BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] This invention relates to radiodiagnostic reagents and peptides, and methods for
producing labeled radiodiagnostic agents. Specifically, the invention relates to peptides,
methods and kits for making such peptides, and methods for using such peptides to
image sites in a mammalian body labeled with technetium-99m (Tc-99m) via a radiolabel-binding
moiety which is covalently linked to a sidechain of an amino acid residue of the specific
binding peptide.
2. Description of the Prior Art
[0002] In the field of nuclear medicine, certain pathological conditions are localized,
or their extent is assessed, by detecting the distribution of small quantities of
internally-administered radioactively labeled tracer compounds (called radiotracers
or radiopharmaceuticals). Methods for detecting these radiopharmaceuticals are known
generally as imaging or radioimaging methods.
[0003] In radioimaging, the radiolabel is a gamma-radiation emitting radionuclide and the
radiotracer is located using a gamma-radiation detecting camera (this process is often
referred to as gamma scintigraphy). The imaged site is detectable because the radiotracer
is chosen either to localize at a pathological site (termed positive contrast) or,
alternatively, the radiotracer is chosen specifically not to localize at such pathological
sites (termed negative contrast).
[0004] A number of factors must be considered for optimal radioimaging in humans. To maximize
the efficiency of detection, a radionuclide that emits gamma energy in the 100 to
200 keV range is preferred. To minimize the absorbed radiation dose to the patient,
the physical half-life of the radionuclide should be as short as the imaging procedure
will allow. To allow for examinations to be performed on any day and at any time of
the day, it is advantageous to have a source of the radionuclide always available
at the clinical site.
[0005] A variety of radionuclides are known to be useful for radioimaging, including
67Ga,
99mTc (Tc-99m),
111In,
123I,
125I, and
169Yb. Tc-99m is a preferred radionuclide because it emits gamma radiation at 140 keV,
it has a physical half-life of 6 hours, and it is readily available on-site using
a molybdenum-99/technetium-99m generator.
[0006] The sensitivity of imaging methods using radioactively-labeled peptides is much higher
than other radiopharmaceuticals known in the art, since the specific binding of the
radioactive peptide concentrates the radioactive signal over the area of interest.
Small synthetic peptides that bind specifically to targets of interest may be advantageously
used as the basis for radiotracers. This is because: 1. they may be synthesized chemically
(as opposed to requiring their production in a biological system such as bacteria
or mammalian cells, or their isolation from a biologically-derived substance such
as a fragment of a protein); 2. they are small, hence non-target bound radiotracer
is rapidly eliminated from the body, thereby reducing background (non-target) radioactivity
and allowing good definition of the target; and 3. small peptides may be readily manipulated
chemically to optimize their affinity for a particular binding site.
[0007] Small readily synthesized labeled peptide molecules are preferred as routinely-used
radiopharmaceuticals. There is clearly a need for small synthetic labeled peptides
that can be directly injected into a patient and will image pathological sites by
localizing at such sites. Tc-99m labeled small synthetic peptides offer clear advantages
as radiotracers for gamma scintigraphy, due to the properties of Tc-99m as a radionuclide
for imaging and the utility of specific-binding small synthetic peptides as radiotracer
molecules.
[0008] Radiolabeled peptides have been reported in the prior art.
[0009] Ege
et al., U.S. Patent No. 4,832,940 teach radiolabeled peptides for imaging localized T-lymphocytes.
[0010] Olexa
et al., 1982, European Patent Application No. 823017009 disclose a pharmaceutically acceptable
radiolabeled peptide selected from Fragment E
1 isolated from cross-linked fibrin, Fragment E
2 isolated from cross-linked fibrin, and peptides having an amino acid sequence intermediate
between Fragments E
1 and E
2.
[0011] Ranby
et al., 1988, PCT/US88/02276 disclose a method for detecting fibrin deposits in an animal
comprising covalently binding a radiolabeled compound to fibrin.
[0012] Hadley
et al., 1988, PCT/US88/03318 disclose a method for detecting a fibrin-platelet clot
in vivo comprising the steps of (a) administering to a patient a labeled attenuated thrombolytic
protein, wherein the label is selectively attached to a portion of the thrombolytic
protein other than the fibrin binding domain; and (b) detecting the pattern of distribution
of the labeled thrombolytic protein in the patient.
[0013] Lees
et al., 1989, PCT/US89/01854 teach radiolabeled peptides for arterial imaging.
[0014] Sobel, 1989, PCT/US89/02656 discloses a method to locate the position of one or more
thrombi in an animal using radiolabeled, enzymatically inactive tissue plasminogen
activator.
[0015] Stuttle, 1990, PCT/GB90/00933 discloses radioactively labeled peptides containing
from 3 to 10 amino acids comprising the sequence arginine-glycine-aspartic acid (RGD),
capable of binding to an RGD binding site
in vivo.
[0016] Maraganore
et al., 1991, PCT/US90/04642 disclose a radiolabeled thrombus inhibitor comprising (a) a
inhibitor moiety: (b) a linker moiety; and (c) and an ion binding site moiety.
[0017] Rodwell
et al., 1991, PCT/US91/03116 disclose conjugates of "molecular recognition units" with "effector
domains".
[0018] Tubis
et al., 1968, Int. J. Appl. Rad. Isot.
19: 835-840 describe labeling a peptide with teehnetium-99m.
[0019] Sundrehagen. 1983, Int. J. Appl. Rad. Isot.
34: 1003 describes labeling polypeptides with technetium-99m.
[0020] The use of chelating agents for radiolabeling polypeptides, and methods for labeling
peptides and polypeptides with Tc-99m are known in the prior art and are disclosed
in co-pending U.S. Patent Applications Serial Nos. 07/653,012 and 07/807,062, which
are hereby incorporated by reference.
[0021] Although optimal for radioimaging, the chemistry of Tc-99m has not been as thoroughly
studied as the chemistry of other elements and for this reason methods of radiolabeling
with technetium are not abundant. Tc-99m is normally obtained as Tc-99m pertechnetate
(TcO
4-; technetium in the +7 oxidation state), usually from a molybdenum-99/technetium-99m
generator. However, pertechnetate does not bind well to other compounds. Therefore,
in order to radiolabel a peptide, Tc-99m pertechnetate must be converted to another
form. Since technetium does not form a stable ion in aqueous solution, it must be
held in such solutions in the form of a coordination complex that has sufficient kinetic
and thermodynamic stability to prevent decomposition and resulting in conversion of
Tc-99m either to insoluble technetium dioxide or back to pertechnetate.
[0022] Such coordination complexes of Tc-99m (in the +1 to +6 oxidation states) are known.
However, many of these complexes are inappropriate for radiolabeling due to the molecular
geometry of the coordination complex. For the purpose of radiolabeling, it is particularly
advantageous for the coordination complex to be formed as a chelate in which all of
the donor groups surrounding the technetium ion are provided by a single chelating
ligand. This allows the chelated Tc-99m to be covalently bound to a peptide through
a single linker between the chelator and the peptide.
[0023] These ligands are sometimes referred to as bifunctional cheating agents having a
chelating portion and a linking portion. Such compounds are known in the prior art.
[0024] Byrne
et al., U.S. Patent No. 4,434,151 describe homocysteine thiolactone-derived bifunctional
chelating agents that can couple radionuclides to terminal amino-containing compounds
that are capable of localizing in an organ or tissue to be imaged.
[0025] Fritzberg. U.S. Patent No. 4,444,690 describes a series of technetium-chelating agents
based on 2,3-bis(mercaptoacetamido) propanoate.
[0026] Byrne
et al., U.S. Patent Nos. 4,571,430 describe novel homocysteine thiolactone bifunctional chelating
agents for chelating radionuclides that can couple radionuclides to terminal amino-containing
compounds that are capable of localizing in an organ or tissue to be imaged.
[0027] Byrne
et al., U.S. Patent Nos. 4,575,556 describe novel homocysteine thiolactone bifunctional cheating
agents for chelating radiomiclides that can couple radionuclides to terminal amino-containing
compounds that are capable of localizing in an organ or tissue to be imaged.
[0028] Davison
et al., U.S. Patent No. 4,673,562 describe technetium chelating complexes of bisamido-bisthio-ligands
and salts thereof, used primarily as renal function monitoring agents.
[0029] Nicolotti
et al., U.S. Patent No. 4,861,869 describe bifunctional coupling agents useful in forming
conjugates with biological molecules such as antibodies.
[0030] Fritzberg
et al., U.S. Patent 4,965,392 describe various 5-protected mercaptoacetylglycylglycine-based
chelators for labeling proteins.
[0031] Fritzberg
et al., European Patent Application No. 86100360.6 describe dithiol, diamino, or diamidocarboxylic
acid or amine complexes useful for making technetium-labeled imaging agents.
[0032] Dean
et al., 1989, PCT/US89/02634 describe bifunctional coupling agents for radiolabeling proteins
and peptides.
[0033] Flanagan
et al., European Patent Application No. 90306428.5 disclose Tc-99m labeling of synthetic
peptide fragments
via a set of organic chelating molecules.
[0034] Albert
et al., International Patent Application WO 91/01144 disclose radioimaging using radiolabeled
peptides related to growth factors, hormones, interferons and cytokines and comprised
of a specific recognition peptide covalently linked to a radionuclide chelating group.
[0035] Dean, co-pending U.S. Patent Application Serial No. 07/653,012 teaches reagents and
methods for preparing peptides comprising a Tc-99m chelating group covalently linked
to a specific binding peptide for radioimaging
in vivo, and is hereby incorporated by reference.
[0036] Baidoo & Lever, 1990, Bioconjugate Chem. 1: 132-137 describe a method for labeling
Momolecules using a bisamine bisthiol group that gives a cationic technetium complex.
[0037] It is possible to radiolabel a peptide by simply adding a thiol-containing moiety
such as cysteine or mercaptoacetic acid. Such procedures have been described in the
prior art.
[0038] Schochat
et al., U.S. Patent No. 5,061,641 disclose direct radiolabeling of proteins comprised of
at least one "pendent" sulfhydryl group.
[0039] Dean
et al., co-pending U.S. Patent Application 07/807,062 teach radiolabeling peptides via attached
groups containing free thiols, and is incorporated herein by reference.
[0040] Goedemans
et al., WO 89/07456 describe radiolabeling proteins using cyclic thiol compounds, particularly
2-iminothiolane and derivatives.
[0041] Thombaek
et al., EP Application No. 90402206.8 describe preparation and use of radiolabeled proteins
or peptides using thiol-containing compounds, particularly 2-iminothiolane.
[0042] Stuttle, WO 90/15818 describes Tc-99m labeling of RGD-containing oligopeptides.
[0043] Burns
et al., 1985, European Patent Application 85104959.3 describe bisamine bisthiol compounds
for making small neutral Tc-99m brain imaging agents.
[0044] Kung
et al., 1986, European Patent Application 86105920.2 describe bisamine bisthiol compounds
for making small neutral Tc-99m imaging agents.
[0045] Bergstein
et al., 1988, European Patent Application 88102252.9 describe bisamine bisthiol compounds
for making small neutral Tc-99m brain imaging agents.
[0046] Bryson
et al., 1988, Inorg. Chem.
27: 2154-2161 describe neutral complexes of technetium-99 which are unstable to excess
ligand.
[0047] Misra
et al., 1989, Tet. Let.
30: 1885-1888 describe bisamine bisthiol compounds for radiolabeling purposes.
[0048] Bryson
et al., 1990, Inorg, Chem.
29: 2948-2951 describe chelators containing two amide groups, a thiol group and a substituted
pyridine that may form neutral Tc-99 complexes.
[0049] Taylor
et al., 1990, J. Nucl. Med.
31: 885 (Abst) describe a neutral Tc-99m complex for brain imaging.
[0050] The use of chelating agents for radiolabeling peptides, and methods for labeling
peptides with Tc-99m are known in the prior art and are disclosed in co-pending U.S.
Patent Applications Serial Nos. 07/653,012, 07/807,062, 07/871,282, 07/886,752, 07/893,981,
07/955,466, 08/1019,864, 08/073,577, 08/210,922, 08/236,402 and 08/241,625, and radiolabeled
peptides for use as scintigraphic imaging agents for imaging thrombi are known in
the prior art and are disclosed in co-pending U.S. Patent Applications Serial Nos.
07/886,752, 07/893,981 and 08/044,825 and International Patent Applications PCT/US92/00757,
PCT/US92/10716, PCT/US93/02320, PCT/US93/03687, PCT/US93/04794, PCT/US93/05372, PCT/US93/06029,
PCT/US93/09387, PCT/US94/01894, PCT/US94/03878, and PCT/US94/05895.
SUMMARY OF THE INVENTION
[0051] The present invention provides scintigraphic imaging agents that are radioactively-labeled
peptides. The radiolabeled peptides of the invention are comprised of peptides that
specifically bind to a target
in vivo and are covalently linked to a radiolabel-binding moiety wherein the moiety binds
a radioisotope. It is a particular advantage in the present invention that the radiolabel-binding
moiety is covalently linked to a side-chain of an amino acid residue comprising the
peptide.
[0052] This mode of covalent linkage is advantageous for a number of reasons. First, covalent
linkage to a side-chain of an amino acid constituent of the peptide avoids interference
of the covalently linked radiolabel binding moiety with the specific binding properties
of the specific binding peptide. Second, this arrangement permits cyclic peptides,
which are by definition not comprised of free amino or carboxy termini, to be used
in conjunction with radiolabel binding moieties to be useful as scintigraphic imaging
agents as disclosed here. Third, covalent linkage to the sidechain of a constituent
amino acid permits each of the scintigraphic imaging agents of the invention to be
more flexibly designed to achieve optimal increases in efficacy and reductions in
antigenicity, etc. Conjugation to an amino acid side-chain also allows the radiolabel
binding moiety to be added to the peptide during synthesis as an amino acid conjugate,
or after synthesis of the completed peptide has been achieved. Lastly, cyclic peptides
are known to be resistant to exoprotease digestion, thereby incorporating the inproved
stability of such peptides
in vivo into the scintigraphic imaging agents of the invention.
[0053] In a first aspect of the present invention, radiolabeled peptides are provided capable
of imaging sites within a mammalian body. The peptides are comprised of a specific
binding peptide having an amino acid sequence and a radiolabel-binding moiety covalently
linked to the peptide. Further, the radiolabel-binding moiety is covalently linked
to a side-chain of an amino acid comprising the peptide. In a preferred embodiment,
the radiolabel-binding moiety is covalently linked to the side-chain of an amino acid
having a side-chian comprising an amine or a thiol, the amino acid being most preferably
lysine or homocysteine. In another preferred embodiment, the radiolabel is technetium-99m.
[0054] One aspect of the invention provides a reagent for preparing a a scintigraphic imaging
agent for imaging sites within a mammalian body, comprising a specific binding peptide
wherein a radiolabel binding moiety is covalently linked to the peptide
via an amino acid side-chain of an amino acid of the peptide, the radiolabel binding
moiety having the formula:
I. C(pgp)
s-(aa)-C(pgp)
s
wherein C(pgp)
s is a protected cysteine and (aa) is any primary α- or β-amino acid not containing
a thiol group. In a preferred embodiment, the amino acid is glycine.
[0055] In another embodiment, the invention provides a reagent for preparing a scintigraphic
imaging agent for imaging sites within a mammalian body, comprising a specific binding
peptide wherein a radiolabel binding moiety is covalently linked to the peptide via
an amino acid side-chain of an amino acid of the peptide, the radiolabel binding moiety
having the formula:
II. A-CZ(B)-{(C(R
1R
2)}
n-X
wherein A is H, HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC or R
4; B is H, SH or -NHR
3, -N(R
3)-(amino acid or peptide) or R
4; Z is H or R
4; X is SH or -NHR
3, -N(R
3)-(amino acid or peptide) or R
4; R
1, R
2, R
3 and R
4 are independently H or straight or branched chain or cyclic lower alkyl; n is 0,
1 or 2; wherein (peptide) is a peptide of 2 to about 10 amino acids; and: (1) where
B is -NHR
3 or -N(R
3)-(amino acid or peptide), X is SH and n is 1 or 2; (2) where X is -NHR
3 or -N(R
3)-(amino acid or peptide), B is SH and n is 1 or 2; (3) where B is H or R
4, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC, X is SH and n is 0
or 1; (4) where A is H or R
4, then where B is SH, X is -NHR
3 or -N(R
3)-(amino acid or peptide) and where X is SH, B is -NHR
3 or -N(R
3)-(amino acid or peptide); (5) where X is H or R
4, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC and B is SH; (6) where
Z is methyl, X is methyl, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC and B is SH and n is
0; and wherein the thiol moiety is in the reduced form and wherein (amino acid) is
any primary α- or β-amino acid not containing a thiol group.
[0056] In particular embodiments of this aspect of the invention, the radiolabel-binding
moiety has a formula that is:
IIa. -(amino acid)1-(amino acid)2-{A-CZ(B)-{C(R1R2)}n-X},
IIb. -{A-CZ(B)-{C(R1R2)}n-X}-(amino acid)1-(amino acid)2,
IIc. -(a primary α, ω-or β,ω-diamino acid)-(amino acid)1-{A-CZ(B)-{C(R1R2)}n-X}, or
IId. -{A-CZ(B)-{C(R1R2)}n-X}-(amino acid)'-(a primary α,β- or β,γ-diamino acid)
wherein (amino acid)
1 and (amino acid)
2 are each independently any naturally-ocurring, modified, substituted or altered α-
or β-amino acid not containing a thiol group; A is H, HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC or R
4; B is H, SH or -NHR
3, -N(R
3)-(amino acid or peptide) or R
4; Z is H or R
4; X is SH or -NHR
3. -N(R
3)-(amino acid or peptide) or R
4; R
1, R
2, R
3 and R
4 are independently H or straight or branched chain or cyclic lower alkyl; n is an
integer that is either 0, 1 or 2; (peptide) is a peptide of 2 to about 10 amino acids;
and: (1) where B is -NHR
3 or -N(R
3)-(amino acid or peptide), X is SH and n is 1 or 2; (2) where X is -NHR
3 or -N(R
3)-(amino acid or peptide), B is SH and n is 1 or 2; (3) where B is H or R
4, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC, X is SH and n is 0
or 1; (4) where A is H or R
4, then where B is SH, X is -NHR
3 or -N(R
3)-(amino acid or peptide) and where X is SH, B is -NHR
3 or -N(R
3)-(amino acid or peptide); (5) where X is H or R
4, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC and B is SH; (6) where
Z is methyl, X is methyl, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC and B is SH and n is
0; and wherein the thiol group is in the reduced form. The invention also discloses
a radiolabeled peptide for imaging sites within a mammalian body, comprising a specific
binding peptide peptide wherein a radiolabel binding moiety is covalently linked to
the peptide via an amino acid side-chain of an amino acid of the peptide, the radiolabel
binding moiety having the formula:

{for purposes of this invention, radiolabel-binding moieties having this structure
will be referred to as picolinic acid (Pic)-based moieties} or

{for purposes of this invention, radiolabel-binding moieties having this structure
will be referred to as picolylamine (Pica)-based moieties} wherein X is H or a protecting
group; (amino acid) is any amino acid; the radioiabel-binding moiety is covalently
linked to the peptide and the complex of the radiolabel-binding moiety and the radiolabel
is electrically neutral. In a preferred embodiment, the amino acid is glycine and
X is an acetamidomethyl protecting group. In additional preferred embodiments, the
peptide is covalently linked to the radiolabel-binding moiety via an amino acid, most
preferably glycine, and the radiolabel is technetium-99m.
[0057] In addition a radiolabeled peptide is disclosed for imaging sites within a mammalian
body, comprising a specific binding peptide and a bisamino bisthiol radiolabel-binding
moiety covalently linked to the peptide
via an amino acid side-chain of the peptide. The bisamino bistbiol radiolabel-binding
moiety in this embodiment of the invention has a formula selected from the group consisting
of:

wherein each R can be independently H, CH
3 or C
2H
5; each (pgp)
s can be independently a thiol protecting group or H; m, n and p are independently
2 or 3; A is linear or cyclic lower alkyl, aryl, heterocyclyl, combinations or substituted
derivatives thereof; and X is peptide; and

wherein each R is independently H, CH
3 or C
2H
5; m, n and p are independently 2 or 3; A is linear or cyclic lower alkyl, aryl, heterocyclyl,
combinations or substituted derivatives thereof; V is H or CO-peptide; R' is H or
peptide; provided that when V is H, R' is peptide and when R' is H, V is peptide.
{For purposes of this invention, radiolabel-binding moieties having these structures
will be referred to as "BAT" moieties}. In a preferred embodiment, the peptide is
covalendy linked to the radiolabel-binding moiety
via an amino acid, most preferably glycine, and the radiolabel is tochnetium-99m.
[0058] In preferred embodiments of the aforementioned aspects of this invention, the specific
binding compound is a peptide is comprised of between 3 and 100 amino acids. The most
preferred embodiment of the radiolabel is technetium-99m.
[0059] Specific-binding peptides provided by the invention include but are not limited to
peptides having the following sequences:
formyl-MLF
(VGVAPG)3amide
(VPGVG)4amide
RALVDTLKFVTQAEGAKamide
RALVDTEFKVKQEAGAKamide
PLARITLPDFRLPEIAIPamide
GQQHHLGGAKAGDV
PLYKKIIKKLLES
LRALVDTLKamide
GGGLRALVDTLKamide
GGGLRALVDTLKFVTQAEGAKamide
GGGRALVDTLKALVDTLamide
GHRPLDKKREEAPSLRPAPPPISGGGYR
PSPSPIHPAHHKRDRRQamide
GGGFD.Cpa. YWDKTFTamide
{SYNRGDSTC}3-TSEA
GGGLRALVDTLKamide
GCGGGLRALVDTLKamide
GCYRALVDTLKFVTQAEGAKamide
GC(VGVAPG)3amide
[0060] The reagents of the invention may be formed wherein the specific binding compounds
or the radiolabel-binding moieties are covalently linked to a polyvalent linking moiety.
Polyvalent linking moieties of the invention are comprised of at least 2 identical
linker functional groups capable of covalently bonding to specific binding compounds
or radiolabel-binding moieties. Preferred linker functional groups are primary or
secondary amines, hydroxyl groups, carboxylic acid groups or thiol-reactive groups.
In preferred embodiments, the polyvalent linking moieties are comprised of
bis-siccinimdylmethylether (BSME), 4-(2,2-dimethylacetyl)benzoicacid (DMAB),
tris(succinimidylethyl)amine (TSEA),
N{2-(
N',N'-bis(2-succinimidoethyl) aminoethyl)}-
N6,
N9-
bis(2-methyl-2-mercaptopropyl)-6,9-diazanonamid (BAT-BS),
bis-(acetamidoethyl)ether,
tris(acetamidoethyl)amine,
bis-(acetamidoethyl)ether,
bis-(acetamidomethyl)ether, α,ε-
bisacetyllysine, lysine and 1,8-
bis-acetamido-3,6-dioxaoctane.
[0061] The invention also comprises complexes of the peptides of the invention with Tc-99m
and methods for radiolabeling the peptides of the invention with Tc-99m. Radiolabeled
complexes provided by the invention are formed by reacting the peptides of the invention
with Tc-99m in the presence of a reducing agent. Preferred reducing agents include
but are not limited to dithionite ion, stannous ion, and ferrous ion. Complexes of
the invention are also formed by labeling the peptides of the invention with Tc-99m
by ligand exchange of a prereduced Tc-99m complex as provided herein.
[0062] The invention also provides kits for preparing the peptides of the invention radiolabeled
with Tc-99m. Kits for labeling the peptide of the invention with Tc-99m are comprised
of a sealed vial containing a predetermined quantity of a peptide of the invention
and a sufficient amount of reducing agent to label the peptide with Tc-99m.
[0063] This invention provides methods for preparing peptides of the invention by chemical
synthesis
in vitro. In a preferred embodiment, peptides are synthesized by solid phase peptide synthesis.
[0064] This invention provides methods for using Tc-99m labeled peptides for imaging a site
within a mammalian body by obtaining
in vivo gamma scintigraphic images. These methods comprise administering an effective diagnostic
amount of a Tc-99m radiolabeled peptide of the invention and detecting the gamma radiation
emitted by the Tc-99m localized at the site within the mammalian body.
[0065] Specific preferred embodiments of the present invention will become evident from
the following more detailed description of certain preferred embodiments and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0066]
Figure 1 shows an image of 99mTc-P587 in a tumor-bearing rat.
DETAILED DESCRIPTION OF THE INVENTION
[0067] The present invention provides Tc-99m labeled peptides for imaging target sites within
a mammalian body comprising an amino acid sequence covalently linked through an amino
acid side-chain to a radiolabel-binding moiety wherein the radiolabel-binding moiety
binds a radioisotope.
[0068] Labeling with Tc-99m is an advantage of the present invention because the nuclear
and radioactive properties of this isotope make it an ideal scintigraphic imaging
agent. This isotope has a single photon energy of 140 keV and a radioactive half-life
of about 6 hours, and is readily available from a
99Mo-
99mTc generator. Other radionuclides known in the prior art have effective half-lives
which are much longer (
for example, 111In, which has a half-life of 67.4 h) or are toxic (
for example, 125I).
[0069] In the radiolabel binding moieties and peptides covalently linked to such moieties
that contain a thiol covalently linked to thiol protecting groups [(pgp)
s] provided by the invention, the thiol-protecting groups may be the same or different
and may be but are not limited to:
-CH2-aryl (aryl is phenyl or alkyl or alkyloxy substituted phenyl);
-CH-(aryl)2, (aryl is phenyl or alkyl or alkyloxy substituted phenyl);
-C-(aryl)3, (aryl is phenyl or alkyl or alkyloxy substituted phenyl);
-CH2-(4-methoxyphenyl);
-CH-(4-pyridyl)(phenyl)2;
-C(CH3)3
-9-phenylfluorenyl;
-CH2NHCOR (R is unsubstituted or substituted alkyl or aryl);
-CH2-NHCOOR (R is unsubstituted or substituted alkyl or aryl);
-CONHR (R is unsubstituted or substituted alkyl or aryl);
-CH2-S-CH2-phenyl
[0070] Preferred protecting groups have the formula -CH
2-NHCOR wherein R is a lower alkyl having 1 and 8 carbon atoms, phenyl or phenyl-substituted
with lower alkyl, hydroxyl, lower alkoxy, carboxy, or lower alkoxycarbonyl. The most
preferred protecting group is an acetamidomethyl group.
[0071] Each specific-binding peptide-containing embodiment of the invention is comprised
of a sequence of amino acids. The term amino acid as used in this invention is intended
to include all L- and D- amino acids, naturally occurring and otherwise.
[0072] Peptides of the present invention can be chemically synthesized
in vitro. Peptides of the present invention can generally advantageously be prepared on an
amino acid synthesizer. The peptides of this invention can be synthesized wherein
the radiolabel-binding moiety is covalently linked to the peptide during chemical
synthesis
in vitro, using techniques well known to those with skill in the art. Such peptides covalently-linked
to the radiolabel-binding moiety during synthesis are advantageous because specific
sites of covalent linkage can be determined.
[0073] It is a particular advantage of the present invention that a radiolabel-binding moiety
is covalently linked to the peptide via an amino acid side-chain of the target specific
binding peptide. This may be accomplished by either coupling the radiolabel binding
moiety to the peptide by formation of a covalent bond with a particular amino acid
side-chain or through incorporation of an amino acid conjugated to a radiolabel-binding
moiety during peptide synthesis.
[0074] In the former case, for example, the radiolabel-binding moiety ClCH
3CO. Gly-Gly-Cys-Lys.amide (protected during synthesis,
inter alia, by tritylation of the thiol group of the cysteine residue) is coupled at pH 8-10
to the somatostatin receptor binding peptide
cyclo.(N-CH2).Phe-Tyr-(D-Trp)-Lys-Val-Hcy to form the peptide
cyclo.(
N-CH2).Phe-Try-(D-Trp)-Lys-Val-Hcy.(CH,CO).Gly-Gly-Cys-Lys.amide (following de-protection). In this formula, it will
be understood that the radiolabel-binding moiety is covalently linked to the sidechain
sulfur atom of homocysteine.
[0075] Alternatively, the radiolabel-binding moiety BAT (
N6,
N9-
bis(2-mercapto-2-methylpropyl)-6,9-diazanonanoic acid) is incorporated into the leukocyte
binding peptide
formyl.Met-Leu-Phe-Lys.amide by using the prepared lysine derivative,
Nα(Fmoc)-
Nε(
N9-(
t-butoxycarbonyl)-
N6,
N9-
bis(2-methyl-2-triphenylmethylthiopropyl)-6,9-diazanonanoyl)lysine during peptide synthesis.
[0076] Other radiolabel binding moieties of the invention may be introduced into the target
specific peptide during peptide synthesis. The picolinic acid-containing radiolabel-binding
moiety may be covalently linked to the
ε-amino group of lysine to give, for example, αN(Fmoc)-Lys-εN[Pic-Gly-Cys(protecting
group)], which may be incorporated at any position in the peptide chain. This sequence
is particularly advantageous as it affords an easy mode of incorporation into the
target binding peptide.
[0077] In forming a complex of radioactive technetium with the peptides of this invention,
the technetium complex, preferably a salt of Tc-99m pertechnetate, is reacted with
the peptides of this invention in the presence of a reducing agent. Preferred reducing
agents are dithionite, stannous and ferrous ions; the most preferred reducing agent
is stannous chloride. In an additional preferred embodiment, the reducing agent is
a solid-phase reducing agent. Complexes and means for preparing such complexes are
conveniently provided in a kit form comprising a sealed vial containing a predetermined
quantity of a peptide of the invention to be labeled and a sufficient amount of reducing
agent to label the peptide with Tc-99m. Alternatively, the complex may be formed by
reacting a peptide of this invention with a pre-formed labile complex of technetium
and another compound known as a transfer ligand. This process is known as ligand exchange
and is well known to those skilled in the art. The labile complex may be formed using
such transfer ligands as tartrate, citrate, gluconate or mannitol, for example. Among
the Tc-99m pertechnetate salts useful with the present invention are included the
alkali metal salts such as the sodium salt, or ammonium salts or lower alkyl ammonium
salts.
[0078] In a preferred embodiment of the invention, a kit for preparing technetium-labeled
peptides is provided. The peptides of the invention can be chemically synthesized
using methods and means well-known to those with skill in the art and described hereinbelow.
Peptides thus prepared are comprised of between 3 and 100 amino acid residues, and
are covalently linked to a radiolabel-binding moiety wherein the radiolabel-binding
moiety binds a radioisotope. An appropriate amount of the peptide is introduced into
a vial containing a reducing agent, such as stannous chloride or a solid-phase reducing
agent, in an amount sufficient to label the peptide with Tc-99m. An appropriate amount
of a transfer ligand as described (such as tartrate, citrate, gluconate or mannitol,
for example) can also be included. Technetium-labeled peptides according to the present
invention can be prepared by the addition of an appropriate amount of Tc-99m or Tc-99m
complex into the vials and reaction under conditions described in Example 3 hereinbelow.
[0079] Radioactively labeled peptides provided by the present invention are provided having
a suitable amount of radioactivity. In forming Tc-99m radioactive complexes, it is
generally preferred to form radioactive complexes in solutions containing radioactivity
at concentrations of from about 0.01 millicurie (mCi) to 100 mCi per mL.
[0080] Technetium-labeled peptides provided by the present invention can be used for visualizing
sites in a mammalian body. In accordance with this invention, the technetium-labeled
peptides are administered in a single unit injectable dose. Any of the common carriers
known to those with skill in the art, such as sterile saline solution or plasma, can
be utilized after radiolabeling for preparing the injectable solution to diagnostically
image various organs, tumors and the like in accordance with this invention. Generally,
the unit dose to be administered has a radioactivity of about 0.01 mCi to about 100
mCi, preferably 1 mCi to 20 mCi. The solution to be injected at unit dosage is from
about 0.01 mL to about 10 mL. After intravenous administration, imaging of the organ
or tumor
in vivo can take place in a matter of a few minutes. However, imaging can take place, if
desired, in hours or even longer, after the radiolabeled peptide is injected into
a patient. In most instances, a sufficient amount of the administered dose will accumulate
in the area to be imaged within about 0.1 of an hour to permit the taking of scintiphotos.
Any conventional method of scintigraphic imaging for diagnostic purposes can be utilized
in accordance with this invention.
[0081] The technetium-labeled peptides and complexes provided by the invention may be administered
intravenously in any conventional medium for intravenous injection such as an aqueous
saline medium, or in blood plasma medium. Such medium may also contain conventional
pharmaceutical adjunct materials such as, for example, pharmaceutically acceptable
salts to adjust the osmotic pressure, buffers, preservatives and the like. Among the
preferred media are normal saline and plasma.
[0082] The methods for making and labeling these compounds are more fully illustrated in
the following Examples. These Examples illustrate certain aspects of the above-described
method and advantageous results. These Examples are shown by way of illustration and
not by way of limitation.
EXAMPLE 1
Solid Phase Peptide Synthesis
[0083] Solid phase peptide synthesis (SPPS) was carried out on a 0.25 millimole (mmole)
scale using an Applied Biosystems Model 431A Peptide Synthesizer and using 9-fluorenylmethyloxycarbonyl
(Fmoc) amino-terminus protection, coupling with dicyclohexylcarbodiimide/hydroxybenzotriazoleor2-(1H-benzo-triazol-1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate/ hydroxybenzotriazole (HBTU/HOBT), and usingp-hydroxymethylphenoxy-methylpolystyrene
(HMP) resinforcarboxyl-terminus acids or Rink amide resin for carboxyl-terminus amides.
Resin-bound products were routinely cleaved using a solution comprised of trifluoroacetic
acid, water, thioanisole, ethanedithiol, and triethylsilane, prepared in ratios of
100 : 5 : 5 : 2.5 : 2 for 1.5 - 3 h at room temperature.
[0084] Where appropriate αN-formyl groups were introduced by treating the cleaved, deprotected
peptide with excess acetic anhydride in 98% formic acid and stirring for about 18
hours followed by HPLC purification. Where appropriate N-terminal acetyl groups were
introduced by treating the free N-terminal amino peptide bound to the resin with 20%
v/v acetic anhydride in NMP (N-methylpyrrolidinone) for 30 min. Where appropriate,
2-chloroacetyl and 2-bromoacetyl groups were introduced either by using the appropriate
2-halo-acetic acid as the last residue to be coupled during SPPS or by treating the
N-terminus free amino peptide bound to the resin with either the 2-halo-acetic acid/
diisopropylcarbodiimide/ N-hydroxysuccinimide in NMP of the 2-halo-acetic anhydride/
diisopropylethylamine in NMP. Where appropriate, HPLC-purified 2-haloacetylated peptides
were cyclized by stirring an 0.1 - 1.0 mg/mL solution in bicarbonate or ammonia buffer
(pH 8) with or without 0.5 - 1.0 mM EDTA for 1 - 48 hours, followed by acidification
with acetic acid, lyophilization and HPLC purification. Where appropriate, Cys-Cys
disulfide bond cyclizations were performed by treating the precursor cysteine-free
thiol peptides at 0.1mg/mL in pH 7 buffer with aliquots of 0.006 M K
3Fe(CN)
6 until a stable yellow color persisted. The excess oxidant was reduced with excess
cysteine, the mixture was lyophilized and then purified by HPLC.
[0085] Where appropriate the "Pica"' group was introduced by conjugating picolylamine to
a precursor peptide using diisopropylcarbodiimide and N-hydroxysuccinimide. Where
appropriate BAT ligands were introduced either by using the appropriate BAT acid as
the last residue to be coupled during SPPS or by treating the N-terminus free amino
peptide bound to the resin with BAT acid/diisopropylcarbodiimide/ N-hydroxysuccinimide
in NMP. Where appropriate, [BAM] was conjugated to the peptide by first activating
the peptide carboxylate with a mixture of diisopropylcarbodiimide/N-hydroxysuccinimide
or HBTU/HOBt in DMF, NMP or CH
2Cl
2, followed by coupling in the presence of diisopropylethylamine; after coupling, the
conjugate was deprotected as described above.
[0086] Where appropriate, BSME adducts were prepared by reacting single thiol-containing
peptides (5 to 50 mg/mL in 50 mM sodium phosphate buffer, pH 8) with 0.5 molar equivalents
of BMME (
bis-maleimidomethylether) pre-dissolved in acetonitrile at room temperature for approximately
1-18 hours. The solution was concentrated and the product was purified by HPLC.
[0087] Where appropriate, TSEA adducts were prepared by reacting single thiol-containing
peptide (at concentrations of 10 to 100 mg/mL peptide in DMF, or 5 to 50 mg/mL peptide
in 50mM sodium phosphate (pH 8)/ acetonitrile or THF) with 0.33 molar equivalents
of TMEA (
tris(2-maleimidoethyl)amine; as disclosed in U.S. Serial No. 08/044,825, incorporated
by reference) pre-dissolved in acetonitrile or DMF, with or without 1 molar equivalent
of triethanolamine, at room temperature for approximately 1-18h. Such reaction mixtures
containing adducts were concentrated and the adducts were then purified using HPLC.
[0088] Where appropriate, BAT-BS adducts were prepared by reacting single thiol-containing
peptide (at concentrations of 2 to 50 mg/mL peptide in 50mM sodium phosphate (pH 8)/
acetonitrile or THF) with 0.5 molar equivalents of BAT-BM (N-[2-(
N',N'-
bis(2-maleimidoethyl)aminoethyl)]-
N9-(
t-butoxycarbonyl)-
N6,
N7, -
bis(2-methyl-2-triphenylmethylthiopropyl)-6,9-diazanonanamide; as disclosed inU. S. Serial
No. 08/044,825, incorporated by reference) pre-dissolved in acetonitrile or THF, at
room temperature for approximately 1-18h. The solution was then evaporated to dryness
and [BAT-BS]-peptide conjugates deprotected by treatment with 10mL TFA and 0.2mL triethylsilane
for 1h. The solution was concentrated, the product adducts precipitated with ether,
and then purified by HPLC.
[0089] Crude peptides were purified by preparative high pressure liquid chromatography (HPLC)
using a Waters Delta Pak C18 column and gradient elution using 0.1 % trifluoroacetic
acid (TFA) in water modified with acetonitrile. Acetonitrile was evaporated from the
eluted fractions which were then lyophilized. The identity of each product was confirmed
by fast atom bombardment mass spectroscopy (FABMS).
EXAMPLE 3
A General Method for Radiolabeling with Tc-99m
[0090] 0.1 mg of a peptide prepared as in Example 2 was dissolved in 0.1 mL of water or
50 mM potassium phosphate buffer (pH = 5, 6 or 7.4). Tc-99m gluceptate was prepared
by reconstituting a Glucoscan vial (E.I. DuPont de Nemours, Inc.) with 1.0 mL of Tc-99m
sodium pertechnetate containing up to 200 mCi and allowed to stand for 15 minutes
at room temperature. 25 µl of Tc-99m gluceptate was then added to the peptide and
the reaction allowed to proceed at room temperature or at 100°C for 15-30 min and
then filtered through a 0.2 µm filter.
[0091] The Tc-99m labeled peptide purity was determined by HPLC using the following conditions:
a Waters DeltaPure RP-18, 5µ, 150mm x 3.9mm analytical column was loaded with each
radiolabeled peptide and the peptides eluted at a solvent flow rate equal to 1 mL/min.
Gradient elution was performed beginning with 10% solvent A (0.1 % CF3COOH/H
2O) to 40% solvent B
90 (0.1 % CF
3COOH/90% CH
3CN/H
2O) over the course of 20 min.
[0092] Radioactive components were detected by an in-line radiometric detector linked to
an integrating recorder. Tc-99m gluceptate and Tc-99m sodium pertechnetate elute between
1 and 4 minutes under these conditions, whereas the Tc-99m labeled peptide eluted
after a much greater amount of time.
EXAMPLE 3
Localization and In Vivo Imaging of Atherosclerotic Plaque using Tc-99m Labeled Compound P215 in the Hypercholesterol
Rabbit Model
[0094] Twenty-two New Zealand White (NZW) rabbits of both sexes and weighing 2-3kg are divided
into two groups. The control group of rabbits are housed and fed commercial rabbit
chow (Purina). The HC group are fed a standardized, cholesterol-rich diet (rabbit
chow mixed to a 1 % w/w concentration of cholesterol) from seven weeks until 28 weeks
of age. All animals are given water
ad libitum.
[0095] Tc-99m labeled P215 ({BAT}. RALVDTLKFVTQAEGAK.amide) is prepared as described above
in Example 1. Approximately 250-400µg of peptide is labeled with 140-160mCi of Tc-99m
and prepared in unit doses of 7-8mCi (12.5-20.0 µg/rabbit; 6-7µg/kg) in 0.2mL volume
doses. Adult rabbits are dosed with Tc-99m labeled peptide intravenously in a lateral
ear vein by slow bolus infusion (approximately 0.1mL/min). A gamma camera fitted with
a pin-hole collimator (5mm aperture) and energy window set for Tc-99m and programmed
to accumulate 500,000 counts or scan for a desired time is used to acquire images.
Shortly before imaging, animals are anesthetized with a mixture of ketamine and xylazine
(5:1, 1mL/kg intramuscularly).
[0096] Gamma camera images are collected at 40°-45° just above the heart (left anterior
oblique [LAO] view) to delineate the aortic arch and view the descending aorta. Images
are acquired at 1 and 2h and occasionally at 3 and 5h after injection. Supplementary
anesthesia is injected as needed prior to each image collection.
[0097] At 2.5 h (after a 2h scan), animals are sacrificed with an intravenous dose of sodium
pentobarbital. Upon necropsy, the aorta is removed and branching vessels dissected
free from the aortic valve to the mid-abdominal region. Using a parallel hole collimator,
the aorta is also imaged
ex corpora. Next, the aortae are opened longitudinally and stained with Sudan IV, thereby turning
atherosclerotic plaque a deep red brick color. Lipid-free and uninjured aortic endothelium
retains its normal, glistening white-pink appearance under these conditions.
[0098] Positive correlations among the
in vivo and
ex corpora Tc-99m P215 images and the deposition patterns of Sudan IV in the HC-treated rabbit
aortae indicate that this scintigraphic imaging agent of the invention is capable
of imaging atherosclerotic plaque.
EXAMPLE 4
In Vivo Imaging using Tc-99m Labeled Compound P357 of Deep Vein Thrombosis in a Canine Model
[0099] Mongrel dogs (25-35lb., fasted overnight) are sedated with a combination of ketamine
and aceprozamine intramuscularly and then anesthetized with sodium pentobarbital intravenously.
An 18-gauge angiocath is inserted in the distal half of the right femoral vein and
an 8mm Dacron®-entwined stainless steel embolization coil (Cook Co., Bloomington IN)
is placed in the femoral vein at approximately mid-femur in each animal. The catheter
is removed, the wound sutured and the placement of the coil documented by X-ray. The
animals are then allowed to recover overnight.
[0100] One day following coil placement, each animal is re-anesthetized, intravenous saline
drips placed in each foreleg and a urinary bladder catheter inserted to collect urine.
The animal is placed supine under a gamma camera which is equipped with a low-energy,
all purpose collimator and photopeaked for Tc-99m. Images are acquired on a NucLear
Mac computer system.
[0101] Tc-99mlabeledP357 {(CH
2CO- Y
D.Apc.GDCGGC
AcmGC
AcmGGC.amide)
2-[BAT-BS]} {185-370 mBq (5-10 mCi) Tc-99m and 0.2-0.4mg P357} is injected into one
foreleg intravenous line at its point of insertion. The second line is maintained
for blood collection. Anterior images over the legs are acquired for 500,000 counts
or 20 min (whichever was shorter), at approximately 10-20 min, and at approximately
1, 2, 3 and 4h post-injection. Following the collection of the final image, each animal
is deeply anesthetized with pentobarbital. Two blood samples are collected on a cardiac
puncture using a heparinized syringe followed by a euthanasing dose of saturated potassium
chloride solution administered by intercardiac or bolus intravenous injection. The
femoral vein containing the thrombus and samples of thigh muscle are then carefully
dissected out. The thrombus is then dissected free of the vessel and placed in a pre-weighed
test tube. The thrombus samples are then weighed and counted in a gamma well counter
in the Tc-99m channel. Known fractions of the injected doses are counted as well.
[0102] Fresh thrombus weight, percent injected dose (%ID)/g in the thrombus and blood obtained
just prior to euthanasia and thrombus/blood and thrombus/muscle ratios are determined.
Thrombus/background ratios are determined by analysis of the counts/pixel measured
in regions-of-interest (ROI) drawn over the thrombus and adjacent muscle from computer-stored
images.
[0103] These results are used to demonstrate that deep vein thrombi can be rapidly and efficiently
located
in vivo.
EXAMPLE 5
Scintigraphic Imaging and Biodistribution of Tc-99m Labeled Peptides
[0104] In order to demonstrate the effectiveness of Tc-99m labeled peptide reagents as provided
above, New Zealand white rabbits were innoculated intramuscularly in the left calf
with a potent stain of
E. coli. After 24 h, the animals were sedated by i.m. injection of ketamine and xylazine,
and then injected i.v. with Tc-99m labeled peptide (≤ 150µg, 2-10 mCi). The animals
were positioned supine in the field of view of a gamma camera (LEAP collimator/ photopeaked
for Tc-99m) and imaged over the first hour post-injection, and then at approximately
1h intervals over the next three hours post injection. Animals were allowed to recover
between image acquisitions and re-anesthetized as needed.
[0105] Upon completion of the final imaging, each animal was sacrificed by overdose of phenobarbital
i.v. and dissected to obtain samples of blood and of infected and control muscle tissue.
The tissue samples were weighed, and along with a standard amount of the injected
dose, were counted using a gamma counter, and the percent injected dose (per gram
of tissue) remaining in the tissues was determined. Ratios of percent of injected
dose per gram of infected
versus non-infected muscle tissue, and of infected muscle tissue
versus blood, were calculated for each peptide. These results are presented in the following
Table for the Tc-99m labeled reagent of the invention, having the formula
formylMLFK(BAT).amide.
TABLE III
| Peptide |
A |
B |
C |
D |
E |
| formylMLFK(BAT).amide |
0.0215 |
0.0028 |
7.68 |
0.006 |
3.58 |
| A = %ID/gram infected muscle |
| B = %ID/gram control muscle |
| C = Ratio infected muscle:control muscle |
| D = % ID/gram blood |
| E = Ratio infected muscle:blood |
EXAMPLE 6
Localization and In Vivo Imaging of Somatostatin Receptor (SSTR)-Expressing Tumors in Rats
[0106] In vivo imaging of somatostatin receptors expressed by rat tumor cells was performed essentially
as described by Bakker
et al. (1991,
Life Sciences 49: 1593-1601).
[0107] CA20948 rat pancreatic tumor cells, thawed from frozen harvested tumor brei, were
implanted intramuscularly in a suspension of 0.05 to 0.1 mL/animal, into the right
hind thigh of 6 week old Lewis rats. The tumors were allowed to grow to approximately
0.5 to 2g, harvested, and tumor brei was used to implant a second, naive set of Lewis
rats. Passaging in this fashion was repeated to generate successive generations of
tumor-bearing animals. The tumor-bearing animals used for the
in vivo studies were usually from the third to fifth passage and carried 0.2 to 2g tumors.
[0108] For studies of the specificity of radiotracer localization in the tumors, selected
animals were given an subcutaneous SSTR-blocking dose (4 mg/kg) of octreotide 30 minutes
prior to injection of the radiotracer. (This protocol has been shown by Bakker
et al. to result in a lowering of
111In-[DTPA]octreotide tumor uptake by 40%.)
[0109] Third- to fifth-passage CA20948 tumor-bearing Lewis rats were restrained and injected
intravenously
via the dorsal tail vein with a dose of 0.15-0.20 mCi
99mTc-labeled peptide corresponding to 3 to 8 µg peptide in 0.2 to 0.4 mL.
[0110] At selected times, the animals were sacrificed by cervical dislocation and selected
necropsy was performed. Harvested tissue samples were weighed and counted along with
an aliquot of the injected dose in a gamma well-counter.
[0111] The 90-minute biodistribution results of selected radiolabeled peptides are presented
in Table I. Notably,
99mTc-P587,
99mTc-P617,
99mTc-P726, and
99mTc-P736 showed very high tumor uptake and tumor/blood ratios demonstrating their high
specific uptake in target (tumor) tissue.
[0112] Figure 1 shows an image of
99mTc-P587 in a tumor-bearing rat. The high uptake in the tumor in the lower leg (arrow)
is clearly visible.
[0113] 99mTc-P587 uptake in tumors in rats was compared with and without pre-injection treatment
with octreotide, a somatostatin analogue known to bind to the somatostatin receptor
in vivo. In these experiments, receptor-blocking by administration of octreotide prior to
administration of
99mTc-P587 reduced specific tumor uptake of the radiolabeled peptide by 76%. These results
confirmed that binding of
99mTc-P587
in vivo was SSTR-specific.

1. A reagent for preparing a scintigraphic imaging agent for imaging sites within a mammalian
body, comprising a specific binding peptide having an amino acid sequence comprising
3 to 100 amino acids and a technetium-99m binding moiety covalently linked thereto,
wherein the technetium-99m binding moiety is covalently linked to a sidechain of an
amino acid residue of the specific binding peptide, and wherein technetium-99m binding
moiety has a formula:
Cp(aa)Cp
wherein Cp is a protected cysteine and (aa) is any primary α or β-amino acid not containing
a thiol group.
2. A reagent of Claim 1 wherein the protected cysteine of the technetium-99m binding
moiety having formula I has a protecting group of the formula
-CH2-NH-CO-R
wherein R is a lower alkyl having 1 to 6 carbon atoms, 2-,3-,4-pyridyl, phenyl, or
phenyl substituted with lower alkyl, hydroxy, lower alkoxy, carboxy, or lower alkoxycarbonyl.
3. A reagent of Claim 1 wherein the technetium-99m binding moiety has the formula:
4. A reagent for preparing a scintigraphic imaging agent for imaging sites within a mammalian
body, comprising a specific binding peptide having an amino acid sequence comprising
3 to 100 amino acids and a technetium-99m binding moiety covalently linked thereto,
wherein the technetium-99m binding moiety is covalently linked to a sidechain of an
amino acid residue of the specific binding peptide, and wherein the technetium-99m
binding moiety comprises a single thiol-containing moiety of formula:
A-CZ(B)-{C(R
1R
2)}
n-X
wherein A is H, HOOC, H2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC or R4;
B is H, SH, -NHR3, -N(R3)-(amino acid or peptide), or R4;
X is H, SH, -NHR3, -N(R3)-(amino acid or peptide) or R4;
Z is H or R4;
R1, R2, R3 and R4 are independently H or lower straight or branched chain or cyclic alkyl;
n is 0,1 or 2;
(peptide) is a peptide of 2 to about 10 amino acids;
and
where B is -NHR
3 or -N(R
3)-(amino acid or peptide), X is SH, and n is 1 or 2;
where X is -NHR
3 or -N(R
3)-(amino acid or peptide), B is SH, and n is 1 or 2;
where B is H or R
4, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC, X is SH, and n is
0 or 1;
where A is H or R
4, then where B is SH, X is -NHR
3 or -N(R
3)-(amino acid or peptide) and where X is SH, B is -NHR
3 or -N(R
3)-(amino acid or peptide);
where X is H or R
4, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC and B is SH;
where Z is methyl, X is methyl, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC, B is SH and n is 0;
and wherein the thiol moiety is in the reduced form and (amino acid) is any primary
α- or β-amino acid not containing a thiol group.
5. A reagent of Claim 4 wherein the technetium-99m binding moiety is selected from moieties
having the formulae:
IIa. -(amino acid)1-(amino acid)2-{A-CZ(B)-{C(R1R2))n-X},
IIb. -{A-CZ(B)-{C(R1R2)}n-X}-(amino acid)1-(amino acid)2,
IIc. -(a primary α,ω- or β,ω-diamino acid)-(amino acid)1-{A-CZ(B)-{C(R1R2)}n-X}, or
IId. -{A-CZ(B)-{C(R1R2){n-X-(amino acid)1-(a primary α,β- or β,γ-diamino acid)
wherein (amino acid)
1 and (amino acid)
2 are each independently any naturally-occurring, modified, substituted or altered
α- or β-amino acid not containing a thiol group;
A is H, HOOC, H2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC or R4;
B is H, SH or -NHR3, -N(R3)-(amino acid or peptide) or R4;
X is SH or -NHR3, -N(R3)-(amino acid or peptide) or R4;
Zis H or R4:
R1, R2, R3 and R4 are independently H or straight or branched chain or cyclic lower alkyl;
(peptide) is a peptide of 2 to about 10 amino acids;
n is an integer that is either 0,1 or 2; and
where B is -NHR
3 or -N(R
3)-(amino acid or peptide), X is SH and n is 1 or 2;
where X is -NHR
3 or -N(R
3)-(amino acid or peptide), B is SH and n is 1 or 2;
where B is H or R
4, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (amino acid or peptide)-OOC, X is SH and n is 0
or 1:
where A is H or R
4, then where B is SH, X is -NHR
3 or -N(R
3) (amino acid or peptide) and where X is SH, B is -NHR
3 or -N(R
3)-(amino acid or peptide);
where X is H or R
4, A is HOOC, H
2NOC, (amino add or peptide)-NHOC, (amino acid or peptide)-OOC and B is SH;
where Z is methyl, X is methyl, A is HOOC, H
2NOC, (amino acid or peptide)-NHOC, (peptide)-OOC and B is SH and n is 0;
and wherein the thiol moiety is in the reduced form.
6. A reagent of any one of claims 1 to 5 wherein the specific binding peptide is selected
from peptides having the amino acid sequences:
formyl-MLF,
(VGVAPG),amide,
(VPGVG),amide,
RALVDTIKFVTQAEGAKamide,
RALVDTEFKVKQEAGAKamide,
PLARITLPDFRLPELAIPamide,
CQQHHLGGAKAGDV,
PLYIKIIKKLLES,
LRALVDTLKamide,
GGGLRALVDTLKamide,
GGGLRALVDTLKFVTQAEGAKamide,
GGGRALVDTLKALVDTLamide,
GHRPLDKKREEAPSLRPAPPPISGGGYR,
PSPSPIHPAHHKRDRRQamide,
GGGFD.Cpa.YWDKTFTamide,
(SYNRGDSTC)3-TSEA,
GGGLRALVDTLKamide,
GCGGGLRALVDTLKamide,
GCYRALVDTLKFVTQAEGAKamide,
and
GC(VGVAPG),amide.
7. A reagent of any one of Claims 1 to 5 wherein the specific binding peptide is a cyclic
peptide.
8. A reagent of any one of Claim 1 to 7 wherein the specific binding peptide and the
technetium-99m binding moiety are covalently linked through a lysine residue or a
homocysteine residue.
9. A reagent of any one of Claims 1 to 8 wherein the reagent further comprises a polyvalent
linking moiety covalently linked to a multiplicity of specific binding compounds and/or covalently linked to a multiplicity of radiolabel-binding moieties to comprise a
reagent for preparing a multimeric polyvalent scintigraphic imaging agent, wherein
the molecular weight of the multimeric polyvalent scintigraphic imaging agent is less
than about 20,000 daltons, optionally wherein the polyvalent linking moiety is bis-succinimidylmethylether,
4-(2,2-dimethylacetyl)benzoic acid, N-{2-(N,N-bis(2-succinimido-ethyl)aminoethyl)}-N6,N9-bis(2-methyl-2-mercaptopropyl)-6,9-diazanonanamide, tris(succinimidylethyl)amine, tris(acetamidoethyl)amine, bis-(acetamidoethyl)ether, bis-(acetamidomethyl)ether, α,∈-bisacetyllysine, lysine and 1.8-bis-acetamido-3,6-dioxa-octane, or a derivative thereof.
10. A scintigraphic imaging agent comprising a reagent according to any one of claims
1 to 9 wherein the technetium-99m binding moiety is bound to technetium-99m.
11. A complex formed by reacting a reagent of any one of claims 1 to 9 with technetium-99m
n the presence of a reducing agent, eg dithionite ion, stannous ion, or ferrous ion,
or formed by labeling the reagent with technetium-99m by ligand exchange of a prereduced
technetium-99m complex.
12. A kit for preparing a radiopharmaceutical preparation, said kit comprising sealed
vial containing a predetermined quantity of a reagent of any one of claims 1 to 9
and a sufficient amount of reducing agent to label the reagent with technetium-99m.
13. A reagent of any one of claims 1 to 9 for use as a pharmaceutical for imaging a site
within a mammalian body when the reagent is labeled with technetium-99m.
14. A process of preparing the reagent according to any one of claims 1 to 9 wherein the
peptide is chemically synthesized in vitro, optionally by solid phase peptide synthesis.
15. A technetium-99m complex of a reagent of any one of claims 1 to 9.
16. The use of a reagent of any one of claims 1 to 9 in the preparation of a medicament
for imaging a site within a mammalian body.
1. Reagenz zur Herstellung eines Mittels zur szintigraphischen Bilddarstellung zur Abbildung
von Stellen im Körper eines Säugetieres, enthaltend ein spezifisch bindendes Peptid
mit einer Aminosäuresequenz von 3 bis 100 Aminosäuren und einer damit kovalent verbundenen
Technetium-99m-bindenden Einheit, wobei die Technetium-99m-bindende Einheit kovalent
an die Seitenkette eines Aminosäurerests des spezifisch bindenden Peptids gebunden
ist, und wobei die Technetium-99m-bindende Einheit die Formel:
Cp(aa)Cp
aufweist, wobei Cp für ein geschütztes Cystein steht und (aa) für eine beliebige primäre
α- oder β-Aminosäure, die keine Thiolgruppe enthält, steht.
2. Reagenz nach Anspruch 1, wobei das geschützte Cystein der Technetium-99m-bindenden
Einheit mit der Formel I eine Schutzgruppe der Formel
-CH2-NH-CO-R
aufweist, wobei R für Niederalkyl mit 1 bis 6 Kohlenstoffatomen, 2-, 3-, 4-Pyridyl,
Phenyl oder durch Niederalkyl, Hydroxy, Niederalkoxy, Carboxy oder Niederalkoxycarbonyl
substituiertes Phenyl steht.
3. Reagenz nach Anspruch 1, wobei die Technetium-99m-bindende Einheit die Formel

aufweist.
4. Reagenz zur Herstellung eines Mittels zur szintigraphischen Bilddarstellung zur Abbildung
von Stellen im Körper eines Säugetieres, enthaltend ein spezifisch bindendes Peptid
mit einer Aminosäuresequenz mit 3 bis 100 Aminosäuren und eine damit kovalent verbundene
Technetium-99m-bindende Einheit, wobei die Technetium-99m-bindende Einheit kovalent
an die Seitenkette eines Aminosäurerestes des spezifisch bindenden Peptids gebunden
ist, und wobei die Technetium-99m-bindende Einheit eine einzelne thiolhaltige Einheit
der Formel:
A-CZ(B)-{C(R1R2)}n-X
umfaßt, worin
A für H, HOOC, H2NOC, (Aminosäure oder Peptid)-NHOC, (Aminosäure oder Peptid)-OOC oder R4 steht;
B für H, SH, -NHR3, -N (R3) - (Aminosäure oder Peptid) oder R4 steht;
X für H, SH, -NHR3, -N (R3) - (Aminosäure oder Peptid) oder R4 steht;
Z für H oder R4 steht;
R1, R2, R3 und R4 unabhängig voneinander für H oder niederes geradkettiges oder verzweigtes oder cyclisches
Alkyl stehen;
n für 0, 1 oder 2 steht;
(Peptid) für ein Peptid mit 2 bis etwa 10 Aminosäuren steht;
und,
wenn B für -NHR3 oder -N(R3)-(Aminosäure oder Peptid) steht, steht X für SH und n für 1 oder 2;
wenn X für -NHR3oder -N (R3) - (Aminosäure oder Peptid) steht, steht X für SH und n für 1 oder 2;
wenn B für H oder R4 steht, steht A für HOOC, H2NOC, (Aminosäure oder Peptid) -NHOC, (Aminosäure oder Peptid)-OOC, X für SH und n
für 0 oder 1 steht;
wenn A für H oder R4 steht, und wenn B für SH steht, steht X für -NHR3 oder -N (R3)-(Aminosäure oder Peptid), und, wenn X für SH steht, steht B für -NHR3 oder -N(R3)-(Aminosäure oder Peptid);
wenn X für H oder R4steht, steht A für HOOC, H2NOC, (Aminosäure oder Peptid)-NHOC, (Aminosäure oder Peptid)-OOC und B für SH;
wenn Z für Methyl steht, X für Methyl steht, steht A für HOOC, H2NOC, (Aminosäure oder Peptid)-NHOC, (Aminosäure oder Peptid)-OOC, B für SH und n für
0;
und wobei die Thioleinheit in der reduzierten Form vorliegt und (Aminosäure) für eine
beliebige primäre α- oder β-Aminosäure steht, die keine Thiolgruppe enthält.
5. Reagenz nach Anspruch 4, wobei die Technetium-99m-bindende Einheit aus Einheiten der
folgenden Formeln ausgewählt ist:
IIa. -(Aminosäure)1-(Aminosäure)2-{A-CZ(B)-{C (R1R2) }n-X}
IIb. -{A-CZ(B)-{C(R1R2)}n-X}-(Aminosäure)1-(Aminosäure)2,
IIc. -(eine primäre α,ω- oder β,ω-Diaminosäure)-(Amiosäure)1-{A-CZ(B)-{C(R1R2) }n-X} , oder
IId. -{A-CZ(B)-{C(R1R2)}n-X}-(Amiosäure)1-(eine primäre α,ω- oder β,ω-Diaminosäure)
wobei
(Aminosäure)
1 und (Aminosäure)
2 jeweils unabhängig für eine beliebige natürliche, modifizierte, substituierte oder
abgeänderte α- oder β-Aminosäure, die keine Thiolgruppe enthält, stehen; A für H,
HOOC, H
2NOC, (Aminosäure oder Peptid)-NHOC, (Aminosäure oder Peptid)-OOC oder R
4 steht;
B für H, SH, -NHR
3, -N (R
3) - (Aminosäure oder Peptid) oder R
4 steht;
X für SH oder -NHR
3, -N (R
3) - (Aminosäure oder Peptid) oder R
4 steht;
Z für H oder R
4 steht;
R
1, R
2, R
3 und R
4 unabhängig voneinander für H oder geradkettiges oder verzweigtes oder cyclisches
Niederalkyl stehen;
(Peptid) für ein Peptid von 2 bis etwa 10 Aminosäuren steht;
n für eine ganze Zahl steht, bei der es sich entweder um 0, 1 oder 2 handelt; und,
wenn B für -NHR
3 oder -N(R
3)-(Aminosäure oder Peptid) steht, steht X für SH und n für 1 oder 2;
wenn X für -NHR
3 oder -N(R
3)-(Aminosäure oder Peptid) steht, steht X für SH und n für 1 oder 2;
wenn B für H oder R
4 steht, steht A für HOOC, H
2NOC, (Aminosäure oder Peptid)-NHOC, (Aminosäure oder Peptid)-OOC, X für SH und n für
0 oder 1;
wenn A für H oder R
4 steht, und wenn B für SH steht, steht X für -NHR
3 oder -N (R
3)-(Aminosäure oder Peptid), und, wenn X für SH steht, steht B für -NHR
3 oder -N (R
3)-(Aminosäure oder Peptid);
wenn X für H oder R
4 steht, steht A für HOOC, H
2NOC, (Aminosäure oder Peptid)-NHOC, (Aminosäure oder Peptid)-OOC und B für SH;
wenn Z für Methyl steht, X für Methyl steht, steht A für HOOC, H
2NOC, (Aminosäure oder Peptid)-NHOC, (Aminosäure oder Peptid)-OOC, B für SH und n für
0;
und wobei die Thioleinheit in der reduzierten Form vorliegt.
6. Reagenz nach einem der Ansprüche 1 bis 5, wobei das spezifisch bindende Peptid aus
Peptiden mit den folgenden Aminosäurensequenzen ausgewählt ist:
Formyl-MLF,
(VGVAPG)3-Amid,
(VPGVG)4-Amid,
RALVDTLKFVTQAEGAK-Amid,
RALVDTEFKVKQEAGAK-Amid,
PLARITLFDFRLPEIAIP-Amid,
GQQHHLGGAKAGDV,
PLYKKIIKKLLES,
LRALVDTLK-Amid,
GGGLRALVDTIX-Amid,
GGGLRALVDTLKFVTQAEGAK-Amid,
GGGRALVDTLKALVDTL-Amid,
GHRPLDKKREEAPSLRPAPPPISGGGYR,
PSPSPIHPAHHKDRRQ-Amid,
GGGFD.Cpa.YWDKTFT-Amid,
(SYNRGDSTC)3-TSEA,
GGGLRALVDTLK-Amid,
GCGGGLRALVDTLK-Amid,
GCYRALVDTLKFVTQAEGAK-Amid,
und
GC(VGVAPG)3-Amid.
7. Reagenz nach einem der Ansprüche 1 bis 5, wobei es sich bei dem spezifisch bindenden
Peptid um ein cyclisches Peptid handelt.
8. Reagenz nach einem der Ansprüche 1 bis 7, wobei das spezifisch bindende Peptid und
die Technetium-99m-bindende Einheit kovalent über einen Lysinrest oder einen Homocysteinrest
verbunden sind.
9. Reagenz nach einem der Ansprüche 1 bis 8, wobei das Reagenz weiterhin eine polyvalente
Verbindungseinheit umfaßt, die kovalent an eine Vielzahl spezifisch bindender Verbindungen
gebunden ist und/oder kovalent an eine Vielzahl von radioaktive Marker bindenden Einheiten
gebunden ist, so daß es ein Reagenz zur Herstellung eines multimeren, polyvalenten
Mittels zur szintigraphischen Bilddarstellung enthält, wobei das Molekulargewicht
des multimeren, polyvalenten Mittels zur szintigraphischen Bilddarstellung weniger
als etwa 20.000 Daltons beträgt, wobei es sich bei der polyvalenten Verbindungseinheit
gegebenenfalls um Bis-succinimidylmethylether, 4-(2,2-Dimethylacetyl)benzoesäure,
N-{2-(N',N'-Bis(2-succinimidoethyl)aminoethyl)}-N6,N9-bis(2-methyl-2-mercaptopropyl)-6,9-diazanonanamid, Tris(succinimidylethyl)amin, Tris(acetamidoethyl)amin,
Bis(acetamidoethyl)ether, Bis(acetamidomethyl)ether, α,ε-Bisacetyllysin, Lysin und
1,8-Bisacetamido-3,6-dioxaoctan oder ein Derivat davon handelt.
10. Mittel zur szintigraphischen Bilddarstellung, enthaltend ein Reagenz nach einem der
Ansprüche 1 bis 9, wobei die Technetium-99m-bindende Einheit an Technetium-99m gebunden
ist.
11. Komplex, gebildet durch Umsetzung eines Reagenz nach einem der Ansprüche 1 bis 9 mit
Technetium-99m in Gegenwart eines Reduktionsmittels, z.B. Dithionitionen, Zinn(II)-Ionen
oder Eisen(II)-Ionen, oder durch Markieren des Reagenz mit Technetium-99m durch Ligandenaustausch
mit einem vorreduzierten Technetium-99m-Komplex.
12. Kit zur Herstellung einer radiopharmazeutischen Zubereitung, wobei das Kit aus einem
verschlossenen Vial besteht, das eine vorbestimmte Menge eines Reagenz nach einem
der Ansprüche 1 bis 9 und ein Reduktionsmittel in einer Menge enthält, die ausreicht,
um das Reagenz mit Technetium-99m zu markieren.
13. Reagenz nach einem der Ansprüche 1 bis 9 zur Verwendung als Pharmazeutikum zur Abbildung
einer Stelle im Körper eines Säugetiers, wenn das Reagenz mit Technetium-99m markiert
ist.
14. Verfahren zur Herstellung eines Reagenz nach einem der Ansprüche 1 bis 9, wobei das
Peptid chemisch in vitro synthetisiert wird, gegebenenfalls durch Festphasenpeptidsynthese.
15. Technetium-99m-Komplex eines Reagenz nach einem der Ansprüche 1 bis 9.
16. Verwendung eines Reagenz nach einem der Ansprüche 1 bis 9 bei der Herstellung eines
Medikaments zur Abbildung einer Stelle im Körper eines Säugetiers.
1. Réactif permettant de préparer un agent de scintigraphie permettant d'obtenir des
images de sites à l'intérieur du corps d'un mammifère, comprenant un peptide de liaison
spécifique possédant une séquence d'acides aminés comprenant 3 à 100 acides aminés
et un groupement de liaison au technétium-99m fixé dessus par covalence, dans lequel
le groupement de liaison au technétium-99m est fixé par covalence à une chaîne latérale
d'un résidu d'acide aminé du peptide de liaison spécifique, et dans lequel le groupement
de liaison au technétium-99m a pour formule :
Cp(aa)Cp
dans laquelle Cp est une cystéine protégée et (aa) est un aminoacide α ou β primaire
quelconque ne contenant pas de groupe thiol.
2. Réactif selon la revendication 1 dans lequel la cystéine protégée du groupement de
liaison au technétium-99m de formule I porte un groupe protecteur de formule
-CH2-NH-CO-R
dans laquelle R est un groupe alkyle inférieur comportant 1 à 6 atomes de carbone,
2-, 3-, 4-pyridyle, phényle, ou phényle substitué par un groupe alkyle inférieur,
hydroxy, alcoxy inférieur, carboxy ou alcoxy inférieur-carbonyle.
3. Réactif selon la revendication 1 dans lequel le groupement de liaison au technétium-99m
a pour formule :
4. Réactif permettant de préparer un agent de scintigraphie permettant d'obtenir une
image de sites à l'intérieur du corps d'un mammifère, comprenant un peptide de liaison
spécifique possédant une séquence d'acides aminés comprenant 3 à 100 acides aminés
et un groupement de liaison au technétium-99m fixé dessus par covalence, dans lequel
le groupement de liaison au technétium-99m est fixé par covalence à une chaîne latérale
d'un résidu d'acide aminé du peptide de liaison spécifique, et dans lequel le groupement
de liaison au technétium-99m comprend un seul groupement contenant la fonction thiol
de formule :
A-CZ (B) -{C (R1R2) }n-X
dans laquelle A est H, HOOC, H2NOC, (acide aminé ou peptide)-NHOC, (acide aminé ou peptide)-OOC ou R4 ;
B est H, SH, -NHR3, -N(R3)-(acide aminé ou peptide), ou R4 ;
X est H, SH, -NHR3, -N(R3)-(acide aminé ou peptide) ou R4 ;
Z est H ou R4 ;
R1, R2, R3 et R4 sont indépendamment H ou un groupe alkyle inférieur à chaîne linéaire ou ramifiée
ou cyclique ;
n vaut 0, 1 ou 2 ;
(peptide) est un peptide de 2 à environ 10 acides aminés ;
et
lorsque B est -NHR3 ou -N(R3)-(acide aminé ou peptide), X est SH, et n vaut 1 ou 2 ;
lorsque ù X est -NHR3 ou -N(R3)-(acide aminé ou peptide), B est SH, et n vaut 1 ou 2 ;
lorsque B est H ou R4, A est HOOC, H2NOC, (acide aminé ou peptide)-NHOC, (acide aminé ou peptide)-OOC, X est SH, et n vaut
0 ou 1 ;
lorsque A est H ou R4, et puis lorsque B est SH, X est -NHR3 ou -N(R3)-(acide aminé ou peptide) et lorsque X est SH, B est -NHR3 ou -N(R3)-(acide aminé ou peptide) ; lorsque X est H ou R4, A est HOOC, H2NOC, (acide aminé ou peptide) -NHOC, (acide aminé ou peptide)-OOC et B est SH ; lorsque
Z est méthyle, X est méthyle, A est HOOC, H2NOC, (acide aminé ou peptide)-NHOC, (acide aminé ou peptide)-OOC, B est SH et n vaut
0 ;
et dans laquelle le groupement thiol est sous forme réduite et (acide aminé) est un
aminoacide α ou β primaire ne contenant pas de groupe thiol.
5. Réactif selon la revendication 4 dans lequel le groupement de liaison au technétium-99m
est choisi parmi les groupements de formules :
IIa. -(acide aminé)1-(acide aminé)2-{A-CZ(B)-{C(R1R2)}n-X} ;
IIb. -{A-CZ(B)-{C(R1R2)}n-X}-(acide aminé)1- (acide aminé)2,
IIc. -(α,ω- ou β,ω-diaminoacide primaire)-(acide aminé)1-{A-CZ(B)-{C(R1R2)}n-X}, ou
IId. -{A-CZ(B)-{C(R1R2)}n-X-(acide aminé)1-(α,β- ou β,γ-diaminoacide primaire)
dans lequel (acide aminé)
1 et (acide aminé)
2 sont chacun indépendamment un aminoacide α ou β quelconque, existant dans la nature,
modifié, substitué ou altéré, ne contenant pas de groupe thiol ;
A est H, HOOC, H
2NOC, (acide aminé ou peptide)-NHOC, (acide aminé ou peptide)-OOC ou R
4 ;
B est H, SH ou -NHR
3, -N(R
3)-(acide aminé ou peptide) ou R
4 ;
X est SH ou -NHR
3, -N(R
3)-(acide aminé ou peptide) ou R
4 ;
Z est H ou R
4 ;
R
1, R
2, R
3 et R
4 sont indépendamment H ou un groupe alkyle inférieur à chaîne linéaire ou ramifiée
ou cyclique ;
(peptide) est un peptide de 2 à environ 10 acides aminés ;
n est un nombre entier qui est égal à 0, 1 ou 2 ; et
lorsque B est -NHR
3 ou -N(R
3)-(acide aminé ou peptide), X est SH et n vaut 1 ou 2 ;
lorsque X est -NHR
3 ou -N(R
3)-(acide aminé ou peptide), B est SH et n vaut 1 ou 2 ;
lorsque B est H ou R
4, A est HOOC, H
2NOC, (acide aminé ou peptide)-NHOC, (acide aminé ou peptide)-OOC, X est SH et n vaut
0 ou 1 ;
lorsque A est H ou R
4, et puis lorsque B est SH, X est -NHR
3 ou -N(R
3)-(acide aminé ou peptide) et lorsque X est SH, B est -NHR
3 ou -N(R
3)-(acide aminé ou peptide) ; lorsque X est H ou R
4, A est HOOC, H
2NOC, (acide aminé ou peptide)-NHOC, (acide aminé ou peptide)-OOC et B est SH ;
lorsque Z est un groupe méthyle, X est un groupe méthyle, A est HOOC, H
2NOC, (acide aminé ou peptide)-NHOC, (peptide)-OOC et B est SH et n vaut 0 ;
et dans lequel le groupement thiol est sous forme réduite.
6. Réactif selon l'une quelconque des revendications 1 à 5 dans lequel le peptide de
liaison spécifique est choisi parmi les peptides possédant les séquences d'acides
aminés :
formyl-MLF
(VGVAPG)3amide
(VPGVG)4amide
RALVDTLKFVTQAEGAKamide
RALVDTEFKVKQEAGAKamide
PLARITLPDFRLPEIAIPamide
GQQHHLGGAKAGDV
PLYKKIIKKLLES
LRALVDTLKamide
GGGLRALVDTLKamide
GGGLRALVDTLKFVTQAEGAKamide
GGGRALVDTLKALVDTLamide
GHRPLDKKREEAPSLRPAPPPISGGGYR
PSPSPIHPAHHKRDRRQamide
GGGFD.Cpa.YWDKTFTamide
(SYNRGDSTC)3-TSEA
GGGLRALVDTLKamide
GCGGGLRALVDTLKamide
GCYRALVDTLKFVTQAEGAKamide
et
GC (VGVAPG)3 amide.
7. Réactif selon l'une quelconque des revendications 1 à 5 dans lequel le peptide de
liaison spécifique est un peptide cyclique.
8. Réactif selon l'une quelconque des revendications 1 à 7 dans lequel le peptide de
liaison spécifique et le groupement de liaison au technétium-99m sont liés par covalence
par l'intermédiaire d'un résidu lysine ou d'un résidu homocystéine.
9. Réactif selon l'une quelconque des revendications 1 à 8 dans lequel le réactif comprend
en outre un groupement de liaison polyvalent fixé par covalence à une multiplicité
de composés de liaison spécifiques et/ou fixé par covalence à une multiplicité de
groupements de liaison à un radiomarqueur pour constituer un réactif permettant de
préparer un agent de scintigraphie polyvalent multimère, dans lequel la masse moléculaire
de l'agent de scintigraphie polyvalent multimère est inférieure à environ 20 000 daltons,
éventuellement dans lequel le groupement de liaison polyvalent est le bis-succinimidylméthyléther,
l'acide 4-(2,2-diméthylacétyl)benzoïque, le N-[2-(N',N'-bis(2-succinimidoéthyl)aminoéthyl)]-N6,N9-bis(2-méthyl-2-mercaptopropyl)-6,9-diazanonanamide, la tris-(succinimidyléthyl) amine,
la tris(acétamidoéthyl)amine, le bis(acétamidoéthyl)éther, le bis(acétamidométhyl)-éther,
l'α,ε-bisacétyllysine, la lysine et le 1,8-bis-acétamido-3,6-dioxaoctane, ou un de
leurs dérivés.
10. Agent de scintigraphie comprenant un réactif selon l'une quelconque des revendications
1 à 9 dans lequel le groupement de liaison au technétium-99m est lié au technétium-99m.
11. Complexe formé par réaction d'un réactif selon l'une quelconque des revendications
1 à 9 avec du technétium-99m en présence d'un agent réducteur, par exemple d'un ion
dithionite, d'un ion stanneux ou d'un ion ferreux, ou formé par marquage du réactif
avec du technétium-99m par échange de ligands d'un complexe de technétium-99m réduit
au préalable.
12. Nécessaire permettant de préparer une préparation radiopharmaceutique, ledit nécessaire
comprenant un flacon bouché contenant une quantité prédéterminée d'un réactif selon
l'une quelconque des revendications 1 à 9 et une quantité suffisante d'agent réducteur
pour marquer le réactif avec du technétium-99m.
13. Réactif selon l'une quelconque des revendications 1 à 9 à utiliser comme produit pharmaceutique
pour obtenir une image d'un site à l'intérieur du corps d'un mammifère, dans lequel
le réactif est marqué avec du technétium-99m.
14. Procédé de préparation du réactif selon l'une quelconque des revendications 1 à 9
dans lequel le peptide est synthétisé chimiquement in vitro, éventuellement par synthèse
peptidique en phase solide.
15. Complexe du technétium-99m d'un réactif selon l'une quelconque des revendications
1 à 9.
16. Utilisation d'un réactif selon l'une quelconque des revendications 1 à 9 dans la préparation
d'un médicament permettant d'obtenir une image d'un site à l'intérieur du corps d'un
mammifère.