[0001] This invention relates to heat exchangers, and more particularly, to manifold systems
utilized in heat exchangers.
[0002] Many different types of heat exchangers in use today employ a core construction that
includes two or more spaced, generally parallel, tubular headers. A plurality of tubes
extend between the headers and are in fluid communication with the interior of the
headers. A plurality of fins are located between the headers and in heat exchange
relation with the tubes.
[0003] In this type of construction, for strength, and/or for mounting purposes, it is customary
to include side pieces. The side pieces typically are plates that extend between corresponding
ends of the headers. Where the fins are serpentine fins, the end most rows of serpentine
fins will customarily be bonded to the side plates. Various mounting fixtures may
also be employed in connection with the side plates.
[0004] Typical of these constructions is the use of inlet and outlet fittings which are
connected to one or the other or both of the headers. When the heat exchangers are,
for example, employed in vehicles, the location of other components that are frequently
disposed under the hood or dash of the vehicle may often dictate the location of conduits
that are to be connected to the heat exchanger. Other constraints, such as the desire
to obtain good aerodynamic configurations of the vehicle exterior or maximum interior
space to enhance fuel economy also bear on the design of heat exchangers so as to
accommodate them within a given envelope under the hood or dash and at a location
whereat conduits may be freely run to the inlet and outlet fittings of the headers.
[0005] Not infrequently, the use of inlet and outlet fittings on the headers increases the
envelope that must be provided to encompass the heat exchanger in the direction extending
from one header to another.
[0006] Additionally, when connections are made to opposite headers, the conduits, at least
at their point of connection to the headers must be spaced which can also create spacial
problems in mounting the heat exchanger.
[0007] Furthermore, where tubular headers are used, they are typically pierced with a plurality
of parallel slots along their length to receive the ends of the tubes that extend
between the headers. In many of these constructions, flat sections are formed on the
headers oppositely of the slots to receive holes which in turn receive the inlet and/or
outlet or cross over fittings. This necessitates a forming operation that desirably
would be eliminated.
[0008] The present invention is directed to overcoming one or more of the above problems.
[0009] It is the principal object of the invention to provide a new and improved heat exchanger.
More specifically, it is an object of the invention to provide a new and improved
manifold system for connection to the headers of a heat exchanger.
[0010] An exemplary embodiment of the invention achieves the foregoing object in a heat
exchanger that includes first and second spaced, generally parallel, tubular headers
having opposed ends. A plurality of tubes are located in parallel with one another
and are spaced from one another and extend between and have their ends in fluid communication
with the interiors of the headers. A plurality of fins are located between the headers
and in heat exchange relation with the plurality of tubes. Side pieces flank the plurality
of tubes and the plurality of fins and extend between and are fastened to corresponding
ones of the opposed ends of the headers. One of the side pieces includes an internal
passage terminating in a first port at and in fluid communication with one of the
headers at one of the opposed ends and an opposite, second port at the other end of
the passage.
[0011] In a preferred embodiment, the fins are serpentine fins and are bonded to the side
pieces.
[0012] In one embodiment of the invention, there are two of the passages, two of the first
ports and two of the second ports to provide first and second ports for each passage.
The first ports are in fluid communication with different ones of the headers.
[0013] In a preferred embodiment of the invention, the second port is located in a side
of the side piece remote from the plurality of tubes and the plurality of fins so
as to be readily connectable to a fixture or the like.
[0014] One embodiment of the invention contemplates the provision of an additional header
closely adjacent the one of the headers connected to the passage. The second port
of the passage is in fluid communication with the additional header.
[0015] According to another embodiment of the invention, there is an additional set of the
first and second headers and the plurality of tubes, and the same is located in side
by side relation to the first set thereof with the first headers in each set being
in close adjacency to one another and the second headers in each set being in close
adjacency to one another. There are three of the passages within the side piece and
each has first and second ports. The first ports of the first and second passages
are in fluid communication with respective ones of the first headers and the second
ports of the first and second passages are located oppositely of the plurality of
tubes of the respective set. The ports of the third passage are in fluid communication
with respective ones of the second headers to define a crossover passage.
[0016] In one embodiment of the invention, the side piece comprises a pair of plates with
the passage being located at the interface of the plates. In one embodiment of the
invention, the plates have a spacer there between to define a laminated side piece.
In another embodiment, one of the plates has a peripheral flange and the other of
the plates is nested within the peripheral flange in substantial abutment with the
other of the plates.
[0017] Other objects and advantages will become apparent from the following specification
taken in connection with the accompanying drawings in which:
Fig. 1 is an elevation of a heat exchanger made according to the invention;
Fig. 2 is an elevation of the heat exchanger taken from the right of Fig. 1;
Fig. 3 is a view of part of a side piece made according to a modified embodiment of
the invention;
Fig. 4 is a view of another part of the side piece of the modified embodiment of the
invention;
Fig. 5 is an exploded view illustrating the intended assembly of the parts of Figs.
3 and 4 together;
Fig. 6 is an exploded elevation view of the adapter made according to the invention;
Fig. 7 is a side elevation of the adapter made according to the invention; and
Fig. 8 is a side elevation of a heat exchanger having the adaptor mounted thereon.
[0018] An exemplary embodiment of a heat exchanger made according to the invention is illustrated
in Figs. 1 and 2 and with reference thereto is seen to include a pair of generally
tubular headers, 10, 12, of oval cross section. The headers 10 and 12 are elongated
and disposed in a generally parallel relationship with one another as well as being
spaced from one another.
[0019] On their facing sides, the headers 10 and 12 include pressure domes 14 in the shape
of a compound curve as is known in the art. The pressure domes 14 are separated by
slots 16 which receive the ends 18 of elongated, flattened tubes 20, typically, but
not always, of extruded construction.
[0020] A plurality of the tubes 20 extend in parallel, spaced relationship between the headers
10 and 12 as illustrated in Fig. 1. A plurality of fins 22 are located between the
headers 10 and 12 and are in heat exchange relationship with the tubes 20. In the
usual case, the fins 22 will be brazed to the tubes 20 as when the fins 22 are serpentine
fins as illustrated in Fig. 1. However, if plate fins are used, a mere mechanical
contact may be employed in lieu of a metallurgical bond.
[0021] The construction is completed by first and second side pieces, generally designated
30 and 32, respectively. The side piece 30 is conventional and includes inwardly directed
tabs 34 at its opposite ends which are secured as by brazing to respective ones of
the headers 10 and 12. The adjacent fin 22 is also typically brazed to the side piece
30. The side piece 30 and the side piece 32 tend to stabilize the overall construction
against the various forces that it may incur in use. For example, if used in a vehicular
application, the heat exchanger will typically be subjected to substantial vibration,
pressure cycling and thermal cycling; and the side pieces 30 and 32 provide strength
to resist the destructive forces generated during such vibration and/or cycling.
[0022] The ends of the headers 10 and 12 adjacent the side piece 30 are sealed by conventional
end caps 36.
[0023] The side piece 32 is considerably different from the side piece 30. It is made up
of an inner manifold plate 38, an outer manifold plate 40 and a spacer plate 42. The
inner manifold plate 38 includes an integrally formed nipple 44 at each end. Each
nipple 44 is sized to be snugly received within the adjacent open end of a corresponding
one of the headers 10, 12 and to be brazed thereto to be sealed thereto.
[0024] A spacer plate 42 includes three internal passages as will be described in greater
detail hereinafter while the outer manifold plate 40 includes a pair of integrally
formed nipples 46 that extend oppositely of the nipples 44, that is, away from tubes
20 and the fins 22. The nipples 46 may receive fittings 48 which terminate in threaded
ends 50 whereby fluid conduits may be connected to the same. The nipples 44 and 46
may be formed in the plates 38 and 40 by a stamping operation.
[0025] As seen in Fig. 2, there are in actuality two rows of the tubes 22 extending between
two of the headers 10 and two of the headers 12. That is to say, two cores, each including
a header 10, a header 12 and tubes 22 extending between the same are provided. They
are located in side by side relationship with the headers 10 in close adjacency to
each other and with the headers 12 in close adjacency to each other.
[0026] The fins 22 may be a single set of fins extending between both cores or each core
may have its own set of fins 22 as desired. In this configuration, the inner manifold
plate 38 has four of the nipples 44, two at each end. The two upper nipples 44 as
seen in Fig. 2 are respectively disposed in an associated one of the headers 10 while
the two lower nipples 44 are respectively disposed in an associated one of the two
headers 12.
[0027] The spacer plate 42 includes a first internal cut-out 60 that aligns with the two
upper nipples 44. As a consequence, fluid communication between the two upper headers
10 is established via the cut-out 60 but serves as a crossover passage from one module
to the other.
[0028] The spacer plate 42 also includes an internal passage 62 having the configuration
shown and still another internal passage 64 having the configuration shown. The internal
passages are formed by cut-outs in the spacer plate 42. It will be seen that the passage
62 extends between the uppermost one of the nipples 50 and the left lower most one
of the nipples 44. Thus, the upper fitting 48 is in fluid communication with the lower
left header 12.
[0029] The cut-out 64 extends from the lower right header 12 to the lower fitting 48 and
thus places the latter in fluid communication with the former.
[0030] Thus, it will be appreciated that one of the fittings 50 may be used as a fluid inlet
to the heat exchanger while the other fitting 50 may be used as a fluid outlet. Fluid
is passed into one of the modules, entering the header 12 thereof, to pass upwardly
through the tubes 20 to the upper header 10 where it crosses over to the other header
10 via the passage 60. The fluid then descends through the tubes 20 of that module
to the header 12 and ultimately exit the system through the other of the fittings
48.
[0031] As illustrated in Figs. 1 and 2, the side piece 32 is a laminated construction that
results in the passages being disposed at the interface between the inner and outer
plates 38 and 40. In some instances, a two piece construction may be preferred. Such
a two piece construction will be described with reference to Figs. 3-5, inclusive.
[0032] Referring first to Figs. 3 and 5, an inner plate 70 is basically planar but includes
a peripheral flange 72 extending from one side thereof and integrally formed nipples
74 at the ends projecting from the opposite side thereof. The nipples 74 serve the
same function as the nipples 44 and will not be further described.
[0033] Because the plate 70 is flat, it is ideally suited for bonding to the serpentine
fins 22.
[0034] An outer plate 76 is also provided and is sized and shaped so as to nest within the
peripheral flange 72 of the inner plate 70. Near its upper end, the plate 76 includes
an elongated bubble 78 stamped in one side thereof so as to extend between and overlie
the two upper nipples 74 to thereby establish a crossover passage corresponding to
that shown at 60 in Fig. 2.
[0035] The outer plate 76 includes an additional bubble 80 that is configured as the cutout
62 as well as a further bubble 82 which is configured as the cutout 64. Both the bubbles
80 and 82 have, at their upper ends, integral stamped nipples 84 which extend away
from the plate 70 and which are adapted to receive fixtures for connection to heat
exchange fluid as is well known. The lower ends of the bubbles 80 and 82 extend downwardly
to respectively overlie the left and right lower nipples 74 and thus provide for a
passage of heat exchange fluid through the heat exchanger that is the same as that
previously described in connection with the embodiment shown in Figs. 1 and 2.
[0036] Between the bubbles, the plate 76 is flat so that it will abut the plate 70 and,
when subjected to a typical bonding operation such as brazing, the flat areas on the
plates 70 and 76 will braze to one another to seal the passages defined by the bubbles
78, 80 and 82 from one another and from the exterior of the heat exchanger.
[0037] As noted, brazing is a preferred method of assembly of the heat exchanger. Typically,
its components will be formed of aluminum and where brazed joints are required, one
or the other or both of the components will be provided with a braze clad at that
location.
[0038] From the foregoing, it will be appreciated that the invention takes the usual function
provided by a side piece and implements that as well as adding a new function whereby
the same may serve to provide an inlet, an outlet and/or a crossover passage for the
heat exchanger. As a consequence, the envelope between the headers 10 and 12 is not
increased in that direction by the presence of fittings. Furthermore, the invention
allows the fittings to be connected to the heat exchanger at some location other than
the headers to provide an increase in design flexibility. And while the illustrated
embodiment shows the fittings as being within the plane of the heat exchanger, those
skilled in the art will readily appreciate that, if desired, plates such as the plates
70 and 76 could be extended to one side of the heat exchanger and provided with bubbles
to extend to such locations so that the fittings could be located to the front or
to the rear of the heat exchanger, rather than to the side thereof.
[0039] Similarly, the nipples 46 and/or 84 could be directed to the sides of the heat exchanger,
90° (or any other desired angle) from the position illustrated, if desired. Additionally,
while the tubular headers 10, 12 are illustrated as being formed of a single piece
of material, two or even more pieces of material may be used to form the tubular headers
of the invention, so long as the interior passage is a passage such as illustrated.
[0040] It may be desirable to utilize the above described heat exchanger in systems having
fluid conduits out of alignment with the nipples 46, 84 described above. In such situations,
an adapter 90 can be included in the above heat exchanger.
[0041] Such an adapter 90 can be used with heat exchangers having a laminated side piece
(Fig. 2) and with embodiments having side pieces having a two piece construction (Figs.
3-5). The adapter 90 serves to lengthen the internal passages and to introduce new
passage end points to adapt a single basic heat exchanger configuration for use in
several different environments, each having differently located inlet and outlet port
locations.
[0042] The adapter 90 is made up of an inner plate 92 and an outer plate 94 (Figs. 6-7).
The inner plate 92 has a peripheral flange 96 and first and second openings 98 that
are in alignment with the nipples 46 or 84 of the above described heat exchangers.
The openings 98 are sized to snugly receive the nipples 46 or 84 and to braze thereto
to form a liquid tight joint. The outer plate 94 is sized and shaped so as to nest
within the peripheral flange 96 of the inner plate 92. Near its upper end, the outer
plate 94 has first and second adapter ports 100. These ports 100 are located to align
with the particular fluid conduits of the system in which the heat exchanger is being
installed. For purposes of illustration, the ports 100 are aligned side by side and
extend perpendicularly to the side piece 32. The ports 100 could just as easily be
positioned at a different angle to the side piece 32 for any particular installation.
[0043] Additionally, the outer plate 94 has a first bubble 102 extending from one of the
ports 100 to an area surrounding one of the openings 98. The bubble 102 is stamped
in one side of the outer plate 94 so as to extend between and overlie the top opening
98 and the left port 100 to thereby establish a duct from the adapter port 100 to
one of the side piece nipples 46 or 84.
[0044] A second bubble 104 is stamped in the outer plate 94 and extends between the other
port 100 and the remaining opening 98 to thereby establish a duct between such port
100 and the remaining nipple 46 or 84.
[0045] Both bubbles 102 and 104 have, at their upper ends, integral, stamped nipples 106
which define respective ports 100 and which extend away from the inner plate 92 and
which are adapted to receive fixtures for connection to heat exchange fluid conduits.
[0046] Surrounding the bubbles, the outer plate 94 is flat so that it will abut the inner
plate 92 and, when subjected to a typical bonding operation such as brazing, the flat
areas on the plates 94 and 96 will braze to one another to seal the passages defined
by the bubbles 102, 104 from one another and from the exterior of the heat exchanger.
[0047] In some instances, rather than use a two piece adaptor construction having stamped
passages, a laminated construction with cut outs in a central section may be used.
[0048] From the foregoing, it will be appreciated that the improvement allows heat exchangers
to be adapted for use in a wide variety of systems. It is often the case that a particular
heat exchanger is right for a particular use but that the inlet and outlet fluid conduits
are not aligned with the inlet and outlet ports of the heat exchanger, making the
heat exchanger unusable in that situation. To tool up for a heat exchanger that could
be used is costly and inefficient. However, as a result of the above described adapter,
it is possible to adapt a single heat exchanger for many different tasks.
[0049] In all events, many of the problems encountered with prior heat exchanger designs,
and the use of inlets, outlets and cross over fittings therewith, are avoided through
the use of the invention.
1. A heat exchanger comprising:
first and second spaced, generally parallel, tubular headers having opposed ends;
a plurality of tubes in parallel and spaced from one another extending between and
having their ends in fluid communication with the interiors of said headers;
a plurality of fins located between said headers and in heat exchange relation with
said plurality of tubes;
side pieces flanking said plurality of tubes and plurality of fins and extending between
and fastened to corresponding ones of said opposed ends of said headers, one of said
side pieces including an internal passage terminating in a first port at and in fluid
communication with one of said headers at one of said opposed ends and a second port
at the other end of said passage; and
an adaptor having a first duct in communication with said first port and a second
duct in communication with said second port thereby extending said internal passage,
said internal passage terminating at a first adaptor port and a second adaptor port
spaced from said first and second ports respectively.
2. The heat exchanger of claim 1 wherein said fins are serpentine fins and are bonded
to said side pieces.
3. The heat exchanger of claim 1 wherein there are two said passages, two said first
ports and two said second ports to provide first and second ports for each said passage;
and said first ports are in fluid communication with different ones of said headers.
4. The heat exchanger of claim 1 wherein said second port is located in a side of said
side piece remote from said plurality of tubes and said plurality of fins.
5. The heat exchanger of claim 1 further including an additional header closely adjacent
said one of said headers; and wherein said second port is in fluid communication with
said additional header.
6. The heat exchanger of claim 1 further including an additional set of said first and
second headers and said plurality of tubes, and located in side by side relation to
said first named first and second headers and plurality of tubes, with the first headers
being in close adjacency to one another and the second headers being in close adjacency
to one another; and there are three said passages, each having first and second ports,
the first ports of said first and second passages being in fluid communication with
respective ones of said first headers, and the second ports of said first and second
passages being located oppositely of the respective said plurality of tubes; the ports
of said third passage being in fluid communication with respective ones of said second
headers.
7. The heat exchanger of claim 1 wherein said one side piece comprises a pair of plates
with said passage being located at the interface of said plates.
8. The heat exchanger of claim 7 wherein one of said plates has a peripheral flange and
the other of said plates is nested within said peripheral flange in substantial abutment
with the other of said plates.
9. The heat exchanger of claim 7 further including a spacer between said pair of plates
to define a laminated side piece.
10. A heat exchanger comprising:
a pair of side by side, heat exchange modules, each of said modules including first
and second spaced, generally parallel, tubular headers having opposed ends and a plurality
of spaced tubes extending in parallel with one another between the first and second
headers, the ends of the tubes being in fluid communication with the interiors of
the first and second headers;
a plurality of fins located between the headers and bonded to the plurality of tubes
in heat exchange relation therewith; and
side pieces flanking said plurality of tubes and said plurality of fins and extending
between and fastened to corresponding ones of the opposed ends of the headers;
one of said side pieces including three internal passages, each terminating in spaced
first and second ports;
the first ports of two of said passages being in fluid communication with the first
headers of respective ones of said modules;
the second ports of said two passages being located on said side piece and remote
from said tubes in said fins;
the first port of the third passage being in fluid communication with the second header
of one of said modules and the second port of the third passage being in fluid communication
with the second header of the other module to define a crossover passage; and
a generally flat adaptor mounted on said one side piece and including a pair of internal
passages, each of said internal passage having a third port aligned with and in fluid
communication with a respective one of said second ports, and each of said internal
passages having a fourth port spaced from the associated third port and on the opposite
side of the adaptor from said third ports, said fourth ports being adapted to be connected
as a fluid inlet and a fluid outlet for said heat exchanger.
11. The heat exchanger of claim 10 wherein said fin are serpentine fin and are bonded
to said tubes and to said side pieces.
12. The heat exchanger of claim 10 wherein said adapter comprises a pair of plates with
said first and second ducts being located at the interface of said plates.
13. The heat exchanger of claim 12 wherein one of said plates has a peripheral flange
and the other of said plates is nested within the peripheral flange in substantial
abutment with the other of said plates.