(19)
(11) EP 0 761 832 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
12.03.1997  Patentblatt  1997/11

(21) Anmeldenummer: 96109856.3

(22) Anmeldetag:  19.06.1996
(51) Internationale Patentklassifikation (IPC)6C22C 5/04
(84) Benannte Vertragsstaaten:
AT BE CH DE FR GB IE IT LI NL

(30) Priorität: 25.08.1995 DE 19531242

(71) Anmelder: Degussa Aktiengesellschaft
60311 Frankfurt (DE)

(72) Erfinder:
  • Poniatowski, Manfred, Dr.
    63486 Bruchköbel (DE)
  • Drost, Ernst, Dr.
    63755 Alzenau (DE)
  • Zeuner, Stefan
    61381 Friedrichsdorf (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Warmfester Platinwerkstoff


    (57) Ein warmfeter Platinwerkstoff mit mehr als 99,5 Gew.% Platin mit hoher Zeitstandfestigkeit und geringem Kornwachstum bei hohen Temperaturen enthält 0,1 bis 0,35 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,002 bis 0,02 Gew.% Bor und/oder Boroxid.


    Beschreibung


    [0001] Die Erfindung betrifft einen warmfesten Platinwerkstoff, der für viele Verwendungszwecke in der Industrie und im Labor einsetzbar ist, wo besondere Anforderungen an mechanische, thermische und chemische Beständigkeit gefordert werden.

    [0002] Es sind verschiedene technische Lösungen bekannt geworden, um die Warmfestigkeit von Platin zu steigern. Die effizienteste Methode beruht auf der Dispersionshärtung, der gleichmäßigen Verteilung einer geringen Menge (z.B. <1 Gew.%) von thermisch stabilen, harten und im Grundmetall nicht löslichen Partikeln mit Teilchengröße < 50 nm. Dispersoide dieser Art hemmen die Versetzungsbewegung im Gitter und damit eine makroskopische Verformung über lange Zeit bei hohen Temperaturen. Sie verhindern so den vorzeitigen Materialausfall durch Kornvergröberung, Abgleiten und Bruch.

    [0003] Bei den Platinwerkstoffen werden derartige Qualitäten in zunehmendem Maße für den Hochtemperatureinsatz in der Glasindustrie, in der Petrochemie, in Laborgeräten sowie in Zündkerzen für Motoren benötigt. Als Dispersoide werden vorzugsweise Zirkoniumoxid und Yttriumoxid verwendet.

    [0004] Zur Herstellung dieser Werkstoffe werden verschiedene Varianten der Pulvermetallurgie genutzt, die jedoch grundsätzlich aufwendig sind und im Hinblick auf verschiedene Einsatzanforderungen nicht immer angewendet werden können.

    [0005] Es sind daher auch Herstellwege beschritten worden, die auf der konventionellen Schmelzmetallurgie beruhen und mit legierungstechnischen Maßnahmen versuchen, eine Korngrößenstabilisierung zu erreichen.

    [0006] So wird in der US-PS 4 123 263 ein Platinwerkstoff für Glasspinndüsen beschrieben, der neben Platin 10 bis 40 Gew.% Rhodium, 0,015 bis 1,5 Gew.% Zirkonium und/oder Yttrium und 0,001 bis 0,5 Gew.% Bor enthält. Die Herstellung erfolgt schmelzmetallurgisch mit Zwischenglühungen bei der Verformung. Dieser Werkstoff weist zwar eine verbesserte Kriechbeständigkeit auf, Zeitstandfestigkeit und die Beständigkeit gegen Kornwachstum sind jedoch unzureichend. Außerdem bringt der Rhodiumzusatz, der für die Kriechbeständigkeit des Werkstoffs wesentlich verantwortlich ist, beträchtliche Zusatzkosten und ist beispielsweise beim Schmelzen optischer Gläser unerwünscht, da Rhodium sich in Glasschmelzen in geringen Mengen löst und eine Gelbfärbung verursacht.

    [0007] Aus der DD-PS 157 709 ist eine Platinmetallegierung bekannt, die neben 0,5 bis 5 Gew.% Gold und/oder Nickel 0,01 bis 0,5 Gew.% Yttrium, 0,001 bis 0,5 Gew.% Kalzium und 0,001 bis 0,5 Gew.% Bor enthält. Dieser Werkstoff wird ebenfalls schmelzmetallurgisch hergestellt und kann auch im innnerlich oxidierten Zustand eingesetzt werden.

    [0008] Die schmelzmetallurgische Verarbeitung von yttrium- und kalziumhaltigen Legierungen und die Einhaltung der notwendigen Toleranzen in der Konzentration sind nur schwer zu bewerkstelligen. Die geringe Duktilität derartiger Werkstoffe, insbesondere nach der inneren Oxidation, hat eine nur unbefriedigende Verarbeitbarkeit zu Geräten und anderen Formteilen zur Folge. Auch der Zusatz an Gold und/oder Nickel ist bei bestimmten Verwendungszwecken nicht erwünscht.

    [0009] Es war daher Aufgabe der vorliegenden Erfindung einen warmfesten Platinwerkstoff mit einem Gehalt von mehr als 99,5 Gew.% Platin zu finden, der eine hohe Zeitstandsfestigkeit und ein geringes Kornwachstum bei hohen Temperaturen aufweist, und der leicht schmelzmetallurgisch hergestellt werden kann.

    [0010] Diese Aufgabe wird erfindungsgemäß durch einen Platinwerkstoff gelöst, der neben natürlichen Verunreinigungen 0,10 bis 0,35 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,002 bis 0,02 Gew.% Bor und/oder Boroxid, Rest Platin, enthält.

    [0011] Vorzugsweise enthält der Werkstoff 0,15 bis 0,25 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,005 bis 0,01 Gew.% Bor und/oder Boroxid.

    [0012] Es ist bekannt, daß Zirkoniumzusätze zu Platinlegierunge in Mengen von weniger als 0,5 Gew.% eine kornfeinende Wirkung zeigen. Dies geht einher mit deutlich höheren Festigkeiten im Vergleich zum unlegierten Platin und gilt auch für die Zeitstandsfestigkeit. Bei höheren Temperaturen ist eine Grobkornbildung durch sekundäre Rekristallisation, und als Folge davon ein frühzeitiger Ausfall durch Abgleitbruch jedoch unvermeidbar.

    [0013] Zusätze von geringsten Mengen Bor zum Zirkonium - diese liegen deutlich unter der bekannten Löslichkeitsgrenze (ca. 0,75 At.-% beziehungsweise 0,04 Gew.% Bor) - bewirken ein erheblich stabileres Feinkorngefüge mit einem mittleren Korndurchmesser von ca. 50 µm. Die Korngrenzen zeigen Säume beziehungsweise perlschnurartig angeordnete Partikel im Durchmesserbereich um 1 µm einer zweiten Phase. Mit Hilfe von Spektren der Röntgenphotoemession läßt sich zeigen, daß es sich um ZrB-Verbindungen handelt, die an den Korngrenzen angereichert sind und das Kornwachstum hemmen. Ein solches Gefüge erreicht eine viel höhere Zeitstandfestigkeit als Platin-Zirkonium-Legierungen ohne Borzusatz. Eine zusätzliche Verbesserung lässt sich erreichen, wenn vor dem Hochtemperatureinsatz durch eine Glühung an Luft diese Partikel ganz oder teilweise in ihre Oxide umgewandelt werden, wobei allerdings eine Vergröberung der Teilchen zu beobachten ist.

    [0014] Überraschenderweise treten diese Verfestigungsmechanismen, verbunden mit einer starken Hemmung des Kornwachstums auch bei Platinwerkstoffen mit mehr als 99,5 Gew.% Platin auf, wenn man in den erfindungsgemäßen Zirkonium- und Borbereichen bleibt.

    [0015] Zur Herstellung des Werkstoffs arbeitet man vorzugsweise mit Platin-Zirkonium- und Platin-Bor-Vorlegierungen, um die geringen Zirkonium- und Borgehalte im Werkstoff möglichst genau einstellen zu können.

    [0016] Folgende Beispiele sollen die Erfindung näher erläutern:

    1. 500 g reines Platin und 1,7 g einer Vorlegierung PtZr 35/65 Gew.% (eutektische Temperatur 1180° C) wurden im Vakuuminduktionsschmelzofen in einem Zirkoniumoxid-Tiegel unter Argon bei vermindertem Druck erschmolzen und zu einem kleinen Barren in eine gekühlte Kupferkokille vergossen. Daraus wurde durch Kaltwalzen ein Blech von 1 mm Dicke hergestellt (Walzgrad 90 %). Nach einer Schlußglühung (0,5 h, 1000° C) wurden die in der Tabelle angegebenen Materialkennwerte ermittelt. Die Soll-Zusammensetzung beträgt PtZr 0,22 %. PtZr0,22 ist eine konventionelle Legierung und dient zu Vergleichszwecken.

    2. 500 g reines Platin, 1,7 g einer Vorlegierung PtZr35/65 Gew.%, 5 g einer Vorlegierung PtB99/1 Gew.% wurden in gleicher Weise wie bei Beispiel 1 beschrieben hergestellt und zu Blech verarbeitet. Die Materialkennwerte sind ebenfalls in der Tabelle angegeben. Die Soll-Zusammensetzung beträgt PtZr0,21B0,009.

    3.-6. Mit jeweils variiertem B- und/oder Zr-Gehalt wurden in analoger Weise wie in Beispiel 2 Legierungen hergestellt. Wie die Tabelle zeigt, führen Zr-Gehalte <0,1 Gew.% zu deutlich niedrigeren Zugfestigkeiten (Rm) bei Raumtemperatur (RT) und auch zu verringerter Zeitstandfestigkeit (Rm) bei 1300° C, Zr-Gehalte >0,35 Gew.% erhöhen zwar die Festigkeit, schränken jedoch die Verarbeitbarkeit wegen geringerer Duktilität deutlich ein. In ähnlicher Weise ist die Wirksamkeit von Bor bei Konzentrationen von 0,005 Gew.% hinsichtlich der Zeitstandfestigkeit bereits deutlich eingeschränkt.

    7. Eine Legierung mit der Zusammensetzung von Beispiel 2 wird einer oxidativen Schlußglühung unterworfen, bei der die Korngrenzausscheidungen in thermisch stabilere Oxide umgewandelt werden. Dies führt zu einer Erhöhung der Zeitstandfestigkeit von 4,2 auf 5,8 Mpa. Dieser Vorteil ist allerdings verbunden mit einer geringeren Duktilität bei Raumtemperatur (10-15% anstatt 24 % Bruchdehnung).

    8. Dieses Beispiel dient dem Vergleich mit einem pulvermetallurgisch hergestellten Werkstoff (FKS-Platin). Kennzeichnend ist hier die wesentlich höhere Zeitstandfestigkeit mit allerdings geringeren Festigkeits- und Duktilitätswerten als bei den erfindungsgemäßen Werkstoffen. Zudem ist die aufwendige Herstellweise von PM-Werkstoffen nur gerechtfertigt bei besonderen thermomechanischen Einsatzbelastungen, während die erfindungsgemäß hergestellten Werkstoffe eine wirtschaftliche Alternative darstellen und den Einsatzbereich so deutlich vergrößern.

    Tabelle
    Beispiel Zusammensetzung (Gew.-%) Bearbeitungszustand Rm(RT) (Mpa) A (RT) (%) Rm(1300°C/100 h) (MPa)
    1 PtZr0,22 1000°C/0,5 h/Ar 210 30 2,2
    2 PtZr0,21B0,009 " 250 24 4,2
    3 PtZr0,1B0,01 " 200 27 3,2
    4 PtZr0,35B0,01 " 280 10 6,0
    5 PtZr0,22B0,005 " 270 30 2,6
    6 PtZr0,22B0,02 " 270 25 4,3
    7 PtZr0,21B0,009 1000°C/0,5 h/Luft 260 10-15 5,7
    8 FKS-Pt16 (PtZrO2) 1000°C/0,5 h/Luft 230 18 10,5
    Rm = Zugfestigkeit bzw. Zeitstandfestigkeit A = Bruchdehnung
    Die Zeitstanduntersuchungen bei 1300°C erfolgten mit Blechproben (0,5mm) in Luft-Atmosphäre.



    Ansprüche

    1. Warmfester Platinwerkstoff mit einem Gehalt von mehr als 99,5 Gew.% Platin,
    dadurch gekennzeichnet,
    daß er neben natürlichen Verunreinigungen 0,1 bis 0,35 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,002 bis 0,02 Gew.% Bor und/oder Boroxid, Rest Platin, enthält.
     
    2. Platinwerkstoff nach Anspruch 1,
    dadurch gekennzeichnet,
    daß er 0,15 bis 0,25 Gew.% Zirkonium und/oder Zirkoniumoxid und 0,005 bis 0,01 Gew.% Bor und/oder Boroxid enthält.
     





    Recherchenbericht