(19) |
 |
|
(11) |
EP 0 765 950 B2 |
(12) |
NEW EUROPEAN PATENT SPECIFICATION |
|
After opposition procedure |
(45) |
Date of publication and mentionof the opposition decision: |
|
20.01.2010 Bulletin 2010/03 |
(45) |
Mention of the grant of the patent: |
|
17.10.2001 Bulletin 2001/42 |
(22) |
Date of filing: 21.08.1996 |
|
(51) |
International Patent Classification (IPC):
|
|
(54) |
High strength low thermal expansion alloy
Hochfeste Legierung mit niedrigem Ausdehnungskoeffizient
Alliage à haute résistance et à coefficient d'expansion thermique faible
|
(84) |
Designated Contracting States: |
|
DE ES FR GB |
(30) |
Priority: |
25.08.1995 US 519678 14.08.1996 US 696487
|
(43) |
Date of publication of application: |
|
02.04.1997 Bulletin 1997/14 |
(73) |
Proprietor: Inco Alloys International, Inc. |
|
Huntington
West Virginia 25720 (US) |
|
(72) |
Inventors: |
|
- Smith, John Scott
Proctorville,
Ohio 45669 (US)
- Hillis, LaDonna Sheree
Orlando,
Florida 32835 (US)
- Moore, Melissa Ann
Littleton, CO 80127 (US)
|
(74) |
Representative: Hedley, Nicholas James Matthew |
|
Kilburn & Strode LLP
20 Red Lion Street London
WC1R 4PJ London
WC1R 4PJ (GB) |
(56) |
References cited: :
EP-A- 0 075 416 CH-A- 404 965 FR-A- 2 139 424 JP-A- 04 202 642
|
EP-A2- 0 482 889 DE-A- 1 558 714 JP-A- 04 180 542
|
|
|
|
|
- PATENT ABSTRACTS OF JAPAN vol. 16, no. 490 (C-994), 12 October 1992 & JP-A-04 180542
(HITACHI METALS LTD.), 26 June 1992,
- PATENT ABSTRACTS OF JAPAN vol. 95, no. 6 & JP-A-07 166298 (TOSHIBA CORP.), 27 June
1995,
|
|
|
|
Field of Invention
[0001] This invention relates to low expansion alloys. In particular, this invention relates
to low expansion iron alloys containing about 40.5 to about 48 weight percent nickel.
Background of the Art and Problem
[0002] The nickel-containing alloy tooling or fixtures used for curing graphite-epoxy composites
must have very low thermal expansion coefficients. The low coefficients of thermal
expansion are necessary to decrease stresses arising from thermal expansion mismatch
that occurs during heating of resin-containing tooling to curing temperatures. The
low-expansion alloy system of 36 to 42 weight percent nickel and balance of essentially
iron has been commercially used for these tooling applications. These iron-base alloys
are, however, inherently soft, difficult to weld in large sections, lack dimensional
stability after thermomechanical processing, and are difficult to machine. For example,
the knives used to remove graphite epoxy composites from the tooling routinely cut
into and mar the tooling's surface. Another problem with these iron-base low expansion
alloys is is general corrosion that accelerates during the curing of graphite epoxy
tooling.
[0003] Structural graphite epoxy composites have CTEs that are highly variable with orientation.
Typically graphite-epoxy composites have CTEs that range from 1.8 to 9.0 x10
-6 m/m/°C (1.0 to 5.0 x 10
-6 in/in/°F) depending upon orientation. The mean CTE of this composite is about 5.4
x 10
-6m/m/°C (3.0 x 10
-6 in/in/°F). The alloys used for this tooling have a lower CTE than the composite being
cured. The low CTE tooling provides a constant and uniform compressive force during
heating of the composites from room to curing temperatures. This compressive force
reduces porosity, permits tight tolerances (e.g., ±0.0051 cm or ±0.002 in or less),
and provides high quality composite surfaces. To achieve these goals, CTE of the alloy
must be 4.9 x 10
-6 m/m/°C (2.7 x 10
-6 in/in/°F) or less.
[0004] It is an object of this invention to provide a low CTE alloy having good resistance
to marring.
[0005] It is a further object of this invention to provide a low CTE alloy having good dimensional
stability and strength after thermomechanical processing.
[0006] It is a further object of this invention to provide a low CTE alloy having relatively
good weldability and corrosion resistance.
[0007] It is a further object of this invention to provide an alloy particularly suited
for curing graphite-epoxy resins.
Summary of the Invention
[0008] The alloy of the invention provides a low coefficient of thermal expansion alloy
having a CTE of about 4.9 x10
-6 m/m/°C or less at 204°C and a relatively high strength is defined in the accompanying
claims. Alloys of the invention may be aged to a Rockwell C hardness of at least about
30.
Description of the Drawing
[0009]
Figure 1 is a three dimensional plot of coefficient of thermal expansion versus nickel
and aluminum content at 400°F (204°C);
Figure 2 is a two dimensional graph of coefficient of thermal expansion versus nickel
and aluminum content at 400°F (204°C); and
Figure 3 is a graph of coefficient of thermal expansion versus total niobium plus
tantalum content at 204 °C (400°F),
Description of Preferred Embodiment
[0010] It has been discovered that niobium and titanium may be used in combination to provide
an age hardenable alloy while maintaining a relatively low CTE. The alloys of the
invention are readily aged to produce a hardness of at least 30 on the Rockwell "C"
(RC) scale. For comparative purposes, NILO® alloy 36 typically only has a hardness
of 71 on the Rockwell "B" (RB) scale (NILO is a trademark of the Inco family of companies).
The alloys of the invention are uniquely characterized by a relatively low CTE in
combination with excellent marring resistance.
[0011] The alloys of Table 1 were prepared for testing.
Table 1
HEAT |
C |
MN |
FE |
S |
SI |
NI |
CR |
AL |
TI |
NG |
CO |
MO |
NB |
TA |
NB + TA |
1 * |
0.004 |
0.2 |
56.7 |
0.1101 |
0.1 |
38.17 |
<0.1 |
0.33 |
1.5 |
<0.1 |
<0.1 |
<0.1 |
2.9 |
0.001 |
2.9 |
2 * |
0.005 |
0.2 |
54.9 |
0.001 |
0.1 |
40.09 |
<0.1 |
0.12 |
1.5 |
<0.1 |
<0.1 |
<0.1 |
2.9 |
0.001 |
2.9 |
3 * |
0.018 |
0.2 |
54.8 |
0.001 |
0.1 |
40.24 |
<0.1 |
0.30 |
1.5 |
<0.1 |
<0.1 |
<0.1 |
2.9 |
0.001 |
2.9 |
4 * |
0.003 |
0.2 |
54.8 |
0.001 |
0.1 |
40.07 |
<0.1 |
0.32 |
1.5 |
<0.1 |
<0.1 |
<0.1 |
2.9 |
0.001 |
2.9 |
5 * |
0.005 |
0.2 |
54.4 |
0.001 |
0.1 |
40.06 |
<0.1 |
0.51 |
1.5 |
<0.1 |
<0.1 |
<0.1 |
2.9 |
0.001 |
2.9 |
6 * |
0.004 |
0.2 |
52.7 |
0.001 |
0.1 |
41.93 |
<0.1 |
0.32 |
1.5 |
<0.1 |
<0.1 |
<0.1 |
2.9 |
0.001 |
2.9 |
7 |
0.009 |
0.2 |
50.8 |
0.001 |
0.1 |
43.97 |
<0.1 |
0.33 |
1.5 |
<0.1 |
<0.1 |
<0,1 |
2.9 |
0.001 |
2.9 |
8(1) |
0.011 |
0.31 |
Bal. |
0.001 |
0.08 |
43.80 |
0.08 |
0.12 |
1.25 |
<0.1 |
0.01 |
0.01 |
3.21 |
0.004 |
3.21 |
9 |
<.01 |
0.2 |
Bal. |
0.001 |
0.11 |
43.76 |
0.01 |
0.16 |
1.45 |
<0.1 |
0.001 |
<0.1 |
3.45 |
0.001 |
3.45 |
10 |
<.01 |
0.19 |
Bal. |
0.001 |
0.12 |
43.77 |
0.03 |
0.11 |
1.48 |
<0.1 |
0.001 |
<0.1 |
2.93 |
0.001 |
2.93 |
11 |
0.024 |
0.31 |
50.9 |
<0.001 |
0.08 |
43.70 |
0.04 |
0.18 |
1.45 |
<0.1 |
0.28 |
<0.1 |
3.03 |
0.003 |
3.03 |
12 |
0.02 |
0.31 |
51.1 |
<0.001 |
0.08 |
43.77 |
0.03 |
0.08 |
0.95 |
<0.1 |
0.20 |
<0.1 |
3.38 |
<0.01 |
3.38 |
13 |
0.005 |
0.19 |
51.2 |
0.002 |
0.12 |
43.33 |
0.08 |
0.14 |
1.42 |
<0.1 |
<0.1 |
<0.1 |
3.46 |
0.001 |
3.46 |
A(2) |
0.01 |
0.01 |
Bal. |
0.009 |
<0.01 |
43.61 |
N/A |
0.17 |
1.48 |
N/A(3) |
N/A |
N/A |
|
|
3.94 |
B(4) |
0.035 |
0.40 |
63.3 |
0.001 |
0.06 |
36.03 |
0.06 |
0.15 |
0.07 |
<0.1 |
<0.1 |
<0.1 |
0.03 |
0.001 |
0.03 |
C(4) |
0.021 |
0.40 |
63.0 |
0.002 |
0.04 |
36.16 |
0.01 |
0.20 |
0.08 |
<0.1 |
<0.1 |
<0.1 |
<0.01 |
0.001 |
<0.01 |
D(4) |
0.026 |
0.38 |
63.0 |
0.002 |
0.05 |
36.21 |
0.01 |
0.21 |
0.08 |
<0.1 |
<0.1 |
<0.1 |
<0.01 |
0.001 |
<0.0 |
Note: N/A = Not Analyzed
(1) Contains 0.007 P and 0.05 Cu
(2) Corresponds to alloy A of U.S. Pat. No. 3,514,284 (For comparative purposes only)
(3) None Added
(4) Comparative alloys B, C & D correspond to commercially available how CTE alloy
36
(5) Only analyzed in combination
* Heats 1-6 are comparative alloys |
[0012] The data of Table 1 are expressed in weight percent. For purpose of this specification,
all alloy compositions are expressed in weight percent.
[0013] Table 2 below provides coefficient of thermal expansion and hardness data for alloys
that were warm worked and aged at 1200°F (649°C) for 8 hours then air cooled.
TABLE 2
HEAT |
CTE at 400°F (204°C) |
Hardness (RC) |
|
in/in/°Fx10-6 |
m/m/°Cx10-6 |
|
1 |
5.91 |
10.6 |
40 |
2 |
3.06 |
5.51 |
39 |
3 |
3.62 |
6.52 |
40 |
5 |
4.56 |
8.21 |
37 |
6 |
2.58 |
4.64 |
39 |
7 |
2.52 |
4.53 |
36 |
[0014] For comparison purposes, the CTE of graphite-epoxy composites at 360°F (182°C) is
3.1 x 10
-6 in/in/°F (5.6 x 10
-6 m/m/°C).
[0015] Figures 1 and 2 illustrate that CTE reaches a minimum above about 42.3% nickel. Advantageously,
alloys of the invention contain sufficient nickel to provide a relatively low CTE
of less than or equal to about 4.9 x 10
-6 m/m/°C (2.7 x10
-6 in/in/°F) at 204°C (400°F). Most advantageously, the CTE is less than or equal to
about (4.5 x 10
-6 m/m/°C (2.5 x 10
-6 in/in/°F) at 204°C (400°F). At 204°C (400°F), coefficient of thermal expansion may
be estimated by the following:


[0016] Figure 3 illustrates that total niobium and tantalum must be limited to about 3.7
weight percent to maintain a CTE less than 4.9 x 10
-6 m/m/°C. At total niobium plus tantalum concentrations above about 3.5 weight percent,
the 204°C (400°F) CTE of the alloy dramatically increases.
[0017] Most advantageously, tantalum is maintained at concentrations below about 0.25 weight
percent. Tantalum concentrations above about 0.25 weight percent are believed to be
detrimental to weldability and phase segregation. Alloys containing less than 0.25
weight percent tantalum may be readily formed into large sections free of both macro-
and micro-segregation. Furthermore, an optional addition of at least about 0.15 weight
percent manganese facilitates hot working of the alloy. In addition, boron may optionally
be added to the alloy in quantities up to about 0.01 weight percent.
[0018] Table 3 below illustrates that CTE increases dramatically with niobium plus tantalum
compositions above 3.45 at temperatures between 142°C and 315°C.
TABLE 3
Age Hardenable Ni-Fe Allays, wt% |
|
Coefficient of Thermal Expansion |
|
Heat |
200°F |
142°C |
400°F |
204°C |
500°F |
260°C |
600°F |
315°C |
800°F |
427°C |
Nb + Ta |
|
(x10-6/°F) |
(x10-6/°C) |
(x10-6/°F) |
(x10-6/°C) |
(x10-6/°F) |
(x10-6/°C) |
(x10-6/°F) |
(x10-6/°C) |
(x10-6/°F) |
(x10-6/°C) |
(wt%) |
9 |
2.17 |
3.91 |
2.33 |
4.19 |
2.56 |
4.61 |
3.28 |
5.90 |
4.6 |
8.28 |
3.45 |
10 |
2.17 |
3.91 |
2.34 |
4.21 |
2.33 |
4.55 |
NT |
NT |
NT |
NT |
2.93 |
A |
2.9 |
5.22 |
2.8 |
5.04 |
3.1 |
5.58 |
3.7 |
6.66 |
4.8 |
8.64 |
3.94 |
[0019] Table 4 below provides hardness of the alloys in the Rockwell "B" scale for various
annealing conditions.
TABLE 4
ANNEAL |
HEAT |
(°F)/(hr) |
(°C)/(hr) |
1 |
2 |
3 |
5 |
6 |
7 |
1600/1 |
871/1 |
91 |
88 |
86 |
90 |
88 |
85 |
1650/1 |
915/1 |
89 |
86 |
86 |
96 |
84 |
82 |
1700/1 |
926/1 |
86 |
85 |
85 |
84 |
84 |
84 |
1750/1 |
954/1 |
84 |
82 |
82 |
85 |
82 |
82 |
1800/1 |
982/1 |
84 |
83 |
83 |
84 |
83 |
83 |
1850/1 |
1010/1 |
82 |
82 |
82 |
82 |
84 |
80 |
1900/1 |
1038/1 |
82 |
82 |
82 |
82 |
81 |
80 |
1950/1 |
1066/1 |
82 |
81 |
81 |
82 |
80 |
79 |
AR |
AR |
94 |
95 |
95 |
97 |
95 |
96 |
[0020] Table 5 below provides hardness in the Rockwell "C" scale for alloys treated with
various isothermal aging heat treatments directly after warm working the alloys.
TABLE 5
AGE |
HEAT |
(°F)/(hr) |
(°C)/(hr) |
1 |
2 |
3 |
5 |
6 |
7 |
1150/4 |
621/4 |
36 |
34 |
35 |
35 |
35 |
32 |
1150/8 |
621/8 |
39 |
38 |
35 |
37 |
36 |
36 |
1200/4 |
649/4 |
36 |
38 |
34 |
38 |
37 |
36 |
1200/8 |
649/8 |
38 |
41 |
38 |
41 |
40 |
38 |
1250/4 |
677/4 |
34 |
39 |
37 |
40 |
37 |
35 |
1250/8 |
677/8 |
38 |
37 |
37 |
39 |
35 |
37 |
1300/4 |
704/4 |
35 |
34 |
36 |
37 |
35 |
35 |
1300/8 |
704/8 |
35 |
35 |
35 |
38 |
35 |
37 |
1350/4 |
732/4 |
34 |
31 |
31 |
30 |
33 |
32 |
1350/8 |
732/8 |
31 |
26 |
29 |
33 |
29 |
30 |
1400/4 |
760/4 |
28 |
25 |
29 |
31 |
31 |
28 |
1450/4 |
788/4 |
23 |
21 |
24 |
25 |
24 |
25 |
1500/4 |
815/4 |
19 |
18 |
17 |
18 |
17 |
18 |
[0021] Table 6 below provides hardness data for annealed and aged alloys of the invention.
The alloy of Table 6 were all annealed at 1700°F (927°C) prior to aging.
TABLE 6
HEAT |
AGING TEMPERATURE / TIME |
|
1150/8
(°F)/(hr) |
621/8
(°C)/(hr) |
1200/8
(°F)/(hr) |
649/8
(°C)/(hr) |
1250/4
(°F/(hr) |
677/4
(°C)/(hr) |
1250/8
(°F)/(hr) |
677/8
(°C)/(hr) |
1 |
31 |
35 |
32 |
35 |
2 |
29 |
35 |
32 |
37 |
3 |
29 |
34 |
33 |
35 |
5 |
34 |
33 |
35 |
36 |
6 |
30 |
36 |
34 |
36 |
7 |
28 |
32 |
32 |
33 |
[0022] Tables 4-6 illustrate that the alloys of the invention may be readily age hardened
to hardness levels at least as high as about 30 on the Rockwell C scale. Most advantageously,
alloys are aged to a hardness of at least about 35 on the Rockwell C scale. Advantageously,
the alloys are aged at a temperature between 1000 and 1400°F (538 and 760°C). Most
advantageously, alloys are aged at a temperature between about 1100 and 1300°F (593
to 704°C) for optimum age hardening. It has been discovered that thermomechanical
processing followed by an aging heat treatment further optimizes hardness of the alloy.
[0023] Table 7 below compares oxidation resistance of alloys of the invention to alloy 36
Ni-Fe after exposure to air at 371°C for 560 hours.
TABLE 7
HEAT |
CHANGE IN WEIGHT GAIN, MILLIGRAMS/SQUARE CENTIMETER |
8 |
0.082 |
9 |
0.136 |
11 |
0.133 |
12 |
0.133 |
13 |
0.150 |
B (Alloy 36) |
0.248 |
C (Alloy 36) |
0.220 |
Alloys 8 to 13 of Table 7 were annealed then aged as follows:
[0024] Anneal - 871°C for one hour, air cooled to room temperature.
[0025] Age - 677°C for four hours, furnace cooled at a rate of 55°C per hour to 621°C, 621°C
for four hours and air cooled to room temperature.
[0026] Alloys B, C and D of Table 7 were all annealed as follows:
[0027] Anneal - 871°C for one hour and air cooled to room temperature -- these alloys are
not age hardenable.
[0028] The data of Table 7 illustrate that alloy 36 oxidizes nearly twice as rapidly as
alloys of the invention at typical curing temperature for graphite-epoxy composites.
Although these alloys lack the oxidation resistance of chromium-containing alloys,
the increased oxidation resistance of the invention significantly reduces tooling
maintenance. For example, facing plates require less grinding, polishing or pickling
to maintain a smooth metal surface.
[0029] Table 8 below demonstrates the dimensional stability of alloys of the invention in
comparison to 36 Ni-Fe alloys.
TABLE 8
HEAT |
CREEP STRENGTH, MPa |
11 |
>690 |
12 |
>690 |
D (Alloy 36) |
55 |
[0030] Heat D was annealed prior to testing. Heats 11 and 12 were annealed and aged as above.
The age hardened alloys of the invention provide at least a ten-fold increase in creep
resistance. This increase in creep resistance provides excellent dimensional stability
that effectively resists deformation during curing. The alloys dimensional stability
allows significant reductions of the size and amount of materials necessary to produce
durable tooling.
[0031] The alloy of the invention is described by alloys having the composition of Table
9 below.
TABLE 9
|
BROAD |
INTERMEDIATE |
NARROW |
NOMINAL |
Ni |
42.3-48 |
42.3-46 |
42.3-45 |
43.5 |
Nb |
2-3.7 |
2.5 - 3.6 |
3-3.5 |
3.3 |
Ti |
0.75-2 |
0.9-1.9 |
1-1.8 |
1.4 |
Al |
0-1 |
0.05-0.8 |
0.05-0.6 |
0.2 |
C |
|
0-0.1 |
0-0.05 |
0.01 |
Mn |
|
0-1 |
0-0.5 |
0.3 |
Si |
|
0-1 |
0-0.5 |
- |
Cu |
|
0-1 |
0.5 |
- |
Cr |
|
0-1 |
0-0.5 |
- |
Co |
|
0-5 |
0-2 |
- |
B |
|
0-0.01 |
0-0.005 |
- |
W, V |
|
0-2 |
0-1 |
- |
Ta |
|
|
0-0.25 |
|
Mg, Ca, Ce (Total) |
|
0-0.1 |
0-0.05 |
- |
Y, Rare Earths
(Total) |
|
0-0.5 |
0-0.1 |
- |
S |
|
0-0.1 |
0-0.05 |
- |
P |
|
0-0.1 |
0-0.05 |
- |
N |
|
0-0.1 |
0-0.05 |
- |
Fe |
Balance + Incidental Impurities |
Balance + Incidental Impurities |
Balance + Incidental Impurities |
Balance + Incidental Impurities |
Total Nb + Ta |
≤ 3.7 |
≤ 3.6 |
≤3.5 |
3.3 |
[0032] The alloy of the invention provides alloys having a coefficient of thermal expansion
of 2.7 x 10
-6 in/in/°F (5.5 x 10
-6 m/m/°C) or less with a minimum hardness of RC 30. With a hardness above RC 30, composite
tooling alloys provide excellent resistance to scratching and marring. In addition,
age hardening increases the yield strength of the alloy and machinability of the alloy.
The alloy has tested to be excellent with the drop weight and bend tests. The alloy
may be readily welded with NILO® filler metals 36 and 42. Finally, the alloys of the
invention provide improved oxidation resistance and dimensional stability over conventional
iron-nickel low coefficient of thermal expansion alloys.
[0033] The alloys of the invention provides an especially useful material for tooling that
are used to fabricate graphite-epoxy composites or other low CTE composites under
compression. In addition, the alloys of the invention are expected to be useful for
high strength electronic strips, age hardenable lead frames and mask alloys for tubes.
1. A high strength low coefficient of thermal expansion alloy having a CTE of 4.9 x 10-6 m/m/°C or less at 204°C, consisting of, by weight percent, 42.3 to 48 nickel, 2.5
to 3.6 niobium, 0.75 to 2 titanium, 3.7 or less total niobium plus tantalum, 0 to
1 aluminium, 0 to 0.1 carbon, 0 to 1 manganese, 0 to 1 silicon, 0 to 1 copper, 0 to
1 chromium, 0 to 5 cobalt, 0 to 0.01 boron, 0 to 2 tungsten, 0 to 2 vanadium, 0 to
0.1 total magnesium, calcium and cerium, 0 to 0.5 total yttrium and rare earths, 0
to 0.1 sulfur, 0 to 0.1 phosphorous, 0 to 0.1 nitrogen, and balance iron and incidental
impurities.
2. The alloy of claim 1 comprising 42.3 to 46 nickel, 2.5 to 3.6 niobium, 0.9 to 1.9
titanium and 0.05 to 0.8 aluminium.
3. The alloy of claim 1 having a hardness of at least 30 on the Rockwell C scale.
4. A high strength low coefficient of thermal expansion alloy having a CTE of 4.9 x 10-6 m/m/°C or less at 204°C, consisting of, by weight percent, 42.3 to 46 nickel, 2.5
to 3.6 niobium, 0.9 to 1.9 titanium, 0.05 to 0.8 aluminium, 0 to 0.1 carbon, 0 to
1 manganese, 0 to 1 silicon, 0 to 1 copper, 0 to 0.5 chromium, 0 to 5 cobalt, 0 to
0.01 boron, 0 to 2 tungsten, 0 to 2 vanadium, 0 to 0.05 total magnesium, calcium and
cerium, 0 to 0.5 total yttrium and rare earths, 0 to 0.1 sulfur, 0 to 0.1 phosphorous,
0 to 0.1 nitrogen, 3.6 or less total niobium plus tantalum and balance iron and incidental
impurities.
5. The alloy of claim 4 comprising 42.3 to 45 nickel.
6. The alloy of claim 4 comprising 3 to 3.5 niobium, 1 to 1.8 titanium and 0.05 to 0.6
aluminium.
7. The alloy of claim 4 comprising 0 to 0.05 carbon, 0 to 0.5 manganese, 0 to 0.5 silicon,
0 to 0.5 copper, 0 to 0.5 chromium, 0 to 2 cobalt, 0 to 0.005 boron, 0 to 1 tungsten,
0 to 1 vanadium, 0 to 0.05 total magnesium, calcium and cerium, 0 to 0.1 total yttrium
and rare earths, 0 to 0.05 sulfur, 0 to 0.05 phosphorous, less than 0.25 tantalum
and 0 to 0.05 nitrogen.
8. The alloy of claim 4 having a hardness of at least 30 on the Rockwell C scale.
9. A high strength low coefficient of thermal expansion alloy having a CTE of 4.9 x 10-6 m/m/°C or less at 204°C, consisting of, by weight percent 42.3 to 45 nickel, 3 to
3.5 niobium, 1 to 1.8 titanium, 0.05 to 0.6 aluminium, 0 to 0.05 carbon, 0 to 0.5
manganese, 0 to 0.5 silicon, 0 to 0.5 copper, 0 to 2 cobalt, 0 to 0.005 boron, 0 to
1 tungsten, 0 to 1 vanadium, 0 to 0.1 total yttrium and rare earths, 0 to 0.05 sulfur,
0 to 0.05 phosphorous, 0 to 0.05 nitrogen, 3.5 or less total niobium plus tantalum,
0 to 0.25 tantalum and balance iron and incidental impurities.
10. The alloy of claim 9 having a hardness of at least 30 on the Rockwell C scale.
11. Use of an alloy as defined in any one of claims 1 to 10 for the manufacture of tooling,
for the fabrication of low CTE (coefficient of thermal expansion) composites, e.g.
graphite-epoxy composites, or for the manufacture of electronic strips, age hardenable
lead frames or mask alloys for tubes.
1. Hochfeste Legierung mit niedrigem Ausdehnungskoeffizienten von höchstens 4,9 x 10-6 m/m/°C bei 204°C, die sich aus 42,3 bis 48 Gew.% Nickel, 2 bis 3,7 Gew.% Niob, 0,75
bis 2 Gew.% Titan, höchstens 3,7 Gew.% Gesamtgehalt an Niob plus Tantal, 0 bis 1 Gew.%
Aluminium, 0 bis 0,1 Gew.% Kohlenstoff, 0 bis 1 Gew.% Mangan, 0 bis 1 Gew.% Silicium,
0 bis 1 Gew.% Kupfer, 0 bis 1 Gew.% Chrom, 0 bis 5 Gew.% Cobalt, 0 bis 0,01 Gew.%
Bor, 0 bis 2 Gew.% Wolfram, 0 bis 2 Gew.% Vanadium, 0 bis 0,1 Gew.% Gesamtgehalt an
Magnesium, Calcium und Cer, 0 bis 0,5 Gew.% Gesamtgehalt an Yttrium und seltenen Erden,
0 bis 0,1 Gew.% Schwefel, 0 bis 0,1 Gew.% Phosphor, 0 bis 0,1 Gew.% Stickstoff und
als Restmaterial Eisen und geringfügigen Verunreinigungen zusammensetzt.
2. Legierung nach Anspruch 1, die 42,3 bis 40 Gew.% Nickel, 2,5 bis 3,6 Gew.% Niob, 0,9
bis 1,9 Gew.% Titan und 0,05 bis 0,8 Gew.% Aluminium aufweist.
3. Legierung nach Anspruch 1 mit einer Rockwellhärte C von mindestens 30.
4. Hochfeste Legierung mit niedrigem Ausdehnungskoeffizient von höchstens 4,9 x 10-6 m/m/°C bei 204°C, die sich aus 42,3 bis 46 Gew.% Nickel, 2,5 bis 3,6 Gew.% Niob,
0,9 bis 1,9 Gew.% Titan, 0,05 bis 0,8 Gew.% Aluminium, 0 bis 0,1 Gew.% Kohlenstoff,
0 bis 1 Gew.% Mangan, 0 bis 1 Gew.% Silicium, 0 bis 1 Gew.% Kupfer, 0 bis 0,5 Gew.%
Chrom, 0 bis 5 Gew.% Cobalt, 0 bis 0,01 Gew.% Bor, 0 bis 2 Gew.% Wolfram, 0 bis 2
Gew.% Vanadium, 0 bis 0,05 Gew.% Gesamtgehalt an Magnesium, Calcium und Cer, 0 bis
0,5 Gew.% Gesamtegehalt an Yttrium und seltenen Erden, 0 bis 0,1 Gew.% Schwefel, 0
bis 0,1 Gew.% Phosphor, 0 bis 0,1 Gew.% Stickstoff, höchstens 3,6 Gew.% Gesamtgehalt
an Niob plus Tantal unde als Restmaterial Eisen und geringfügigen Verunreinigungen
zusammensetzt.
5. Legierung nach Anspruch 4, die 42,3 bis 45 Gew.% Nickel aufweist.
6. Legierung nach Anspruch 4, die 3 bis 3,5 Gew.% Niob, 1 bis 1,8 Gew.% Titan und 0,05
bis 0,6 Gew.% Aluminium aufweist.
7. Legierung nach Anspruch 4, die 0 bis 0,05 Gew.% Kohlenstoff, 0 bis 0,5 Gew.% Mangan,
0 bis 0,5 Gew.% Silicium, 0 bis 0,5 Gew.% Kupfer, 0 bis 0,5 Gew.% Chrom, 0 bis 2 Gew.%
Cobalt, 0 bis 0,005 Gew.% Bor, 0 bis 1 Gew.% Wolfram, 0 bis 1 Gew.% Vanadium, 0 bis
0,05 Gew.% Gesamtgehalt an Magnesium, Calcium und Cer, 0 bis 0,1 Gew.% Gesamtgehalt
an Yttrium und seltenen Erden, 0 bis 0,05 Gew.% Schwefel, 0 bis 0,05 Gew.% Phosphor,
höchstens 0,25 Gew.% Tantal und 0 bis 0,05 Gew.% Stickstoff aufweist.
8. Legierung nach Anspruch 4 mit einer Rockwellhärte C von mindestens 30.
9. Hochfeste Legierung mit niedrigem Ausdehnungskoeffizient von höchstens 4,9 x 10-6 m/m/°C bei 204°C, die sich aus 42,3 bis 45 Gew.% Nickel, 3 bis 3,5 Gew.% Niob, 1
bis 1,8 Gew.% Titan, 0,05 bis 0,6 Gew.% Aluminium, 0 bis 0,05 Gew.% Kohlenstoff, 0
bis 0,5 Gew.% Mangan, 0 bis 0,5 Gew.% Silicium, 0 bis 0,5 Gew.% Kupfer, 0 bis 2 Gew.%
Cobalt, 0 bis 0,005 Gew.% Bor, 0 bis 1 Gew.% Wolfram, 0 bis 1 Gew.% Vanadium, 0 bis
0,1 Gew.% Gesamtgehalt an Yttrium und seltenen Erden, 0 bis 0,05 Gew.% Schwefel, 0
bis 0,05 Gew.% Phosphor, 0 bis 0,05 Gew.% Stickstoff, höchstens 3,5 Gew.% Gesamtgehalt
an Niob plus Tantal, 0 bis 0,25 Gew.% Tantal und als Restmaterial Eisen und geringfügigen
Verunreinigungen zusammensetzt.
10. Legierung nach Anspruch 9 mit einer Rockwellhärte C von mindestens 30.
11. Verwendung nach einem der vorangehenden Ansprüche 1 bis 10 zur Herstellung von Formungswerkzeugen
für Verbundwerkstoffe mit niedrigem Ausdehnungskoeffizienten, zum Beispiel Graphit-Epoxid-Verbundwerkstoffe,
oder zur Herstellung von Elecktronikstreifen, alterungshärtbaren Leiterrahmen oder
Maskenlegierungen für Röhren.
1. Un alliage à haute résistance et à faible coefficient de dilatation thermique, CTE,
de 4,9 x 10-6m/m/°C ou moins à 204°C, constitué, exprimé en pourcentage en poids, de 42, 3 à 48
% de nickel, 2 à 3,7 % de niobium, 0,75 à 2 % de titane, 3,7 ou moins pour le total
du niobium plus le tantale, 0 à 1 % d'aluminium, 0 à 0,1 % de carbone, 0 à 1 de manganèse,
0 à 1 % de silicium, 0 à 1 % de cuivre, 0 à 1 % de chrome, 0 à 5 % de cobalt, 0 à
0,01 % de bore, 0 à 2 % de tungstène, 0 à 2 % de vanadium, 0 à 0,1 % du total du magnésium,
calcium et cérium, 0 à 0,5 % du total de l'yttrium et de terres rares, de 0 à 0,1
% de soufre, 0 à 0,1 de phosphore, 0 à 0,1 % d'azote et le reste étant du fer et d'éventuelles
impuretés.
2. L'alliage selon la revendication 1, comprenant de 42,3 à 46 % en poids de nickel,
2,5 à 3,6 % de niobium, 0,9 à 1,9 de titane et 0,05 à 0,8 % d'aluminium.
3. L'alliage selon la revendication 1 ayant une dureté d'au moins 30 sur l'échelle Rockwell
C.
4. Un alliage à haute résistance et à faible coefficient de dilatation thermique, CTE,
de 4,9 x 10-6m/m/°C ou moins à 204°C, constitué, exprimé en pourcentage en poids, de 42,3 à 46
% de nickel, 2 à 3,6 % de niobium, 0,9 à 1,9 % titane, 0,05 à 0,8 % d'aluminium, 0
à 0,1 % de carbone, 0 à 1 % de manganèse, 0 à 1 % de silicium, 0 à 1 % de cuivre,
0 à 0,5 de chrome, 0 à 5 % de cobalt, 0 à 0,01 % de bore, 0 à 2 % de tungstène, 0
à 2 % de vanadium 0 à 0,05 % du total du magnésium, calcium et cérium, 0 à 0,5 % du
total de l'yttrium et de terres rares, 0 à 0,1 % de soufre, 0 à 0,1 % de phosphore,
0 à 0,1 % d'azote, 3,6 % ou moins du total du niobium plus le tantale, et le reste
étant du fer et d'éventuelles impuretés.
5. L'alliage selon la revendication 4, comprenant de 42,3 à 45 % en poids de nickel.
6. L'alliage selon la revendication 4, comprenant de 3 à 3,5 % en poids de niobium, 1
à 1,8 % en poids de titane et 0,05 à 0,6 % en poids d'aluminium.
7. L'alliage selon la revendication 4, comprenant de 0 à 0,05 % en poids de carbone,
0 à 0,5 % de manganèse, 0 à 0,5 % de silicium, 0 à 0,5 % de cuivre, 0 à 0,5 % de chrome,
0 à 2 % de cobalt, 0 à 0,005 de bore, 0 à 1 % de tungstène, 0 à 1 % de vanadium, 0
à 0,05 % du total du magnésium, calcium et cérium, 0 à 0,01 % total de l'yttrium et
des terres rares, 0 à 0,05 % de soufre, 0 à 0,05 % de phosphore, moins de 0,25 % en
poids de tantale et de 0 à 0,05 % en poids d'azote.
8. L'alliage selon la revendication 4, ayant une dureté d'au moins 30 sur l'échelle Rockwell
C.
9. Un alliage à haute résistance et à faible coefficient de dilatation thermique, CTE,
de 4,9 x 10-6m/m/°C ou moins à 204°C, constitué, exprimé en pourcentage en poids, de 42,3 à 45
% de nickel, 3 à 3,5 % de niobium, 1 à 1,8 % de titane, 0 à 0,6 % d'aluminium, 0 à
0,05 % de carbone, 0 à 0,5 de manganèse, 0 à 0,5 % de silicium, 0 à 0,5 % de cuivre,
0 à 2 % de cobalt, 0 à 0,005 % de bore, 0 à 1 % de tungstène, 0 à 1 de vanadium, 0
à 0,1 % du total de l'yttrium et de terres rares, 0 à 0,05 % de soufre, 0 à 0,05 %
de phosphore, 0 à 0,05 % d'azote, 3,5 % ou moins du total du niobium plus le tantale,
0 à 0,25 % de tantale et le reste étant du fer et d'éventuelles impuretés.
10. L'alliage selon la revendication 9 ayant une dureté d'au moins 30 sur l'échelle Rockwell
C.
11. Utilisation d'un alliage, telle que définie sur l'une quelconque des revendications
1 à 10 pour la fabrication d'outillage destiné à la fabrication, à faible coefficient
de dilatation thermique CTE, de composites, graphite-epoxy, ou pour la fabrication
de bandes électroniques, de châssis conducteurs durcissables par le vieillissement,
ou bien d'alliages de masques pour des tubes.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description