minor amounts, typically less than 1 g/l, as required to obtain the desired characteristics. Crystal structure, deposit properties and thickness can be modified by varying the above operating parameters.

[0020] Although not essential to the practice of the present invention, the addition of certain complexing agents allows for the adjustment of the deposition rate and modification of the metallic characteristics and the durability of the deposited bismuth coating. A modified version of the basic immersion plating formula can be prepared by incorporating glycolic acid, monoethanolamine (or monoethanolamine hydrochloride), N-Methyl pyrolidone or combinations thereof.

[0021] Such complexing agents or combinations of said complexing agents apparently act to control the crystal growth of the subsequent deposit, probably by altering the reaction path at the reaction interface. The microfine grain structure so produced may be preferable over that produced with the basic formulation. An exemplary concentration range of from about 5 percent to about 30 percent total of said complexing agent(s) is preferred, although other concentrations as well as other complexing agents are also contemplated as being within the scope of the present invention.

[0022] By stripping bismuth coated coupons of known area and using subsequent standard UV/Vis analysis techniques, coating thickness has been measured between 2,54 x 10-6 cm (1 micro-inch) and 25,4 x 10-6 cm (10 micro-inches), depending on plating bath composition, operating temperature and immersion time.

[0023] In addition to the immersion bismuth itself, standard pre-treatment steps such as cleaning and copper microetching should be performed to ensure good adhesion of the bismuth deposit to the copper surfaces.

[0024] A further understanding of the present invention is presented in the following non-limiting examples.

Example 1



[0025] Three 8,9 cm (3 1/2") x 10,2 cm (4") FR-4 test panels were processed using the present invention. Each panel contained 50 plated through-holes of various diameters for hole-fill evaluation after wave solder and solid copper pad areas for solderability testing. The panels were all processed using the following sequence of operations:

1. Clean (1 minute)

2. Tap Water Rinse (30 seconds)

3. Microstch (2 minutes)

4. Tap Water Rinse

5. Sulfuric Acid, 10% (30 seconds)

6. Tap Water Rinse

7. Immersion Bismuth (1 minute)

8. Tap Water Rinse (30 seconds)

9. Dry



[0026] Bath 1 was a room temperature isopropanol rinse. Its purpose was to remove fingerprints, grease and other contaminants from copper surfaces. Those skilled in the art will appreciate that other suitable acid or alkaline cleaning systems may be substituted.

[0027] Bath 3 contained 100 g/l of sodium persulfate and 1/2% by volume concentrated sulfuric acid. The remainder was deionized water. Its purpose was to remove about 102 x 10-6 cm (40 micro-inches) of copper from the test substrate in order to ensure proper adhesion of the subsequent bismuth deposit. This bath was also used at room temperature. Those skilled in the art will appreciate that other types of microetchants, including, but not limited to, sulfuric acid/hydrogen peroxide and ferric chloride based systems may be substituted.

[0028] Bath 5 contained 10% by volume concentrated sulfuric acid. The remainder was deionized water. Its purpose was to remove any persulfate residue remaining on the copper surfaces from bath 3. This bath was used at room temperature.

[0029] Bath 7 was prepared by solubilizing 5 g of bismuth trioxide in 50 ml of hydrochloric acid, 37%. Sufficient water to make 1 liter was then added. 1.25 g of potassium iodide was added to the final solution. The bath, which had a pH of .65, was then heated to 71°C (160° F).

[0030] Baths 2, 4, 6 and 8 were flowing rinses to prevent carryover of chemicals from previous baths.

[0031] Following this process sequence, the test panels were then subjected to 0, 1, 2, and 3 IR reflow cycles to simulate solder paste application and other assembly processes. The following parameters were used for each cycle:
Preheat: 110° C Conveyor Speed: 33,5 cm/min (13.2 in/min)
Heat Stage Top Bottom
1 125° C 125° C
2 200° C 200° C
3 325° C 325° C


[0032] Following IR cycling, the test panels were roller coated with NR 300 A2 water based no-clean flux. This flux is available from Alpha Metals, Inc., Jersey City, New Jersey.

[0033] The panels were then passed through a wave solder machine at 1,5 m/min (5.00 feet per minute). The three preheat stations were each set at 191°C (375° F). The solder temperature was 260°C (500° F). After wave solder the following observations were made regarding hole-fill and solderability.
IR Cycles Hole-Fill (%) Solderability
0 100 Excellent
1 100 Excellent
2 100 Excellent
3 90 Excellent
   % hole-fill refers to the number of holes that exhibit complete solder filling from one side of the panel to the other side (with total land wetting) divided by the total number of holes in the panel times 100.

Example 2



[0034] An identical test panel substrate was treated as in Example 1 to form a substantially uniform bismuth deposit in the through-holes and on the copper surfaces. However, the potassium iodide was applied in a separate solution prior to the bismuth plating solution. This pre-plating solution was prepared as follows:

dissolve approximately 5 g per liter of potassium iodide in deionized water;

add approximately 50 ml per liter of hydrochloric acid to said solution;

heat said solution to approximately 66°C (150° F).



[0035] The test substrate was pre-cleaned as in Example 1, immersed in this pre-plating solution for 5 minutes, rinsed in tap water and then immersed in the bismuth plating solution as in Example 1 but without the added potassium iodide. Hole-fill and solderability tests were accomplished as described in Example 1 with comparable results.

Example 3



[0036] An identical test panel substrate was treated as in Example 1 to form a substantially uniform bismuth coating in the through-holes and on the copper surfaces. The bismuth plating solution was prepared by substituting bismuth (III) chloride for bismuth (III) trioxide on a mole for mole basis. Hole-fill and solderability tests were accomplished as in Example 1 with comparable results.

Example 4



[0037] An identical test panel substrate was treated as in Example 1 to form a substantially uniform bismuth deposit in the through-holes and on the copper surfaces of the substrate. However, the immersion plating solution of bath 7 was prepared as follows:

solubilize 5 grams of bismuth trioxide in 200 ml of hydrochloric acid, 37%;

add 100 grams of glycolic acid, 70% to said solution;

add 100 grams of N-Methyl Pyrolidone to said solution;

add 100 grams of monoethanolamine to said solution;

add 1 gram of potassium iodide to said solution;

add sufficient deionized water to make 1 liter of said solution (pH = .95);

heat said solution to approximately 66°C (150° F).



[0038] The test substrate was pre-cleaned as in Example 1, immersed in this plating solution for 2 minutes, rinsed in tap water and dried. Subsequent examination of the resultant deposit showed it to be uniform, shiny and more metallic in appearance than that obtained in Example 1. Hole-fill and soldering tests were also accomplished as in Example 1 with comparable results.

[0039] In accordance with an especially surprising discovery of the present invention, it has been found that the pre-addition of copper ions to the immersion plating solution significantly enhances the bismuth deposit thickness (plating rate) and that the resistance of the deposit to humidity aging at 85°C/85% relative humidity is correspondingly increased. The propensity for color shift from grayish toward pink, which is directly related to humidity aging, is also significantly reduced. Copper can be added as any type of soluble salt including but not limited to copper chloride, copper sulfate, copper acetate, etc. Copper additions up to amounts in excess of 1,000 ppm are effective. Added copper concentrations of 250-500 ppm, for instance, provide excellent results, as will be evident from Example 5.

Example 5



[0040] Test coupons that were coated from a fresh solution, i.e., no added copper, exhibited visual color change after two weeks at ambient conditions, while coupons coated using solutions containing 250 and 500 ppm of copper remained totally gray after about 10 weeks under the same ambient conditions. The coating solutions had the same basic formulation as given in Example 1, except that 5 g/l of EDTA was added as a complexing agent. Coating was conducted in accordance with the procedure set forth in Example 1.

[0041] The bismuth deposit thickness measurements as a function of plating time and copper concentration are as follows:
Deposit Thickness 16 x 2,54 x 10-6 cm (micro-inches)
Plating Time (seconds) Copper Concentration (ppm)
  0 (Fresh) 250 500
15 2.5 6.7 9.8
45 3.2 6.3 9.1
75 3.9 5.5 11.8



Claims

1. A coating composition that is effective for immersion plating a coating of bismuth metal onto a copper containing surface, said composition comprising an acid solubilized bismuth salt, characterized in that it includes at least one halide and has a pH not exceeding 4.
 
2. The coating composition of claim 1, characterized in that it comprises two halides.
 
3. The coating composition of any one of claims 1-2, characterized in that one halide is provided as a constituent of a halogen acid.
 
4. The coating composition of claim 3, characterized in that said halogen acid is selected from the group consisting of hydrochloric acid and hydrobromic acid.
 
5. The coating composition of any one of claims 1-4, characterized in that one halide is an iodide.
 
6. The coating composition of claim 5, characterized in that said iodide is selected from the group consisting of potassium iodide, sodium iodide, hydroiodic acid, and organic iodide.
 
7. The coating composition of any one of claims 1-6, characterized in that said bismuth salt is selected from the group consisting of bismuth trioxide and bismuth chloride.
 
8. The coating composition of any one of claims 1-7, in the form of an aqueous solution.
 
9. The coating composition of any one of claims 1-8, further comprising at least one complexing agent.
 
10. The coating composition of claim 9, characterized in that said complexing agent is selected from the group consisting of glycolic acid, N-methyl pyrolidone, monoethanolamine, and monoethanolamine hydrochloride.
 
11. The coating composition of any one of claims 1-10, further comprising said halide(s) in excess of the stoichiometric amount of bismuth.
 
12. The coating composition of any one of claims 1-11, further comprising a predetermined addition of copper in a concentration effective to enhance the bismuth plating rate of composition.
 
13. The coating composition of claim 12, characterized in that the concentration of copper is 250-500 ppm.
 
14. The coating composition of any one of claims 1-13, characterized in that the pH is less than 1.
 
15. The composition of any one of claims 1-14, wherein the concentration of bismuth salt is 5-20 grams/litre.
 
16. The composition of any one of claims 5-15, wherein the concentration of iodide (as iodide) is 0,04-4 grams/litre.
 
17. A method of protecting a copper-containing surface, characterized in
   providing a coating composition in accordance with any one of claims 1-16; and
   immersing said surface with said coating composition to form a deposit of bismuth metal on said surface.
 
18. The method of claim 17, characterized in that said coating composition is heated.
 
19. The method of claim 18, characterized in that said coating composition is heated to a temperature from 49°C - 93°C.
 
20. The method of claim 19, characterized in that said coating composition is heated to a temperature from 60°C - 71°C.
 
21. The method of claim 17, characterized in that said surface is a copper surface for use in an electrical circuit.
 
22. A method of protecting a copper-containing surface, characterized by:

immersing said surface with a pre-plating solution containing iodide; and

after said immersing with said pre-plating solution, immersing said surface with a plating solution containing a bismuth salt dissolved in an acid, and water, and optionally one or more of iodide, complexing agent and copper, to form a bismuth metal coating on said surface.


 
23. The method of claim 22, characterized in that said surface is a copper surface for use in an electrical circuit.
 
24. The method of claim 22, characterized in that said surface is cleaned and etched prior to immersion with said pre-plating solution.
 
25. The method of claim 22, characterized in that said plating solution contains halide.
 
26. The method of claim 25, characterized in that the halide is a constituent of a halogen acid.
 
27. The method of claim 25, characterized in that the halide is present in excess of the stoichiometric amount of bismuth.
 
28. The method of claim 22, characterized in that said plating solution contains a complexing agent.
 
29. The method of claim 22, characterized in that said plating solution is heated to a temperature from 49°C - 93°C.
 
30. The method of claim 29, characterized in that said plating solution is heated to a temperature from 60°C - 71°C.
 


Ansprüche

1. Beschichtungszusammensetzung, welche zum Aufbringen einer Beschichtung aus Wismut-Metall auf eine Kupfer enthaltende Oberfläche mittels Tauchbeschichtung wirksam ist, wobei die Zusammensetzung ein säuregelöstes Wismutsalz enthält,
dadurch gekennzeichnet,
daß sie wenigstens ein Halogenid enthält und einen pH-Wert aufweist, der nicht größer ist als 4.
 
2. Beschichtungszusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß sie zwei Halogenide enthält.
 
3. Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß ein Halogenid in Form eines Konstituenten einer Halogensäure vorhanden ist.
 
4. Beschichtungszusammensetzung nach Anspruch 3, dadurch gekennzeichnet, daß die Halogensäure aus der Gruppe bestehend aus Salzsäure und Bromwasserstoffsäure ausgewählt ist.
 
5. Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein Halogenid ein lodid ist.
 
6. Beschichtungszusammensetzung nach Anspruch 5, dadurch gekennzeichnet, daß das lodid aus der Gruppe bestehend aus Kaliumiodid, Natriumiodid, lodwasserstoffsäure und organischem lodid ausgewählt ist.
 
7. Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Wismutsalz aus der Gruppe bestehend aus Wismuttrioxid und Wismutchlorid ausgewählt ist.
 
8. Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie in Form einer wässrigen Lösung vorliegt.
 
9. Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie weiterhin wenigstens einen Komplexbildner enthält.
 
10. Beschichtungszusammensetzung nach Anspruch 9, dadurch gekennzeichnet, daß der Komplexbildner aus der Gruppe bestehend aus Glykolsäure, N-Methylpyrolidon, Monoethanolamin und Monoethanolaminhydrochlorid ausgewählt ist.
 
11. Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sie das/die Halogenid(e) im Überschuß zu der stöchiometrischen Menge an Wismut enthält.
 
12. Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß sie weiterhin eine vorbestimmte Zugabe an Kupfer in einer Konzentration enthält, die wirksam ist, die Wismut-Beschichtungsrate der Zusammensetzung zu steigern.
 
13. Beschichtungszusammensetzung nach Anspruch 12, dadurch gekennzeichnet, daß die Konzentration des Kupfers 250 bis 500 ppm beträgt.
 
14. Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 13; dadurch gekennzeichnet, daß der pH-Wert kleiner als 1 ist.
 
15. Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Konzentration des Wismutsalzes 5 bis 20 Gramm/Liter beträgt.
 
16. Beschichtungszusammensetzung nach einem der Ansprüche 5 bis 15, dadurch gekennzeichnet, daß die Konzentration des lodids (als lodid) 0,04 bis 4 Gramm/Liter beträgt.
 
17. Verfahren zum Schützen einer Kupfer enthaltenden Oberfläche,
gekennzeichnet durch
Bereitstellen einer Beschichtungszusammensetzung nach einem der Ansprüche 1 bis 16 und
Tauchen der Oberfläche in die Beschichtungszusammensetzung, um eine Abscheidung aus Wismut-Metall auf der Oberfläche zu bilden.
 
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß die Beschichtungszusammensetzung erwärmt wird.
 
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Beschichtungszusammensetzung auf eine Temperatur von 49°C bis 93°C erwärmt wird.
 
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die Beschichtungszusammensetzung auf eine Temperatur von 60°C bis 71°C erwärmt wird.
 
21. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß die Oberfläche eine Kupferoberfläche zur Verwendung in einem elektrischen Schaltkreis ist.
 
22. Verfahren zum Schützen einer Kupfer enthaltenden Oberfläche,
gekennzeichnet durch
Tauchen der Oberfläche in eine lodid enthaltende Vorbeschichtungslösung und
nach dem Tauchen in die Vorbeschichtungslösung Tauchen der Oberfläche in eine Beschichtungslösung enthaltend ein in einer Säure gelöstes Wismutsalz und Wasser und optional einen oder mehrere der Bestandteile lodid, Komplexbildner und Kupfer, um eine Beschichtung aus Wismut-Metall auf der Oberfläche zu bilden.
 
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Oberfläche eine Kupferoberfläche zür Verwendung in einem elektrischen Schaltkreis ist.
 
24. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Oberfläche vor dem Tauchen in die Vorbeschichtungslösung gereinigt und geätzt wird.
 
25. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Beschichtungslösung ein Halogenid enthält.
 
26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß das Halogenid ein Konstituent einer Halogensäure ist.
 
27. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß das Halogenid im Überschuß zu der stöchiometrischen Menge des Wismuts vorhanden ist.
 
28. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Beschichtungslösung einen Komplexbildner enthält.
 
29. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Beschichtungslösung auf eine Temperatur von 49°C bis 93°C erwärmt wird.
 
30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß die Beschichtungslösung auf eine Temperatur von 60°C bis 71°C erwärmt wird.
 


Revendications

1. Composition de revêtement qui est efficace pour le placage par immersion d'un revêtement de bismuth métallique sur une surface contenant du cuivre, ladite composition comprenant un sel de bismuth solubilisé dans un acide, caractérisée en ce qu'elle comprend au moins un halogénure et a un pH ne dépassant pas 4.
 
2. Composition de revêtement selon la revendication 1, caractérisée en ce qu'elle comprend deux halogénures.
 
3. Composition de revêtement selon la revendication 1 ou 2, caractérisée en ce que l'halogénure est sous la forme d'un constituant d'un acide halogéné.
 
4. Composition de revêtement selon la revendication 3, caractérisée en ce que ledit acide halogéné est choisi dans le groupe comprenant l'acide chlorhydrique et l'acide bromhydrique.
 
5. Composition de revêtement selon l'une des revendications 1 à 4, caractérisée en ce que l'halogénure est un iodure.
 
6. Composition de revêtement selon la revendication 5, caractérisée en ce que ledit iodure est choisi dans le groupe comprenant l'iodure de potassium, l'iodure de sodium, l'iodure iodhydrique et un iodure organique.
 
7. Composition de revêtement selon l'une des revendications 1 à 6, caractérisée en ce que ledit sel de bismuth est choisi dans le groupe comprenant le trioxyde de bismuth et le chlorure de bismuth.
 
8. Composition de revêtement selon l'une des revendications 1 à 7, sous forme d'une solution aqueuse.
 
9. Composition de revêtement selon l'une des revendications 1 à 8, comprenant en outre au moins un agent complexant.
 
10. Composition de revêtement selon la revendication 9, caractérisée en ce que ledit agent complexant est choisi dans le groupe constitué par l'acide glycolique, la N-méthylpyrrolidone, la monoéthanolamine, et le chlorhydrate de monoéthanolamine.
 
11. Composition de revêtement selon l'une des revendications 1 à 10, comprenant en outre ledit ou lesdits halogénure(s) en excès par rapport à la quantité stoechiométrique de bismuth.
 
12. Composition de revêtement selon l'une des revendications 1 à 11, comprenant en outre une addition prédéterminée de cuivre en concentration apte à augmenter le taux de placage de bismuth de la composition.
 
13. Composition de revêtement selon la revendication 12, caractérisée en ce que la concentration de cuivre est de 250 à 500 ppm.
 
14. Composition de revêtement selon l'une des revendications 1 à 13, caractérisée en ce que le pH est inférieur à 1.
 
15. Composition selon l'une des revendications 1 à 14 dans laquelle la concentration de sel de bismuth est de 5 à 20 g/litre.
 
16. Composition selon l'une des revendications 5 à 15, dans laquelle la concentration d'iodure (sous forme d'iodure) est de 0,04 à 4 g/litre.
 
17. Procédé pour protéger une surface contenant du cuivre, caractérisé par la réalisation d'une composition de revêtement selon l'une des revendications 1 à 16, et l'immersion de ladite surface dans ladite composition de revêtement pour former un dépôt de bismuth métallique sur ladite surface.
 
18. Procédé selon la revendication 17, caractérisé en ce que ladite composition de revêtement est chauffée.
 
19. Procédé selon la revendication 18, caractérisé en ce que ladite composition de revêtement est chauffée à une température entre 49°C et 93°C.
 
20. Procédé selon la revendication 19, caractérisé en ce que ladite composition de revêtement est chauffée à une température entre 60°C et 71°C.
 
21. Procédé selon la revendication 17, caractérisé en ce que ladite surface de cuivre est destinée à un circuit électrique.
 
22. Procédé pour protéger une surface contenant du cuivre, caractérisé par :

l'immersion de ladite surface dans une solution de pré-placage contenant un iodure, et

après ladite immersion dans ladite solution de pré-placage, l'immersion de ladite surface dans une solution de placage contenant un sel de bismuth dissous dans un acide, et de l'eau, et éventuellement un ou plusieurs des éléments suivants : iodure, agent complexant et cuivre, pour former un revêtement de bismuth métallique sur ladite surface.


 
23. Procédé selon la revendication 22, caractérisé en ce que ladite surface est une surface de cuivre destinée à un circuit électrique.
 
24. Procédé selon la revendication 22, caractérisé en ce que ladite surface est nettoyée et décapée avant immersion dans ladite solution de pré-placage.
 
25. Procédé selon la revendication 22, caractérisé en ce que ladite solution de placage contient un halogénure.
 
26. Procédé selon la revendication 25, caractérisé en ce que l'halogénure est un constituant d'un acide halogéné.
 
27. Procédé selon la revendication 25, caractérisé en ce que l'halogénure est présent en excès par rapport à la quantité stoechiométrique de bismuth.
 
28. Procédé suivant la revendication 22, caractérisé en ce que ladite solution de placage contient un agent complexant.
 
29. Procédé selon la revendication 22, caractérisé en ce que ladite solution de placage est chauffée à une température entre 49°C et 93°C.
 
30. Procédé selon la revendication 29, caractérisé en ce que ladite solution de placage est chauffée à une température entre 60°C et 71°C.