Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 768 226 A2 (11)

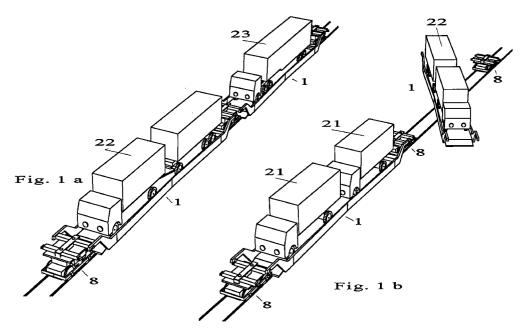
EUROPÄISCHE PATENTANMELDUNG (12)

(43) Veröffentlichungstag: 16.04.1997 Patentblatt 1997/16 (51) Int. Cl.6: **B61D 47/00**

(21) Anmeldenummer: 96115700.5

(22) Anmeldetag: 01.10.1996

(84) Benannte Vertragsstaaten: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE**


(30) Priorität: 04.10.1995 DE 19536921

(71) Anmelder: Gradenwitz, Matthias 70563 Stuttgart (DE)

(72) Erfinder: Gradenwitz, Matthias 70563 Stuttgart (DE)

(54)Cargosystem mit Rotationsbrücken zum Be- und Entladen von grossvolumigen Frachtgut, insbesondere Kraftfahrzeugen auf Eisenbahnzügen

Bei der vorliegenden Erfindung Cargosystem (57) mit Rotationsbrücke handelt es sich um ein Transportsystem mit Be- und Entladevorrichtung, vorzugsweise für LKW, auf der Schiene. Das Wesentliche an diesem System ist eine drehbare Brücke (1) die jeweils zwischen zwei dafür ausgerüsteten Verbindungswaggons (8) aufgehängt ist. Durch ein Absenken und Verdrehen der drehbaren Brücke (1) kann zu jeder Zeit, ohne Rangieraufwand jeder LKW vom Fahrer selbst auf den Zug aufgefahren oder heruntergefahren werden. Dies macht gegenüber dem derzeitigen Stand der Technik eine wesentliche Zeiteinsparung möglich. Dieses Cargosystem mit Rotationsbrücke kann gut europaweit und darüber hinaus eingesetzt werden und so einen wesentlichen Beitrag leisten, den Lastverkehr auf die Schiene zu verlagern, ohne dadurch an Flexibilität einzubüßen.

25

30

35

40

Beschreibung

Bei der vorliegenden Erfindung handelt es sich um ein Transportsystem mit Be-und Entladevorrichtung, vorzugsweise für LKW, auf der Schiene.

Der Stand der Technik wird bestimmt durch:

- 1.) DE 30 03 616 A1, die eine drehbare Brücke vorsieht, diese ist als Tieflader ausgelegt, dabei können die Lkws auf Spezialrampen an den Bahnhöfen entladen werden,
- 2.) DE 41 20 906 A1, die drehbare Gleisabschnitte oder eine Drehplattform auf einem Tieflader vorsieht
- 3.) DE 44 24 745 A1, die ein System vorsieht mit geschwungenen Gleisen mit Rampen wodurch es möglich ist, die Waggons einzeln zu befahren,
- 4.) DE 41 23 339 A1, die ein System vorsieht bestehend aus einem Niederflurwagen mit einer horizontal drehbaren Brücke, die durch eine in dem Gleis angebrachte Drehvorrichtung in Spezialrampen eingeklinkt werden kann,
- 5.) US 36 20 391, die ein System vorsieht mit einseitig schwenkbaren und einseitig ladbaren Containern mit einem mit Rollen versehenen Boden,
- 6.) DE-OS 26 24 818 die, ein System definiert mit drehbarer Plattform auf einem Eisenbahnwaggon,
- 7.) DE-PS 838 315, die ein System definiert zum Drehen von Ladebrücken,
- 8.) DE 4 301 019 A1, die im wesentlichen ein Beund Entladesystem mit großen Paletten auf Rollen vorsieht
- 9.) DE 3 240 329 A1, die ein drehbares Hilfsgestell auf den Eisenbahnwaggons vorsieht.

Weiter ist zu erwähnen, daß heute im kombinierten Verkehr verschiedene Systeme eingesetzt werden:

- 10.) Das Trailersystem; hierbei werden jeweils zwei ganze Sattelanhänger, die speziell dafür ausgerüstet sind, auf einem Drehgestell verankert. Sie bilden so die "Waggons" des Zuges.
- 11.) Der Containertransport; hierbei werden die ISO Container mit Kranvorrichtungen oder große Greiffahrzeuge verladen.
- 12.) Taschenwagen; hierbei werden ganze Sattelanhänger auf den Waggon gehoben, und die Räder verschwinden in einer dafür vorgesehenen Tasche.
- 13.) Kombilifter; hierbei werden Kombilifterladebrücken von den Lkws abgestellt, so daß ein Zug darunter gefahren werden kann und diese anhebt.
- 15.) Die rollende Landstraße; hierbei werden die Fahrzeuge hintereinander auf einen Niederflurwagen gefahren und am Zielbahnhof wieder nacheinander runtergefahren. Bei diesem System muß 55 immer der ganze Zug be- bzw. entladen werden.

All diese Systeme erfordern entweder aufwendige mechanische und rampenmäßige Vorrichtungen an den

Bahnhöfen, oder es ist nicht möglich, die Fahrzeuge einzeln zu be-und entladen.

Α

Es liegt die Aufgabe vor, die Brücke leicht und sicher zu verschwenken, wobei man die Schwenkvorrichtung leicht bauen soll. Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausbildungen enthalten die Unteransprüche. Durch diese Anordnung wird der Lösung verschiedener Probleme Rechnung getragen:

zum einen kann die **drehbare Brücke 1** dadurch, daß sie zwischen den **Verbindungswaggons** 8 liegt, als Tieflader ausgelegt werden, was zum Beladen von LKW von Vorteil ist, um so die Höhe der Oberleitung und die Fahrraumbegrenzung zu berücksichtigen;

zum anderen wird ein Be- und Entladen der Brücken mit wahlfreiem Zugriff ohne Rampen, Mechanik oder andere Vorrichtungen an den Bahnhöfen ermöglicht.

Gegenüber dem System DE 30 03 616 A1 hat dieses Verfahren erhebliche Vorteile, da keine weiteren Vorrichtungen an den Bahnhöfen notwendig sind.

Die einzige Notwendigkeit ist die, daß der Bahnhof eingelassene **Eisenbahnschienen 20** auf einer ebenen, genügend breiten Rangierfläche besitzt.

Das Cargosystem mit Rotationsbrücke hat wesentliche Vorteile:

Es sind keine schweren Stütz und Führungsschienen mehr nötig, da das Gewicht der Brücke bereits zu Beginn des Schwenkvorgangs von dem Boden mittels des Drehfußes aufgenommen wird.

Be- und Entladevorgang können von den LKW-Fahrern der Transportunternehmen selbst übernommen werden. Die Absenkung, Drehung und Anhebung der Brücken kann durch Knopfdruck automatisch betätigt werden, was eine wesentliche Verkürzung der Beund Entladezeiten bedeutet.

Die Fahrer können entweder in ihren Fahrzeugen oder in den Personenkabinen die Fahrt begleiten oder am Verladeort bleiben und andere Fahrer der Firma entladen die Fahrzeuge am Zielbahnhof. In beiden Fällen spart das Transportunternehmen Fahrzeit bzw. Arbeitszeit seiner Fahrer.

Ordnet man diese im Verhältnis zu herkömmlichen Güterbahnhöfen viel weniger flächenintensiven Verladestationen außerhalb der Ballungsgebiete mit guter Autobahnanbindung und nach Möglichkeit in der Nähe vorhandener großer Raststätten an, wird gleichzeitig auch der LKW-Verkehr in den Ballungsräumen wesentlich entlastet. Zeitliche Vorteile und Flexibilität liegen auf der Hand.

Anhand der Figuren wird die Erfindung genauer beispielhaft beschrieben.

3

В

Es ist durch dieses System möglich, einen KFZ-Eisenbahntransport zu betreiben, wobei der bisherige Nachteil wegfällt, daß Züge immer nur ganz beladen oder entladen werden können.. Dadurch erhält man eine moderne Transportmöglichkeit, die dem Spruch "Güter gehören auf die Bahn" wirklich gerecht wird. Die Speditionen können, ohne große Verzögerungen beim Be- und Entladen, aber auch ohne Staus, Begrenzungen durch Fahrzeiten der Fahrer und Wochenendfahrverbot auf eine Transportmöglichkeit wahlweise zugreifen, die durch einen Stundentakt in den Nachtstunden den dann meist brachliegenden Gleiskörper als eine echte konkurrenzfähige Ergänzung zur Autobahn nutzbar macht. Sie können ihren Fahrern kurzfristig Anweisung geben, entweder mit dem ganzen 20 Lastzug von Rotterdam bis Rastatt, Rimini oder Rom den "Zug" zu nehmen oder einfach nur den Sattelschlepperaufleger auf der Rotationsbrücke abzustellen und ein Kollege in Rastatt, Rimini oder Rom holt ihn mit einer anderen Zugmaschine wieder ab. Dieser Vorgang ist mit Haltezeiten von ca. 15 Minuten realisierbar. Das Cargosystem mit Rotationsbrücke könnte so euro-

Das Cargosystem mit Rotationsbrücke könnte so europaweit einen wesentlichen Beitrag dazu leisten, daß wir mit den für unseren gegenwärtigen Lebensstandard notwendigen großen Warenströmen besser zurechtkommen. Eine intensive Nutzung des Schienennetzes für Gütertransport in der Nacht ist durch den dafür verwendeten Nachtstrom jeder anderen Energieform vorzuziehen. Als Anwender kämen sowohl die europäischen Eisenbahngesellschaften als auch andere Transportunternehmen in Frage, die das System betreiben und die Gleise und Lokomotiven wiederum von der Bahn mieten.

Fig. 1a	Isometrische Darstellung des
	Systems in Phase 1
Fig. 1b	Isometrische Darstellung des
	Systems in Phase 3
Fig. 2	Perspektivische Darstellung
	des Systems in Phase 1
Fig. 3	Perspektivische Darstellung
	des Systems in Phase 2
Fig. 4	Perspektivische Darstellung
	des Systems in Phase 3
Fig. 5	Perspektivische Darstellung
	des Systems in Phase 4
Fig. 6	Detaildarstellung des Systems
	in Phase 1
Fig. 7	Detail der festen Verankerung
	17 aus Fig. 5.
Fig. 8	Detaildarstellung des Systems
	in Phase 2
Fig. 9	Detaildarstellung aus Fig. 8
Fig. 10	Detaildarstellung des Systems

		in Phase 3
	Fig. 11	Perspektivische Darstellung
		des Verbindungswaggons 8
		in Phase 2 und 3
	Fig. 12	Darstellung des Systems von
		unten in Phase 1
	Fig. 13	Darstellung des Systems von
		unten in Phase 3
	Fig. 14	Detaildarstellung des Drehfu-
)		Bes 3 von unten in Phase 1.
	Fig. 15	Detaildarstellung des Drehfu -
		ßes 3 von unten in Phase 3.
	Fig. 16 bis Fig. 22	geben den Ablauf der Bewe-
		gungen des Systems wieder,
5		zwischen Phase 2 und 3 im
		Zusammenhang mit dem Ein-
		satz einer Schwenkvorrich-
		tung 24
	Fig. 22	Detaildarstellung aus Fig. 21.

Fig. 1a und 1b stellen in der Übersicht das ganze System in verschiedenen Phasen dar. Fig. 1a zeigt das System in der angehobenen Stellung während der Fahrt beladen mit einem Eurolastzug 22 und einem Sattelschlepper 23. Fig. 1b zeigt das System am Verladebahnhof 19 mit abgesenkter Hubvorrichtung 12. Eine Brücke 1 ist beladen mit zwei Lkws 21, die andere Brücke 1 ist gedreht damit der Eurolastzug 22 runterfahren kann.

Das Fahrgestell 8 besteht aus einem Drehgestell 9 mit einem Aufbau bestehend aus einer Hubvorrichtung 12 und einer horizontalen Platte 13 mit einen Rahmen für das Joch 16, worin zwei Drehbolzen für das Joch 15 angebracht sind, um das sich jeweils ein drehbares Joch 14 drehen kann, dessen Enden so geformt sind, daß sie mit den Enden der Träger 2 eine feste Verankerung 17 bilden eventuell mit Zusatzverriegelung 18. Die ist am deutlichsten in Fig. 11 dargestellt.

Weiter ist auf diese Fig. 11 sichtbar, daß das genannte Drehgestell 9 wie die üblichen Laufwerke (z. B. Görlitzer Bauart mit vier Rädern 11) einen Außenrahmen 10 hat, der so ausgeführt ist, daß die Hubvorrichtung 12 und die horizontale Platte 13 außerhalb der Spurbreite auf dem Außenrahmen 10 aufliegen und gelagert sind.

Fig. 2 bis Fig. 5 stellt das System in den vier Phasen dar. In Fig. 5 sieht man im rechten Teil deutlich, daß die drehbare Brücke 1 aufgebaut ist wie eine "Käsetrage" am Käsemarkt in Alkmaar, bestehend aus zwei ca. 24 m langen Trägern 2 mit in der Mitte einer Höhe von ca. 0,6 bis 0,8 m, vorzugsweise aus einem rechtektigen Stahl-Hohlprofil oder Stahlfachwerk mit einer äußeren Breite von 0,1 bis 0,3 m. Und die letzten ca. 2,5 m des Trägers 2 nach oben geschwungen sind mit am Ende einer Aussparung, sodaß sie mit den Enden des drehbaren Jochs 14 eine feste Verankerung 17 bilden, wie in Fig. 7 und Fig. 9 sichtbar. Diese Träger 2 sind durch eine dazwischenliegende Fahrbahn 7 miteinander verbunden. An der Fahrbahn 7 ist auf beiden

35

20

25

Seiten eine **Auffahrrampe 6** vorgesehen, was in <u>Fig. 10</u> am deutlichsten dargestellt ist.

In <u>Fig. 12</u> und <u>Fig. 13</u> ist das System in Phase 1 und Phase 3 von unten dargestellt, dabei ist die Anordnung vom **Drehfuß 3** und den **Langrollen 5** am besten sichtbar

<u>Fig. 14</u> und <u>Fig. 15</u> stellt im Detail die Anordnung vom **Drehfuß 3** in den verschiedenen Stellungen zu den **Eisenbahnschienen 20** dar.

Fig. 21 und Fig. 22 zeigt, daß auf dem Verbindungswaggon 8 eine Schwenkvorrichtung 24 angebracht ist, die so konstruiert ist,

daß ein **Stahlseil oder eine Kette 26** unten an einem **Träger 2** befestigt ist,

daß das Stahlseil oder die Kette 26 über Rollen oder Zahnräder 27 auf zwei Seiten geführt ist, und dieses Stahlseil oder die Kette 26 im Kreislauf so durch die Schwenkvorrichtung 24 geführt wird und im Ganzen leicht durchhängt. Dieses Stahlseil oder die Kette 26 wird durch einen Motor hin- und herbewegt.

Die Schwenkvorrichtung 24 kann als Ganzes auf einem Schwenkschlitten 25 quer zur Fahrrichtung hinund herbewegt werden. Sie ist auf jeder Seite des Verbindungswaggons 8 angebracht und kann so diagonal jeweils an zwei Trägerenden der drehbaren Brücke 1 ansetzen.

Der Be- und Entladevorgang bei dem Cargosystem mit Rotationsbrücken hat drei Phasen.

Während der Fahrt befindet sich das System in Phase 1, wie in Fig. 1a, Fig. 2, Fig. 7 und Fig. 12 dargestellt. Die drehbare Brücke 1 ist in dieser Phase so eingehängt, daß sie 15-20 cm über den Gleisen liegt. Die drehbare Brücke 1 liegt fest gelagert in den Verankerungen der Joche auf den Drehgestellen.

In (Phase 2 Fig. 3, Fig. 8, und Fig. 16) werden nach dem Halten des Zuges die Hubvorrichtungen auf den Drehgestellen abgelassen. Als einzige Verbindung bleiben die Strom- und Luftdruckleitungen als auch eventuelle Steuerungskabel bestehen. Die drehbare Brücke 1 senkt sich ab, bis die Laufrollen 5 auf den Boden aufsetzen. Sie sind vorzugsweise so zu konstruieren, daß sie in die Fahrbahn 7 bzw. die Träger 2 eingelassen sind, um Höhe zu sparen. Der Drehfuß 3 - s. Anspruch 1. und Fig. 14 und 15 - setzt etwas früher auf und wird entriegelt. Die Federung ist vorgesehen, damit beim Drehen der Brücke die Gummirollen nicht durch Verkanten die Bodenhaftung verlieren. Der Drehfuß 3 muß beim Abheben einrasten, um zu gewährleisten, daß er während der Fahrt seine Parallelstellung zum Zug beibehält, sich also nicht verdreht. Die Hubvorrichtung wird soweit abgesenkt, daß die Träger 2 der drehbaren Brücke 1 darüber schwenken können.

In **Phase 3** (Fig. 4, Fig. 10, Fig. 13, Fig. 15, Fig. 21 und Fig. 22) kommt die Anlage dadurch, daß jetzt die Brücke um etwa 20 ° -30 ° gedreht wird; dies ist vorzugsweise zu bewerkstelligen mit einem **Stahlseil oder einer Kette 26**, die an der Unterseite des **Trägers 2** befestigt und über **Rollen oder Zahnräder 27** von einem Motor angezogen werden.

Die Ausführung der **Auffahrrampe 6** laut Anspruch 19.) soll gewährleisten, daß die Rampe während der Fahrt (Phase 1) und bei der Drehung (Phase 2 zu 3) den Boden nicht berührt, durch die 5-cm-Federung die Rampe aber automatisch am Boden aufliegt, wenn sie befahren wird.

In **Phase 4** kann die Brücke nach Bedarf von beiden Seiten von den verantwortlichen Fahrern be-bzw. entladen werden.

In der Hauptreisesaison können auch dem Stand der Technik entsprechende Sattelschlepper für den Transport von PKW auf die Brücke gefahren werden, um Staus auf den Autobahnen zu verringern.

Selbstverständlich ist ein direktes Beladen der drehbare Brücke 1 mit PKW auch möglich!

Bezugszeichenliste

- 1.) drehbare Brücke
- 2.) Träger
- 3.) Drehfuß
- 4.) Mittelbolzen des Drehfußes
- 5.) Langrollen
- 6.) Auffahrrampe
- 7.) Fahrbahn
- 8.) Fahrgestell
- 9.) Drehgestell
- 10.) Außenrahmen
- 11.) Räder
- 12.) Hubvorrichtung
- 13.) horizontale Platte
- 14.) drehbares Joch
- 15.) Drehbolzen für das Joch
- 16.) Rahmen für das Joch
- 17.) feste Verankerung18.) Zusatzverriegelung
- 19.) Verladebahnhof
- 20.) Eisenbahnschienen
- 21.) LKW
- 22.) Europalastzug
 - 23.) Sattelschlepper
 - 24.) Schwenkvorrichtung
 - 25.) Schwenkschlitten
 - 26.) Stahlseil oder eine Kette
 - 27.) Rollen oder Zahnräder

Patentansprüche

 Vorrichtung zum Be- und Entladen großvolumigen Frachtgutes, insbesondere Fahrzeugen (21, 22, 23), von Eisenbahnzügen, bestehend aus einer zwischen jeweils zwei Fahrgestellen (8) angeordneten befahrbaren und dreh- bzw. schwenkbaren Brücke (1), wobei eine Schwenkvorrichtung (24) zum seitlichen Verschwenken der Enden (Träger 2) der Brücke (1) sowie Mittel zum verankern der Brücke (1) in Längs-und Querrichtung vorgesehen sind und die Brücke (1) an ihren Enden (Träger 2) mit Auffahrrampen (6) und mit Laufrollen (5) ver-

25

40

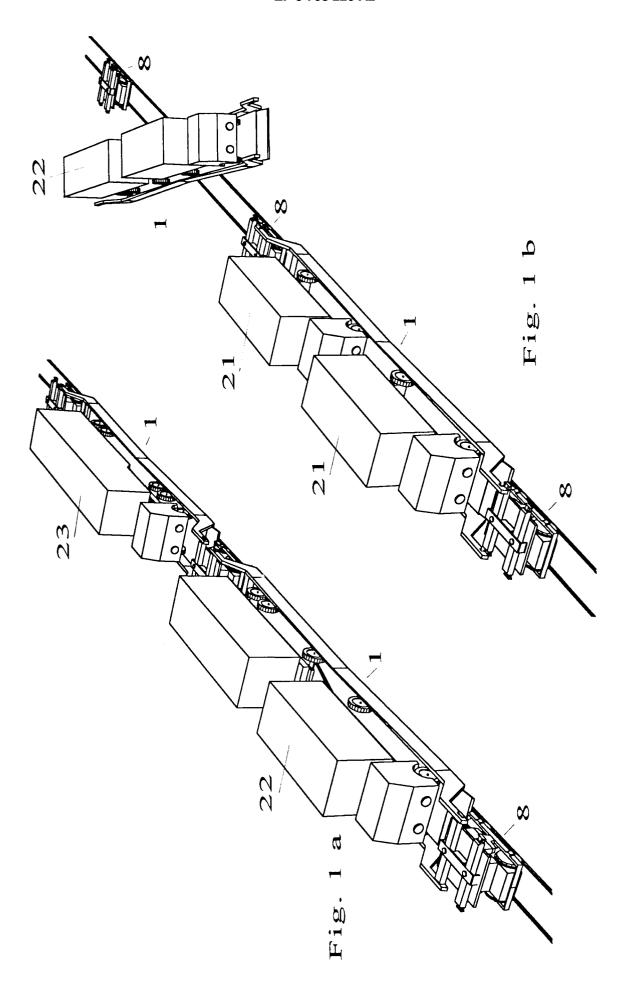
45

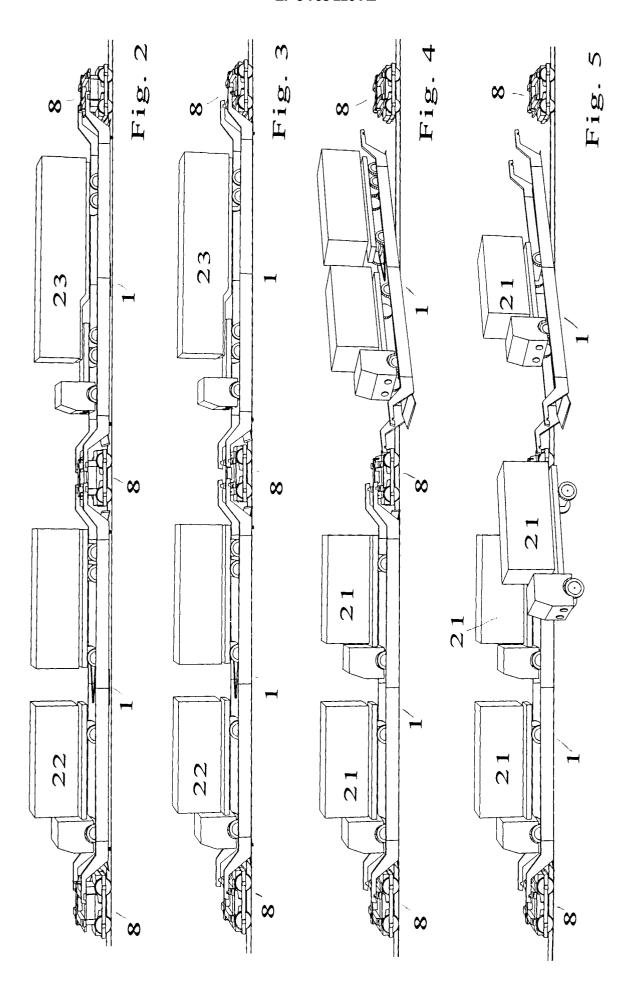
sehen ist, dadurch gekennzeichnet,

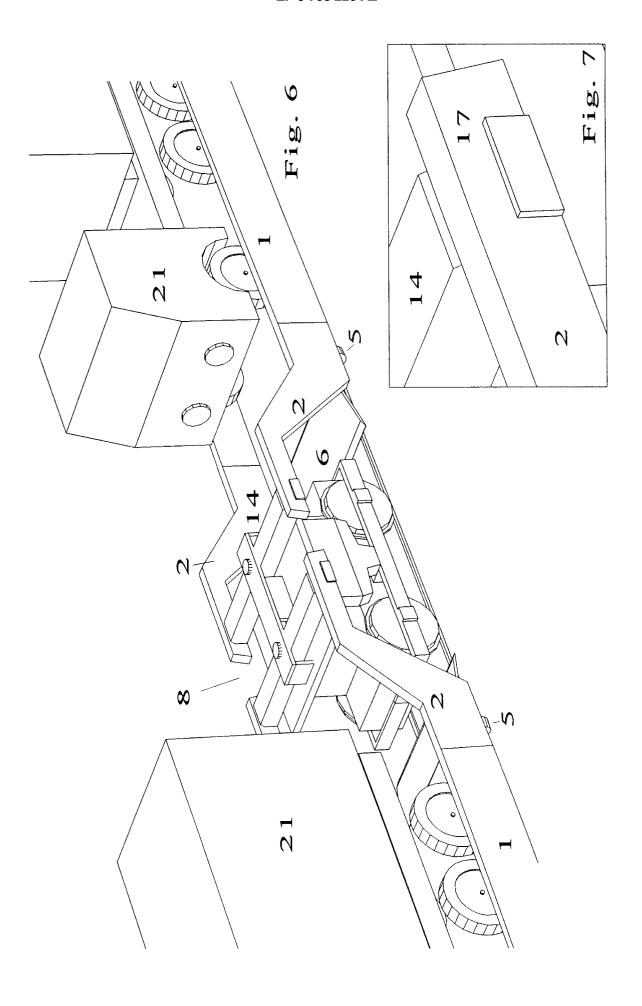
daß auf der Unterseite der Brücke (1) in der Mitte ein Drehfuß (3) angeordnet ist,

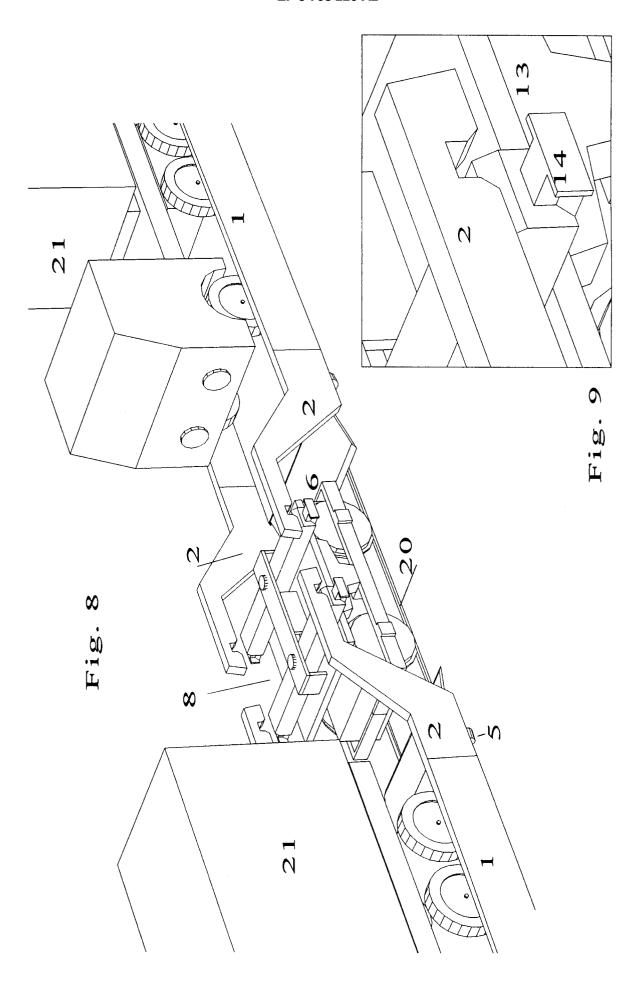
daß die Fahrgestelle (8) mit einer Hubvorrichtung (12) versehen sind,.

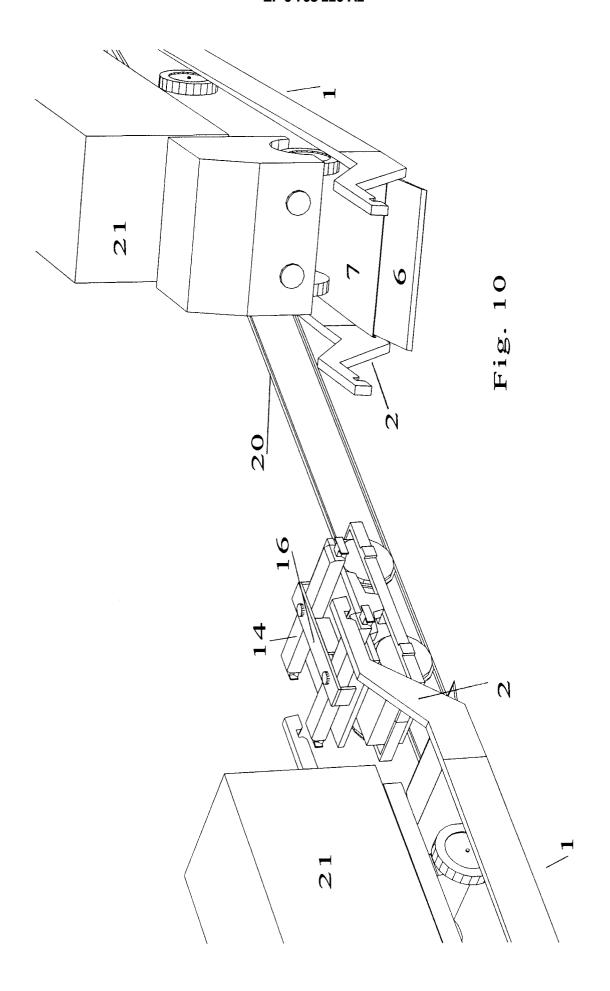
daß sich die Hubvorrichtung (12) während des Transports in ausgefahrener Stellung befindet,

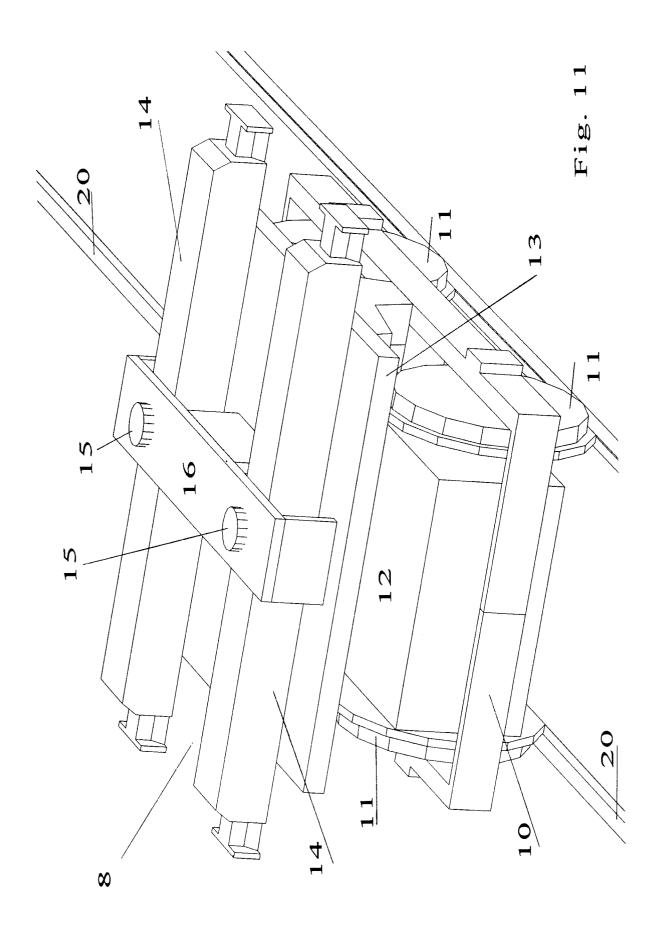

daß zum Be- und Entladen die Hubvorrichtung (12) abgesenkt wird, so daß der Drehfuß (3) und die Langrollen (5) auf dem Boden aufliegen und dann die Brücke (1) mittels der Schwenkvorrichtung (24) geschwenkt wird.

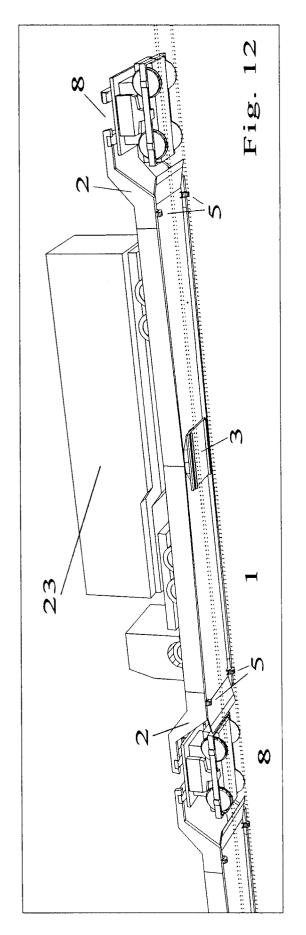

- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Drehfuß (3) während des Transports durch einen Stift parallel zur Fahrtrichtung arretiert ist.
- 3. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Drehfuß (3) im 20 unteren Bereich rechteckig gestaltet ist und an der Unterseite mit seinem Profil an das Gleisprofil angepaßt ist, wobei die auf den Gleisen aufliegende Fläche aus einem Material mit geringer Gleitfähigkeit besteht.
- 4. Vorrichtung nach Anspruch 3. dadurch gekennzeichnet, daß die auf den Gleisen aufliegende Fläche des Drehfußes (3) aus Gummi besteht.
- 5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Drehfuß (3) zur Brücke hin mit einer Federung versehen ist, welche ca. 5 cm vor Aufliegen der Langrollen (5) auf dem Boden einsetzt und bis ca. 5 cm 35 danach federn kann.
- 6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Langrollen (5) als Gummirollen ausgebildet sind.
- 7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Hubvorrichtung (12) über Zahnräder und Zahnstangen elektrisch betrieben wird.
- 8. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Hubvorrichtung (12) mit Druckluft betrieben wird.
- 9. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Hubvorrichtung (12) mit Hydraulik betrieben wird.
- 10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Auffahrrampen (6) während des Transports in einer Stellung durch eine Zusatzverriegelung (18) gesichert sind und daß die Auffahrrampen (6) so gestaltet sind, daß

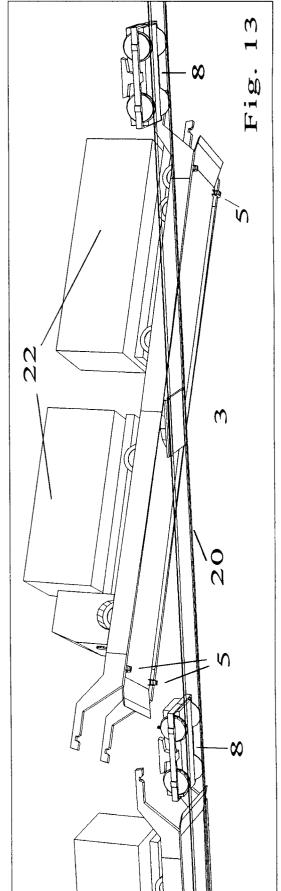

sie nach dem Bodenkontakt der Langrollen (5) und dem Entriegeln der Zusatzverriegelung (18) durch eine Federung ca. 5 cm über dem Boden gehalten werden und, sobald die Auffahrrampen (6) befahren werden, sie auf dem Boden aufliegen.

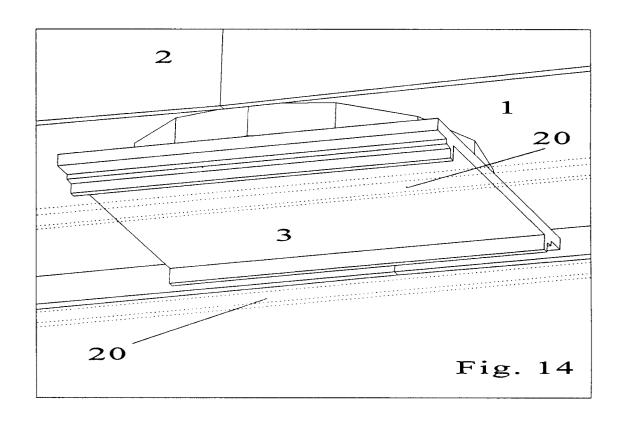

- 11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Fahrbahn (7) zur Mitte hin über dem Drehfuß (3) leicht um 15 bis 30 cm erhöht ist.
- 12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß sich die Brücke (1) in der Breite zur Mitte hin verjüngt, damit in Kurven die Fahrraumbegrenzung nicht überschritten wird.
- 13. Vorrichtung nach einem der Ansprüche 1 bis 12. dadurch gekennzeichnet, daß zum Schwenken der Brücke (1) mindestens ein vorzugsweise vier Elektromotoren vorgesehen sind, die die Langrollen antreiben.
- 14. Vorrichtung nach einem der Ansprüche 1 bis 12 dadurch gekennzeichnet, daß die Schwenkvorrichtung (24) auf den Fahrgestellen (8) angeordnet ist.

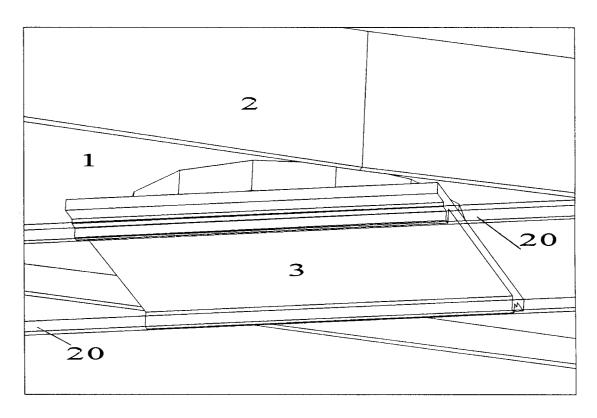
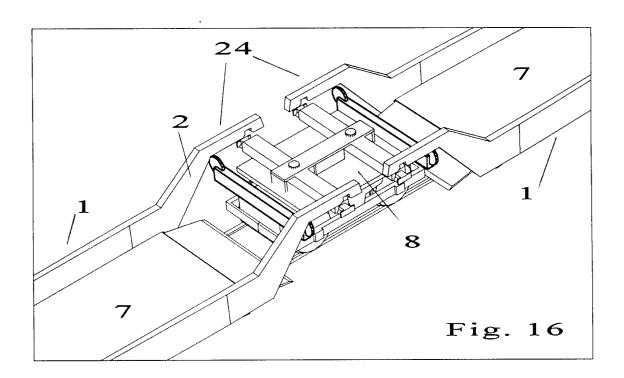
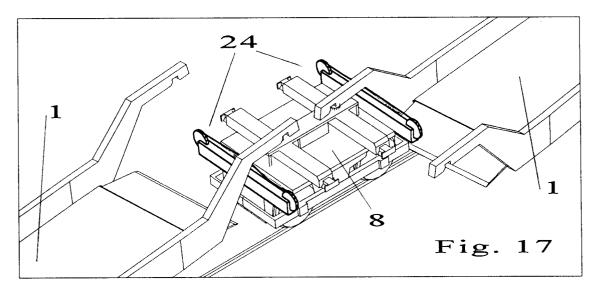
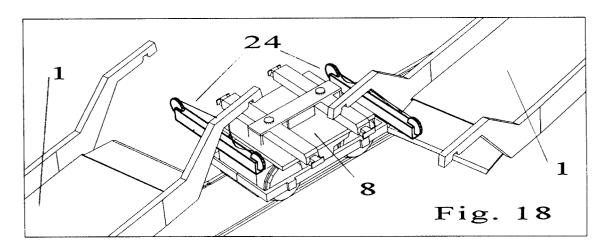
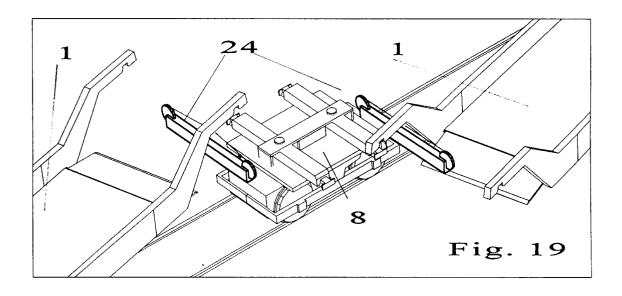

5

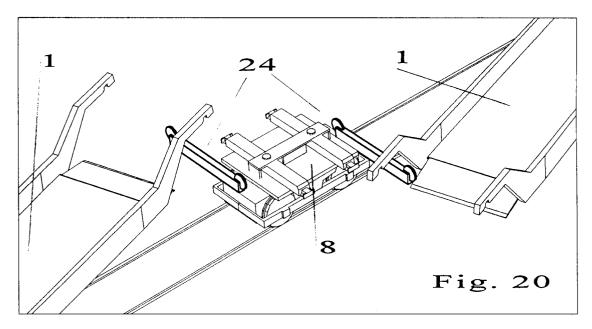









Fig. 15

