(19)
(11) EP 0 763 833 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
19.03.1997  Patentblatt  1997/12

(21) Anmeldenummer: 96114387.2

(22) Anmeldetag:  09.09.1996
(51) Internationale Patentklassifikation (IPC)6H01F 27/38
(84) Benannte Vertragsstaaten:
AT DE FR GB IT

(30) Priorität: 14.09.1995 DE 19533988
14.02.1996 DE 19605423

(71) Anmelder: ABB PATENT GmbH
D-68309 Mannheim (DE)

(72) Erfinder:
  • Runge, Wolfgang, Dr.
    69198 Schriesheim (DE)

(74) Vertreter: Rupprecht, Klaus, Dipl.-Ing. et al
c/o ABB Patent GmbH, Postfach 10 03 51
68128 Mannheim
68128 Mannheim (DE)

   


(54) Transformator für ein elektrisch angetriebenes Fahrzeug


(57) Es wird ein Transformator für ein elektrisch angetriebenes Fahrzeug vorgeschlagen, bei dem mindestens eine im Transformator integrierte Störstromfilterwicklung (FiW) vorgesehen ist, die eine oder mehrere Lagen der Oberspannungswicklung nutzt, die der Unterspannungswicklung benachbart sind, wodurch hinsichtlich der Störstromfilterwicklung eine Spartransformatorschaltung gebildet wird, wobei an den Filterwicklungsanschlüssen (Fi, F1...Fn) mindestens ein Filter angeschlossen ist, das aus der Reihenschaltung mindestens eines Filterwiderstandes (RF) und eines Filterkondensators (TF) besteht.




Beschreibung


[0001] Die Erfindung bezieht sich auf einen Transformator für ein elektrisch angetriebenes Fahrzeug.

[0002] Elektrische Lokomotiven und Triebwagen für Wechselstrombahnen haben üblicherweise eingangsseitig einen Transformator. Moderne Fahrzeuge weisen Stromrichter zur Antriebssteuerung auf, die an die Sekundärseite des Transformators angeschlossen sind. Fahrzeuge mit Drehstromantriebstechnik haben üblicherweise auch auf der Netzseite getaktete Stromrichter (Vierquadrantensteller = 4QS), mit denen sich ein nahezu sinusförmiger Netzstromverlauf erzielen läßt. Jedoch ergeben sich aus der Taktfrequenz der netzseitigen Stromrichter unerwünschte höhere Harmonische im Netzstrom des Fahrzeuges, deren Frequenz bis in den Tonfrequenzbereich reicht. Sie müssen im Hinblick auf mögliche nachteilige Beeinflussungen von Signalanlagen der Bahnen und von Fernsprechkabeln begrenzt werden.

[0003] Um die Netzstrom-Harmonischen im Tonfrequenzbereich abzuschwächen, wurde bisher dem Transformator auf der Primärseite ein Störstromfilter vorgeschaltet, wie z.B. aus der BBC-Druckschrift DVK 1357 85D,

Drehstromantriebstechnik: Entwicklung und Bewährung neuer elektrischer Komponenten am Beispiel der Lokomotiven der Baureihe (BR) 120 der DB" oder aus der AEG/ABB/Siemens-Druckschrift VT 62.89/26

Triebköpfe der Baureihe 401 des Hochgeschwindigkeitszuges ICE für die Deutsche Bundesbahn (siehe Seite 2, Bild 2) bekannt und in Fig. 9 dargestellt ist. Darin ist die Wirkung der taktenden Vierquadrantensteller in einer resultierenden, auf die Primärseite umgerechneten Stellerspannung Ust' zusammengefaßt (U0 = Netzspannung, U1 = Eingangsspannung). Ohne weitere Filterelemente werden die Harmonischem im Netzstrom im wesentlichen nur durch die Kurzschlußinduktivität LT zwischen Ober- und Unterspannungsseite (OS und US) des Transformators bestimmt. Dabei sei die Netzimpedanz Z0 klein gegen LT. Um sie abzuschwächen, wird dem Transformator der Filterquerzweig, bestehend aus Filterkondensator (Filterkapazität) CF*, Filterwiderstand (Dämpfungswiderstand) RF*, vorgeschaltet. Bei kleiner Netzimpedanz ZO kann eine Filterwirkung nur erzielt werden, wenn zusätzlich noch eine Filterdrossel (Filterinduktivität) LF* in den Längszweig geschaltet wird. Da sie vom vollen Eingangsstrom I1 (Netzstrom) durchflossen wird, läßt sich mit vertretbarem Aufwand nur eine Induktivität LF* realisieren, die wesentlich kleiner ist als LT. Abschwächend wirkt das Filter nur für Frequenzen, die hinreichend oberhalb der durch LF* und CF* bestimmten Filtereigenfrequenz liegen. Daraus folgt eine Mindestgröße für CF*. Der Filterwiderstand RF* ist notwendig, um die Neigung des Filters zu Resonanzen zu begrenzen. Nachteilhaft an diesem bekannten Filterkonzept sind folgende Gesichtspunkte:
  • Alle Filterelemente sind auf der Primärseite des Transformators und müssen also hochspannungsmäßig ausgelegt und gestaltet werden. Dies ist besonders aufwendig für die vom Hauptstrom durchflossene Filterdrossel.
  • Die kleine realisierbare Filterinduktivität LF* zieht eine entsprechend große Filterkapazität CF* nach sich, um die gewünschte Eigenfrequenz zu erreichen. Sie bedingt entsprechend große Verluste im Dämpfungswiderstand RF* schon allein durch den Grundschwingungs-Ladestrom.
  • Das Filter erniedrigt die Eingangsimpedanz des Fahrzeuges und kann beim Vorhandensein von Harmonischen in der Netzspannung den Störstrom sogar erhöhen.


[0004] Der Erfindung liegt die Aufgabe zugrunde, einen Transformator für ein elektrisch angetriebenes Fahrzeug mit Störstromfilter anzugeben, mit dem der Aufwand zur Störstromfilterung reduziert wird.

[0005] Diese Aufgabe wird alternativ in Verbindung mit den Merkmalen des Oberbegriffs erfindungsgemäß durch die im Kennzeichen der Ansprüche 1 und 2 angegebenen Merkmale gelöst.

[0006] Die mit der Erfindung erzielbaren Vorteile liegen insbesondere darin, daß die große im Transformator realisierte Induktivität für die Störstromfilterung benutzt wird. Entsprechend kleiner kann die zur Erzielung der gewünschten Eigenfrequenz notwendige Filterkapazität gewählt werden. Hierdurch werden die Verluste herabgesetzt. Die Bauelemente des Störstromfilters müssen nicht mehr für Hochspannung ausgelegt werden. Insgesamt ergeben sich beträchtliche Vorteile aufgrund der zu erzielenden Raumbedarfreduktion, der Gewichtsreduktion und der Kostenreduktion.

[0007] Weitere Vorteile ergeben sich aus der Beschreibung.

[0008] Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.

[0009] Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsbeispiele erläutert. Es zeigen:
Fig. 1
ein Ersatzschaltbild für einen Transformator mit Filter an einer eigenen Filterwicklung,
Fig. 2a, b,c
Filterschaltungen zur Figur 1,
Fig. 3
ein Wicklungsschema mit besonderer Filterwicklung (

Zweiwickler"),
Fig. 4
die Benutzung einer Lage der Oberspannungswicklung für den Filteranschluß (Sparschaltung),
Fig. 5
ein Schema eines Transformators mit Filteranschlüssen in Sparschaltung (

Zweiwickler"),
Fig. 6
einen Filteranschluß über Saugdrosseln an einen Transformator (

Vierwickler") in Sparschaltung,
Fig. 7a, b, c
eine Integration von Saugdrossel und Filterdrossel,
Fig. 8a, b
ein Einfachfilter für einen Transformator mit Filterwicklungssparschaltung,
Fig. 9
ein Ersatzschaltbild für einen Transformator mit separatem Störstromfilter (= Stand der Technik),
Fig. 10
eine Alternative zur Anordnung nach Fig. 7a ohne Saugdrossel.


[0010] In Fig. 1 ist ein Ersatzschaltbild für einen Transformator mit Filter an einer besonderen Filterwicklung dargestellt. Durch eine besondere Störstromfilterwicklung FiW zwischen Primär- und Sekundärwicklungen läßt sich die großem Transformator realisierte Induktivität für die Filterung nutzen. Die Spannung an dieser besonderen Filterwicklung kann so gewählt werden (vorzugsweise ≤ 1000 V), daß das Filter nicht mehr für Hochspannung ausgelegt werden muß. Im T-förmigen Ersatzschaltbild des Transformators ist die Transformator-Kurzschlußinduktivität LT von Fig. 9 jetzt durch die Induktivitäten L1+L2 ersetzt. Dabei sollte der Anteil L1 im Bereich von 30% bis 70% von LT liegen. Dann ist L1 ein Mehrfaches von der bisher realisierbaren zusätzlichen Filterinduktivität LF* nach Fig. 9. Entsprechend kleiner kann die Filterkapazität bemessen werden und zusätzlich kann dennoch eine niedrigere Filtereigenfrequenz und damit eine weitergehende Abschwächung der Störströme erreicht werden. Die Eingangsimpedanz der Gesamtschaltung wird durch dieses Filter weniger erniedrigt.

[0011] Die dritte, dem Filterzweig zugeordnete Induktivität Lfi im Transformator-Ersatzschaltbild soll möglichst klein sein (Fi = Filterwicklungsanschluß). Dann hat das Ersatzschaltbild nach Fig. 1 dieselbe Struktur wie das nach Fig. 9. Je nach den im Transformator vorliegenden Kopplungsverhältnissen kann die Induktivität Lfi sogar schwach negativ ausfallen.

[0012] Mögliche Ausgestaltungen des Filters zeigen die Fig. 2a bis 2c. Das Ersatzschaltbild ist hierbei auf die Primärseite bezogen, alle hierin verwendeten Filterelemente sind in der Realität mit dem Quadrat des Übersetzungsverhältnisses zwischen Filterwicklung und Oberspannungswicklung zu denken.

[0013] Die Filterwirkung wird beschrieben durch das Übertragungsverhalten

, mit dem die Harmonischen in der OS-bezogenen Stellerspannung Ust' in Stromharmonische des Eingangsstromes I1 umgesetzt werden. Ohne Filter verläuft es als

, also mit 1/f (f= Frequenz).

[0014] Fig. 2a stellt das einfache CF-RF-Filter dar, mit Filterkondensator CF und Filterwiderstand RF. Wenn die Induktivität Lfi nahezu Null ist, bewirkt das Filter oberhalb seiner Eigenfrequenz einen Abfall TR(f) mit 1/f2. Bei der Eigenfrequenz, in die für ZO<<L1 die Parallelschaltung der Induktivitäten L1, L2 und der Filterkondensator CF eingehen, wird TR durch das Filter vergrößert, und zwar um so mehr, je weniger das Filter durch den Filterwiderstand RF bedämpft wird.

[0015] Fig. 2b zeigt eine weitere Ausgestaltung des Filters mit einer Filterdrossel LF, im Vergleich mit LF* gemäß Fig. 9 jedoch im Querzweig und damit vorteilhaft für nur sehr geringe Strombelastung auszulegen. Die Filterdrossel LF kann benutzt werden, um
a)
bei einer Transformatorkonstruktion mit negativer Induktivität Lfi diese Induktivität zu kompensieren und so auf die mit Fig. 9 gleichwertige Struktur zu kommen (also

),
b)
dem Filter Saugkreisverhalten zu verleihen und damit bei der durch LF+LFi mit CF gegebenen Frequenz bereits eine besonders große Abschwächung zu erzielen. Diese Frequenz kann in den Bereich gelegt werden, in dem die Harmonischen besonders groß sind oder besonders stören. Erkauft wird dies damit, daß oberhalb dieser Frequenz die Abschwächung zwar auf einem niedrigeren Niveau als ohne Filter, aber nur noch mit TR(f)∼1/f geht.


[0016] Eine Kombination der Saugkreiswirkung mit einer zu höheren Frequenzen stärkeren Abschwächung wird durch die Ausstattung des Filters mit einem Parallelwiderstand RP zu LF nach Fig. 2c erreicht.

[0017] Die auf der Netzseite erwünschte Wirkung der Filterwicklung und des Filters ist aus dem Ersatzschaltbild in Fig. 1 und 2a bis 2c vollständig ableitbar. Statt der einzelnen Stellerspannungen der n mit versetzter Taktung am gleichen Transformator arbeitenden Vierquadrantensteller ist hier nur der Mittelwert der n Spannungen als resultierende Stellerspannung USt' einzusetzen. Gegebenenfalls sind auch Unsymmetrien durch etwas unterschiedliche Bewertungen der Einzelspannungen in der Mittelwertbildung zu berücksichtigen. Die Anzahl n der Vierquadrantensteller und zugehörigen Transformatorwicklungen kann üblicherweise 2, 3, 4 oder 6 sein. Das Ersatzschaltbild zeigt jedoch nicht die Stromkreise der n einzelnen Vierquadrantensteller und den Einfluß des Filters auf sie.

[0018] Die anzustrebende gute Entkopplung der n Wicklungen für die einzelnen Vierquadrantensteller erlaubt es zur Erleichterung des Verständnisses, sich ersatzweise n einzelne Transformatoren für die n Vierquadrantensteller zu denken, die jeder eine eigene Filterwicklung haben. Die n Filterwicklungen können nun parallel oder in Reihe geschaltet und mit dem gemeinsamen Filter verbunden werden. Wenn die Induktivität des Gesamttransformators LT ist und sich in L1 und L2 aufgliedert, so haben die n Einzeltransformatoren entsprechend

. Es ist nun offensichtlich, daß bei Parallelschaltung der Filterwicklung alle n im Ersatzschaltbild den Vierquadrantenstellern zugewandten Induktivitäten n·L2 in dem Filterknoten verbunden sind. Die n Vierquadrantensteller werden gleichmäßig versetzt getaktet, so daß sich ihre niedrigen Taktfrequenz-Harmonischen (unterhalb der n-fachen Frequenz eines Vierquadrantenstellers) zum Netz hin weitestgehend auslöschen. Jedoch in den einzelnen Vierquadrantenstellern selbst und den ihnen zugeordneten Transformatorenwicklungen bilden sich am ausgeprägtesten die niederen Stromharmonischen aus. Die sie begrenzende Induktivität ist in diesem Fall nur noch n·L2 zwischen Vierquadrantensteller und Filterknoten, während sie ohne den Filterknoten n·LT ist. Das heißt, diese dominierenden Stromharmonischen werden durch den Filterknoten etwa doppelt so groß.

[0019] Diesen Nachteil vermeidet man mit der Reihenschaltung der Filterwicklungen. Dann wirkt das Filter nur auf die Harmonischen, die sich nicht sowieso schon gegenseitig auslöschen, sondern im Netz erscheinen. Für die sich auslöschenden Harmonischen ist die volle Induktivität n·LT wirksam wie ohne Filter. Damit führt das Filter kaum noch zu einer Vergrößerung des effektiven Oberschwingungsstromes in den Vierquadrantenstellern und Transformatorenwicklungen.

[0020] Fig. 3 zeigt am Beispiel n=2 die Schaltung und Wicklungsanordnung eines solchen Transformators mit Reihenschaltung der Filterwicklung FiW1, FiW2 (

Zweiwickler"). Mit US1, US2 sind die Unterspannungswicklungen bezeichnet. Der eine der Filterwicklungsanschlüsse Fi liegt z.B. auf Erdpotential.

[0021] Die Filterwicklung beansprucht Platz im Wickelfenster und vergrößert damit gegebenenfalls den Transformator. Im Fall, daß die OS-Wicklung als Lagenwicklung ausgebildet ist, kann statt einer zusätzlichen Filterwicklung auch die der US-Wicklung gegenüberliegende, am Erdpotential anzuschließende erste Lage der OS-Wicklung als Filterwicklung mitbenutzt werden. Fig. 4 zeigt diese Benutzung einer Lage der Oberspannungswicklung für den Filteranschluß (Sparschaltung, Fi = Filterabgriff an Oberspannungswicklung = Filterwicklungsanschluß). Fig. 5 zeigt hierzu ein Schema eines Transformators mit Filteranschlüssen in Sparschaltung (

Zweiwickler", F1, F2 = Filterabgriffe an Oberspannungswicklung = Filterwicklungsanschlüsse).

[0022] Bei dieser Sparschaltung der Filterwicklungen, wie für n=2 in Fig. 5 skizziert, ist allerdings zunächst die Möglichkeit der Reihenschaltung verwehrt. Sie kann jedoch durch Zusammenschalten der Filterabgriffe F1, F2.... über Stromteilerdrosseln (= Saugdrosseln) SD ersetzt werden, weil damit weitestgehend die Gleichheit der Ströme wie bei der Reihenschaltung erzwungen wird. Fig. 6 zeigt hierzu einen Filteranschluß über Saugdrosseln an einen Transformator (

Vierwickler") in Sparschaltung (F1, F2, F3, F4 = Filterabgriffe an Oberspannungswicklung = Filterwicklungsanschlüsse).

[0023] Bei einem System mit n = 4 Wicklungen und Vierquadrantenstellern sind allerdings, wie in Fig. 6 dargestellt, schon drei Saugdrosseln SD1, SD2, SD3 erforderlich. Am vorteilhaftesten ist daher diese Alternative bei n=2. Die Fig. 7a, 7b zeigen einige Ausgestaltungen in diesem Fall.

[0024] Fig. 7a steht für alle Filtermodifikationen, wie in Fig. 2a, 2b, 2c gezeigt.

[0025] In Fig. 7b sind die Funktionen der Filterdrossel LF und der Saugdrossel SD zu einer Drossel LF'' zusammengefaßt.

[0026] In Fig. 7c ist dieser Ansatz für n>2 verallgemeinert (F1, F2, F3, F4...Fn = Filterabgriffe an Oberspannungswicklung = Filterwicklungsanschlüsse).

[0027] In Fig. 10 ist eine Alternative zur Anordnung nach Fig. 7a ohne Saugdrossel dargestellt. Ausgehend von einer Schaltung nach den Figuren 5 und 7a entfällt die Saugdrossel SD und jeder Filterabgriff F1, F2 der Oberspannungswicklung ist mit einem eigenen Filter (Filtermodifikationen siehe Fig. 2a bis 2c) beschaltet. Jedes der beiden Filter wirkt auf alle Harmonischen des zugeordneten Stellers. Im Vergleich zu den Schaltungen gemäß Fig. 5 und 7a treten höhere Verluste in den Filterwiderständen auf.

[0028] Für Anwendungen, die mit einem kleinen Filter auskommen, z.B. weil vorwiegend im höheren Frequenzbereich eine Abschwächung notwendig ist, kann auf die Saugdrossel und Filterdrossel ganz verzichtet werden. Nach Fig. 8a wird das Filter dann sehr einfach, wenn der Filterwiderstand in zwei Teile mit je 2·RF aufgespalten wird und zugleich die Aufgabe der Stromteilung mit übernimmt. Es wird dabei in Kauf genommen, daß über der Reihenschaltung 4·RF die durch die versetzte Taktung bedingte Differenzspannung der Abgriffe F1 und F2 anliegt und zusätzliche Verluste erzeugt. Da bei einem kleinen Filter der Filterwiderstand RF vergleichsweise groß sein kann, ist das vertretbar.

[0029] Dieser Gedanke ist auch auf Systeme mit n>2 gut übertragbar, wie in Fig. 8b gezeigt ist. Der Filterwiderstand wird dabei in n Teile mit je n·RF aufgeteilt.


Ansprüche

1. Transformator für ein elektrisch angetriebenes Fahrzeug, gekennzeichnet durch mindestens eine im Transformator integrierte Störstromfilterwicklung (FiW), die eine oder mehrere Lagen der Oberspannungswicklung nutzt, die der Unterspannungswicklung benachbart sind, wodurch hinsichtlich der Störstromfilterwicklung eine Spartransformatorschaltung gebildet wird, wobei an den Filterwicklungsanschlüssen (Fi, F1....Fn) mindestens ein Filter angeschlossen ist, das aus der Reihenschaltung mindestens eines Filterwiderstandes (RF) und eines Filterkondensators (TF) besteht.
 
2. Transformator für ein elektrisch angetriebenes Fahrzeug, gekennzeichnet durch eine im Transformator integrierte Störstromfilterwicklung (FiW), die separat zwischen Oberspannungs- und Unterspannungswicklung angeordnet ist, wobei an den Filterwicklungsanschlüssen (Fi) ein Filter angeschlossen ist, das aus der Reihenschaltung mindestens eines Filterwiderstandes (RF) und eines Filterkondensators (TF) besteht.
 
3. Transformator nach Anspruch 2, dadurch gekennzeichnet, daß die Störstromfilterwicklung in mehrere, in Reihe geschaltete Einzelwicklungen aufgeteilt ist, wobei jeder Unterspannungswicklung eine eigene Einzelwicklung (FiW1, FiW2) zugeordnet ist (Fig. 3).
 
4. Transformator nach Anspruch 1, dadurch gekennzeichnet, daß zwei durch die Spartransformatorschaltung gebildete Filterabgriffe (F1, F2) über eine Saugdrossel (SD) miteinander verbunden sind, wobei der Anschluß für das Filter durch den Mittenabgriff der Saugdrossel gebildet wird (Fig. 7a).
 
5. Transformator nach Anspruch 1, dadurch gekennzeichnet, daß bei vier durch die Spartransformatorschaltung gebildeten Filterabgriffen (F1, F2, F3, F4) jeweils zwei Filterabgriffe (F1 und F2, F3 und F4) über eine Saugdrossel (SD1, SD2) miteinander verbunden sind und daß die Mittenabgriffe dieser beiden Saugdrosseln mit einer dritten Saugdrossel (SD3) verbunden sind, deren Mittenabgriff den Anschluß für das Filter bildet (Fig. 6).
 
6. Transformator nach Anspruch 1, dadurch gekennzeichnet, daß bei n (n=2,3,4,...) durch die Spartransformatorschaltung gebildeten Filterabgriffen (F1, F2, F3, F4....Fn) jeweils die n Filterabgriffe über eine Drossel (D1....Dn) mit einem gemeinsamen Knotenpunkt verbunden sind, wobei der Anschluß für das Filter durch den gemeinsamen Verbindungspunkt aller Drosseln gebildet wird (Fig. 7c).
 
7. Transformator nach Anspruch 1, dadurch gekennzeichnet, daß zwei durch die Spartransformatorschaltung gebildete Filterabgriffe (F1, F2) über zwei gleiche Teilwiderstände (2RF) miteinander verbunden sind, wobei der Anschluß für das Filter durch den gemeinsamen Verbindungspunkt beider Teilwiderstände gebildet wird (Fig. 8a).
 
8. Transformator nach Anspruch 1, dadurch gekennzeichnet, daß bei n (n=3,4,..) durch die Spartransformatorschaltung gebildeten Filterabgriffen (F1, F2, F3, F4...Fn) jeweils die n Filterabgriffe über n gleiche Teilwiderstände (nRF) mit einem gemeinsamen Knotenpunkt verbunden sind, wobei der Anschluß für das Filter durch den gemeinsamen Verbindungspunkt aller Teilwiderstände gebildet wird (Fig. 8b).
 
9. Transformator nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Teilwiderstände (2RF, nRF) zugleich die Funktion des Filterwiderstandes (RF) erfüllen.
 
10. Transformator nach Anspruch 1, dadurch gekennzeichnet, daß mindestens zwei durch die Spartransformatorschaltung gebildete Filterabgriffe (F1, F2, F3, F4...Fn) direkt miteinander verbunden sind, um den Anschluß für das Filter zu bilden.
 
11. Transformator nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Filter zusätzlich eine in Reihe geschaltete Filterdrossel (LF) aufweist (Fig. 2b).
 
12. Transformator nach Anspruch 11, dadurch gekennzeichnet, daß parallel zur Filterdrossel (LF) ein Parallelwiderstand (RP) angeordnet ist (Fig. 2c).
 
13. Transformator nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß verschiedene Filter oder für verschiedene Frequenzen dimensionierte Filter parallelgeschaltet sind.
 
14. Transformator nach Anspruch 4, 5 und 6, dadurch gekennzeichnet, daß die mindestens eine Saugdrossel bzw. Drossel (SD, SD1, SD2, SD3, D1...Dn) zugleich die Funktion der Filterdrossel (LF) erfüllt (Fig. 7a).
 




Zeichnung