[0001] The present invention relates to an electrical power control circuit and more particularly
to an electrical power control circuit for electrical lighting systems, for example
fluorescent lighting systems in large commercial buildings.
[0002] A known power control system for providing a reduced voltage to fluorescent lamps
in an electrical lighting arrangement is summarized in the pre-characterising portion
of claim 7 and is disclosed in WO-A-88/03353. In this document, a transformer provides
a reduced voltage which can be supplemented by a further transformer up to a normal
mains voltage for the purpose of enabling the fluorescent lamps to strike. The further
transformer is then disabled so that the reduced voltage is again applied for running
the lighting system thereby reducing power consumption. Of course any voltage reduction
should not result is a perceptibly dimmer light output.
[0003] Another known power control system for providing a reduced voltage to fluorescent
lamps in an electrical lighting system involves the use of a plurality of switchable
transformers which at start up are switched out so that a normal mains voltage is
applied directly to the lighting. Then, they are switched in to provide the reduced
lighting. However, there will be a power surge generated when disconnecting the transformer
if it is operating. For example, a 10 KVA transformer for a bank of up to 200 lamps,
could generate a surge of 400 amps when switched in this way Amongst other things,
the switching contacts would rapidly degrade leading to un-reliability. Thus, these
type of systems have not been used due to their failure rate.
[0004] Another such power control system is disclosed in and known from US-A-4 189 664.
This document provides an auto transformer connected to a source of power. A plurality
of taps are provided on the transformer and are connected to a switch unit. The switch
unit selectively supplies the voltage from one of the taps to output lines according
to control signals issued by a controller according to threshold detection, timing
controls or external controls.
[0005] It is an object of the present invention to provide an electrical power supply circuit
which overcomes the above problems with switching transformers.
[0006] According to one aspect of the present invention there is provided a method of controlling
an electrical power system for providing one of a plurality of selected voltages to
a load, the method comprising the steps of:-
(a) electrically connecting one end of a winding to the positive terminal of a source
of electrical power, the winding being tapped at a predetermined position for supplying
an output terminal with a selected voltage;
(b) enabling a terminal connection means to electrically connect the other end of
said winding to a neutral terminal of said source of electrical power in response
to supply of power being required;
(c) excluding a predetermined number of turns of said winding in response to a request
for another selected voltage;
(d) monitoring for at least one type of fault condition; and
(e) electrically disconnecting the winding from the neutral terminal and electrically
short-circuiting said other end of the winding to said predetermined position when
a fault condition is monitored.
[0007] In this way, the present invention can provide a number of different output voltages
at the output terminal according to demand. Furthermore, when a fault condition is
monitored, a failsafe condition is provided wherein the effect of the winding is taken
out of circuit in a safe way by disconnecting the winding from the neutral terminal
and preventing turns of the winding being open circuit. Accordingly, damage to the
winding and circuitry of the system in general is avoided.
[0008] Preferably, step (c) comprises disabling the terminal connection means to electrically
disconnect said other end of said winding from the neutral terminal and enabling a
switching means to electrically connect to the neutral terminal to exclude the predetermined
number of turns of said winding located from said other end of the winding.
[0009] Thus, it is possible to short-circuit just the turns of the winding towards the other
end of the winding which was connected to the neutral terminal. This is effected towards
the neutral terminal end thereby enabling better performance from the connection means
and switching means since smaller currents are encountered.
[0010] Conveniently, step (e) comprises disabling said terminal connection means and said
switching means and enabling a further switching means to electrically short-circuit
said other end of said winding to said predetermined position.
[0011] In this way, the winding can be disconnected from the neutral terminal in a safe
and effective manner whilst preventing turns of the winding from being open circuit.
[0012] In a preferred embodiment, the method further comprises the step of monitoring for
an increased load demand and stopping step (c) in response to a predetermined load
demand.
[0013] As a result, whilst a preferred (reduced) voltage can be supplied during stable conditions,
a relatively higher voltage can be supplied when an extra load demand appears.
[0014] In another embodiment, the method further comprises the step of monitoring the voltage
to said one end of the winding and stopping step (c) in response to the voltage falling
below a predetermined value.
[0015] As a result, whilst a preferred (reduced) voltage can be supplied during stable conditions,
a relatively higher voltage can be supplied to compensate for when the input voltage
drops.
[0016] Conveniently, the method further comprises the step of supplying said request for
another selected voltage after the lapse of a predetermined time interval following
supply of power being required.
[0017] In this way, another voltage can be provided in a simple, convenient and cost effective
manner.
[0018] According to another aspect of the present invention there is provided an electrical
power control system for providing one of a plurality of selected voltages to a load,
the electrical power control system comprising:-
a positive and neutral terminal for connection to a source of electrical power;
an output terminal for supplying a plurality of selected voltages;
a winding having one end electrically connected to the positive terminal and being
tapped at a predetermined position for supplying the output terminal with a selected
voltage;
a terminal connection means capable of being enabled to electrically connect the other
end of the winding to the neutral terminal;
a switching means capable of being enabled to exclude a predetermined number of turns
of said winding in response to a request for another selected voltage;
monitoring means for monitoring at least one type of fault condition; and
further switching means capable of being enabled to electrically short-circuit said
other end of the winding to said predetermined position when a fault condition is
monitored.
[0019] In this way, different output voltages can be provided at the output terminal according
to demand, yet when a fault condition is monitored, a failsafe condition is effected
wherein the effect of the winding is removed in a safe way so that damage to the winding
and circuit of the system is avoided.
[0020] Preferably, said switching means is connected to the neutral terminal to exclude
the predetermined number of turns of said winding from said other end of the winding.
[0021] In one case, in response to monitoring of a fault condition, said monitoring means
disables said terminal connection means and said switching means to electrically disconnect
said other end of the winding from the neutral terminal and enables said further switching
means.
[0022] In a preferred embodiment, said monitoring means further comprises a current demand
sensing means for sensing for transient current changes in the current demand by the
load; wherein said monitoring means disables said switching means in response to transient
changes in current above a predetermined level.
[0023] In another preferred embodiment, said monitoring means further comprises a current
overload monitoring means for monitoring current to the winding; wherein said monitoring
means disables said terminal connection means and said switching means to electrically
disconnect said other end of the winding from the neutral terminal and enables said
further switching means in response to a monitored current above a predetermined maximum
level.
[0024] In still another preferred embodiment, said monitoring means further comprises a
voltage monitoring means for monitoring voltage to said one end of the winding; and
wherein said monitoring means disables said switching means in response to a voltage
below a predetermined minimum.
[0025] Conveniently, said monitoring means further comprises timer means for measuring the
time starting from a supply of said a selected voltage; wherein said monitoring means
enables said switching means when said measured time exceeds a predetermined time
interval.
[0026] In one case, said timer means monitors a further time starting from supply of said
selected voltage; wherein said monitoring means enables said switching means only
when said further time exceeds a further predetermined time interval during which
the voltage to said one end of said winding has not fallen below said predetermined
minimum.
[0027] By having two time intervals arranged in this way, unnecessary changes in the system
are not made until stable conditions have been attained.
[0028] It is preferred that the timer means is reset whenever the switching means is disabled
or said further switching means is enabled.
[0029] Conveniently, the terminal connection means, the switching means and the further
switching means comprise relay contacts.
[0030] It is preferred that the system further comprises a zero crossing detector so that
movement of the relay contacts can take place at zero crossing points.
[0031] Examples of the present invention will now be described with reference to the accompanying
drawing, in which:-
Figure 1 illustrates a first electrical power control system embodying the present
invention at start up;
Figure 2 illustrates the system of figure 1 after start up;
Figure 3 illustrates the system of figure 1 after switching to output a reduced voltage;
Figure 4 illustrates a sub-circuit involved in controlling operation of the system
shown in figure 1;
Figure 5 illustrates a second electrical power control system embodying the present
invention at start up.
[0032] Referring to figure 1, a positive rail 1 has a positive terminal L for connection
to a source of electrical power (not shown) and a neutral rail 2 has a neutral terminal
N for connection to the source of electrical power. A transformer winding 3 has a
positive end 13 connected to the positive rail 1 and a neutral end 14 connected both
to a terminal connection 4 and a terminal 15. The terminal connection 4 can be electrically
connected to a terminal 5, which is connected to the rail 2, by means of a relay contact
200A and the terminal 15 can be electrically connected to a terminal 7 by means of
a relay contact 300A. At a point 16 within the transformer winding, a terminal 17
is connected. The terminal 17 can be electrically connected to the terminal 5 by means
of a relay contact 100A. The relay contacts 100A, 200A, and 300A are all normally
open contacts. This is shown in figure 1. Only when their respective coils 100, 200
and 300 (described hereinafter) are energised, are the electrical connections made.
[0033] The transformer winding 3 is tapped at a predetermined point 18 which is connected
to an output terminal T. In the present embodiment, the transformer winding 3 has
126 turns between point 16 and the neutral end 14, 126 turns between the point 16
and tapping point 18, and 14 turns between the tapping point 18 and the positive end
13. It will be apparent therefore that by suitable operation of the relay contacts
100A and 200A, either the connection of the neutral end 14 to the neutral rail 2 via
terminal 5 or the connection of the point 16 to the neutral rail 2 via terminal 17
and 5 can take place so that one of two selected reduced voltages can appear at terminal
T.
[0034] The relay contact 300A is operated to short circuit the turns of the winding between
point 18 and the neutral end 14 so that these are not able to be open circuit which
would be detrimental to the condition of the transformer winding 3.
[0035] A sub-circuit of a monitoring means control circuit is connected between the rails
1 and 2. This sub-circuit comprises a fuse 10 having one end connected to the rail
1 and the other end connected to a terminal point of a normally open relay contact
600A. The relay contact 600A can make an electrical connection to a terminal point
which is connected to one side of a heat sensor 12. The other side of the heat sensor
12 is connected both to a coil 800 and to a terminal point of a normally closed relay
contact 300B. The relay contact 300B can make an electrical connection to a terminal
point which is connected to a terminal point of a relay 500A contained with a box
generally identified by reference numeral 51. The relay contact 500A can make an electrical
connection either to a terminal point connected to the coil 100, which is connected
to the rail 2, or to both a lamp Am (Amber), which is connected to the rail 2, and
a terminal point connected to the coil 200, which is connected to the rail 2. A red
lamp Rd is also connected from a point between fuse 10 and relay contact 600A, and
the rail 2.
[0036] Another sub-circuit of the monitoring means control circuit is also connected between
the rails 1 and 2. This sub-circuit comprises a fuse 20 having one end connected to
the rail 1 and the other end connected to a terminal point of a normally closed relay
contact 100B. The relay contact 100B can make an electrical connection to a terminal
point which is connected to a terminal point of another relay contact 200B. The relay
contact 200B can make electrical contact with a terminal point which is connected
to a fault condition unit.
[0037] The fault condition unit comprises a DC power supply which provides a 12 volt supply
to one terminal of a normally open relay contact 800B. The relay contact 800B can
make an electrical connection to a coil 900 which is connected to the rail 2. Another
12 volt supply is connected to one terminal of a normally open relay contact 700A.
The relay contact 700A can make electrical connection to the coil 300 which is connected
to the rail 2. A further 12 volt supply is connected to a terminal of a normally closed
relay contact 800A and a terminal of a normally open relay contact 900A. The relay
contacts 800A and 900A can make electrical connection to one terminal of a manual
reset switch 20. The other terminal of the manual reset switch 20 is connected to
a coil 700 which is connected to the rail 2.
[0038] A current sensor 21 in the form of a toroid is wound around the rail 1. The output
of the sensor 21 is connected to a first sub-circuit generally identified by reference
number 52 and shown in detail in figure 4. As can be seen, the output of sensor 21
is connected to a conversion network 24. The network converts the current signal from
sensor 21 and provides an output comprising a voltage which is proportional to the
current flowing along the rail 1. The voltage output from the network 24 is connected
to a step sensor 22 and a level sensor 23.
[0039] The step sensor 22 detects the rise in level of the input value from the network
24 against the preceding input value. In this way, it is possible to detect when the
load connected to terminal T varies so that an increased voltage may be required,
for example in the case of fluorescent lighting, the variation in load implies switching
on of lighting.
[0040] To avoid incorrect sensing due to transients on the line due to switching of inductive
components, a null circuit can be included which effectively stops the sensing for
a brief period of time during switching of, say, relay contact 500A.
[0041] Each time the step sensor 22 detects an increase in current, a signal is sent to
short timer 25 which is reset and started. The output of short timer 25 is sent to
gate logic 26 for controlling a switch 27 to enable or disable the coil 500.
[0042] The level sensor 23 detects an initial current level and outputs a signal to a gate
28 for controlling a switch 29 to enable or disable the coil 600. In the event that
the current level exceeds a predetermined maximum, the level sensor 23 outputs a signal
to the gate logic 26.
[0043] A voltage sensor 30 detects the voltage on the positive rail 1 via a wipe located
on the relay contact 600A. When the voltage drops below a certain level, a signal
is sent to gate logic 26 and also to a long timer 31 which is reset and started.The
output of the long timer is sent to the gate logic 26.
[0044] The electrical power control system described with reference to figure 1 operates
as follows. Figure 1 illustrates the initial position when power is first supplied
to terminals L and N. In the initial 4 to 8 ms, an initial current flow occurs along
rail 1 and through some turns of the winding 3 of the transformer to the output terminal
T since the relay contacts 100A, 200A and 300A are in their normally open position,
but those turns do not offer any significant impedance for such a short amount of
time. In addition lamp Rd is lit via fuse 10 showing not only the presence of a supply
voltage, but that fuse 10 has not blown. The current sensor 21 senses this flow of
current. As a result, the level sensor 23 outputs a signal to gate 28 along line 40.
The logic of gate 28 provides a signal to switch 29 so that coil 600 is supplied with
current so as to energise the coil and hence close relay contact 600A.
[0045] As a result, a circuit is formed through fuse 10 and the now closed relay contact
600A. Current can therefore flow through the heat sensor 12, which detects a cool
condition of the winding 3 at start up, through the normally closed relay contact
300B, and through relay contact 500A which is electrically connected to coil 200.
Current also flows through the heat sensor to the coil 800. In addition, the lamp
Am is lit.
[0046] Since coil 200 is now carrying current, the relay contact 200A closes to electrically
connect the terminals 4 and 5 together so that the neutral end 14 of the winding 3
of the transformer is connected to the rail 2. Accordingly, current flows through
all the turns of the winding 3. Thus, a voltage appears at terminal T which comprises
252/266 of the voltage at terminal L. The supply of this voltage is indicated by the
lighting of lamp Am.
[0047] Since coil 800 is now carrying current, the relay contact 800B closes and the relay
contact 800A opens. However, current will not flow for long through fuse 20 because
with the energisation of the coil 200, the relay contact 200B opens. It will be appreciated
that coils 700 and 900 are designed to be slow to operate in response to energisation
(say 100 ms) so that the reaction of their respective relays does not take place before
the relay contact 200B opens. Thus, there is no risk that coil 300 may become energised
to close relay contact 300A. The above situation is shown in figure 2.
[0048] As noted above, the current sensor 21 senses the initial flow of current through
rail 1. As a result, the step sensor 22 detects a step in the current and outputs
a signal to short timer 25 and a signal to gate logic 26 along line 41. By means of
the gate logic 26, the presence of a signal on line 41 inhibits switch 27 from energising
coil 500, which remains in its initial position. However, once the step sensor has
detected the initial flow of current for a predetermined time, no further step is
detected and hence the signal on line 41 disappears.
[0049] At the same time as the current sensor 21 senses the initial current, the voltage
sensor 30 senses a voltage above a predetermined minimum level and outputs a signal
to the long timer 31 and to the gate logic 26 along line 42.
[0050] Once the short timer 25 has timed out, a signal is output to the gate logic 26 along
line 43. However, switch 27 does not energise coil 500 until the long timer 31 also
times out and outputs a signal along line 44. In this way, there is no undue energisation
of coil 500 during periods of voltage instability. Nevertheless, once the voltage
has become stable and remains so, the short timer 25 controls energisation of coil
500.
[0051] In summary, the gate logic 26 will not operate to turn on switch 27 if there is a
signal on line 41 indicating a step in current demand or if there is no signal on
line 42 which indicates insufficient voltage or if both the short timer 25 and long
timer 31 have timed out and output signals on their respective lines 43 and 44.
[0052] When the gate logic criteria have been met, then switch on of switch 27 occurs so
that current flows through coil 500. As a result, relay contact 500A is moved to electrically
connect to the relay terminal which is connected to the coil 100. Thus, current no
longer passes through coil 200 which becomes de-energised whilst coil 100 now becomes
energised. As a result, relay contact 100A closes and relay contact 200A opens. Thus,
the turns of the winding 3 between the point 16 and 14 are eliminated. Consequently.
a voltage appears at terminal T which comprises 126/140 of the voltage at terminal
L. It will be appreciated that it is preferred that the relay contact 100A closes
before the relay contact 200A opens. This situation is shown in figure 3.
[0053] In addition to the above relay contact movements, it will be understood that whilst
relay contact 200B now closes and relay contact 100A opens, there remains no current
flow through the circuit incorporating these relay contacts.
[0054] The circuit of this embodiment incorporates fault monitoring so as to provide a number
of safety features.
[0055] In particular, the present embodiment can provide a failsafe condition in the event
of failure of the relay contact operating coils, general overloading of the system,
a fault external to the system creating an overload condition, a fault in the winding
causing a thermal build up and operating the heat sensor 12, a fault causing the fuse
10 to blow, a disconnection in the sub circuit wiring causing the relay contacts 100A
or 200A to release, and any failure which causes the winding to go open circuit.
[0056] The appearance of the failsafe condition is described below with reference to a number
of examples. As long as current is flowing through rail 1 below a predetermined level,
coil 600 remains energised and the relay contact 600A is closed. However, when the
level sensor 23 detects a current above a maximum permissible current, a signal is
output to gate 28 along line 45 and the logic of gate 28 makes switch 29 turn off
so that coil 600 is no longer energised. As a result, relay contact 600A opens which
de-energises coils 100, 200 and 800. As a consequence, the relay contacts 100A and
200A open and the relay contacts 100B, 200B and 800A close.
[0057] The latter three relay contacts closing provides for a flow of current which energises
coil 700 via manual reset switch 20. Thus, after about 100 ms, the coil 700 causes
the relay contact 700A to close which provides a flow of current through coil 300.
As a result, the relay contact 300A closes to connect terminals 15 and 7 thereby putting
a short circuit across the primary turns of the winding 3 between points 18 and 14.
Consequently, the magnetic field is collapsed so that the winding 3 ceases to operate
as a transformer and offers substantially no impedance between points 13 and 18.
[0058] Since the full input voltage now appears at terminal T, closing relay contact 300A
has the effect that the electrical power supply system of the present invention is
bypassed. In addition, damage to the winding 3 that could otherwise occur from being
open circuit is avoided so that a failsafe condition can be provided. In this respect,
the situation of leaving such an open circuit should be considered. If an open circuit
occurs for any length of time, there will be a voltage drop between points 13 and
16, in the present case 24 volts, so that the electrical power supply system of the
present invention is not bypassed and hence a true failsafe condition is not provided.
Furthermore, there will be a reversing energisation of the winding which will lead
to an unpleasant and disturbing vibration in the form of a hum or buzz. In addition,
the winding will eventually reach a saturation voltage across the open circuit part
of the winding. This saturation voltage can reach quite high values, in the present
case of the order of 760 volts, which is not only potentially very dangerous to anyone
who should accidentally touch the system but can also produce sparking due to breakdown
of the insulation thereby producing a winding insulation failure.
[0059] It should be noted that the energisation of coil 300 opens relay contact 300B so
that electrical operation of coils 100 and 200 and their respective relay contacts
is inhibited. If the current flowing along rail 1 drops again, the signal along line
45 disappears and gate 28 turns switch 29 back on so that coil 600 is again energised.
This leads to a closing of relay contact 600A with the effect that relay contact 300A
opens and either relay contact 100A or 200A closes depending upon the output from
logic gate 26. Preferably, the sub-circuit shown in figure 4 is arranged such that
the relay contact 200A closes when current flows again along rail 1. This can be achieved
by making sure that long timer 31 is reset, say by interrupting the voltage sensing
of voltage sensor 30. In this respect, it will be noted that regardless of the current
flow, if the voltage on rail 1 drops below the predetermined level, long timer 31
is reset so that relay contact 500A automatically returns to the position connected
to coil 200.
[0060] When the electrical power supply system of the present invention is in use, if the
heat sensor 12 breaks due to overheating, current no longer flows to coils 100, 200
and 800 with the result that relay contacts 100A, 200A and 800 open. Thus, relay contact
300A is closed with the same effects as above.
[0061] When the heat sensor 12 again detects an appropriate temperature and closes, current
can again flows to coil 800. As a result, relay contact 800A opens breaking the current
path to coil 700. This results in its relay contact 700A opening so that current no
longer flows to coil 300. The effect of this is for its relay contact 300B to close
to again provide current to energise coil 100 or 200. It will be appreciated that
although relay contact 800B is closed, coil 900 is slow to operate so that relay contact
900A does not operate in time to provide an alternative current path to coil 700.
Thus, the system is restarted.
[0062] Another fault monitoring concerns the situation if either relay contacts 100A or
200A should open due to mechanical or electrical failure. Although contact 800B is
closed due to current flowing through coil 800, coil 900 is not provided with current
because either relay contact 100A or 200B is open. However, with the mechanical or
electrical failure, that open relay contact will close so that current is now supplied
to coil 900. After about 100 ms, relay contact 900A will close so that current is
supplied to coil 700 via manual switch 20 which eventually causes relay contact 300A
to operate as above. It should be noted that this locks the system so that physical
inspection of the system is required. However, power will still be supplied to the
load connected to terminal T.
[0063] In a similar manner, should relay contact 800A or coil 800 fail, a similar failsafe
condition can still be attained.
[0064] It will be appreciated that operation of relay contact 300A whilst relay contacts
100A or 200A are actuated is prevented not only electrically, but also mechanically
by interlocking the contacts so that relay contact 300A is positioned between the
relay contact 100A and 200A so that operation of either of them inhibits operation
of relay contact 300A and operation of relay contact 300A inhibits relay contact 100A
and 200A.
[0065] It will also be appreciated that once the failsafe condition has been attained, the
system can be returned to normal running by actuation of the reset switch 20 which
breaks the current supply to coil 700 which will then break the supply of current
to coil 300 so that relay contact 300A opens and either relay contact 100A or 200A
closes.
[0066] Figure 5 illustrates a second embodiment of the present invention wherein common
components with the first embodiment bear common reference numerals.
[0067] Referring to figure 5 it can be seen that the sub-circuit containing fuse 20 has
been modified. In particular, the fault condition unit has been changed. The relay
contact 200B is now connected to one terminal of a normally open relay contact 1000A
and to a coil 1000 which is connected to the rail 2. The relay contact 1000A can make
electrical connection to one terminal of the relay contact 800B, to one terminal of
the normally open relay contact 700A, to one terminal of the normally closed relay
contact 800A, and to one terminal of the normally open relay contact 900A. The remaining
connections are common to figure 1.
[0068] In addition to the above, a green lamp Gr is connected across the coil 100 and a
blue lamp is connected across the coil 300. Thus, when lamp Rd is lit, a user knows
that the system is connected into circuit and that a voltage exists on rails 1 and
2 and that fuse 10 has not blown, when lamp Am is lit that a voltage resulting from
relay contact 200A is being provided at the output terminal T, when lamp Gr is lit
that a voltage resulting from relay contact 100A is being provided at the output terminal
T, and when lamp B1 is lit that a fault condition has occurred.
[0069] It will be apparent that at initial start up of the embodiment in figure 5, current
flows through relay contacts 100B and 200B through to coil 1000. However, coil 1000
is slow to operate so that relay contacts 100B or 200B open before relay contact 1000A
can close. Thus, the various functions of the fault condition unit do not have current
supplied to them.
[0070] In the circumstances of a fault condition, the effect is to close both the relay
contacts 100B or 200B so that current is supplied to coil 1000. After the built in
time delay, relay contact 1000A closes to supply current to the fault condition unit
so that it can operate as described above.
[0071] It will be understood that the embodiment illustrated shows an application of the
invention in one form only for the purposes of illustration. In practice, the invention
may be applied to different configurations, the detailed embodiments being straightforward
for those skilled in the art to apply.
[0072] For example, whilst the embodiments described are connected to operate so that relay
contact 200A disconnects as relay contact 100A connects, relay contact 200A can be
left connected whilst relay contact 100A connects.
[0073] In addition, whilst two relay contacts 100A and 200A are provided to enable the supply
of two selected voltages at terminal T, further relay contacts can be provided to
enable the supply of more than two selected voltages.
[0074] Whilst the embodiments are described for use with a mains supply of 240 volts at
50 cycles, other mains voltages and frequencies can be used, for example, 110 volts
or 277 volts at 60 cycles.
[0075] The embodiments described are fully automated with automatic reset and constant sensing
for faults. However, whilst the present embodiment describes the switching from the
relay contact 100A to the relay contact 200A in the circumstances of when power demand
occurs when switching a load connected to terminal T, when a low incoming voltage
occurs, when any failure in the sub circuit of figure 4 occurs or when any circuit
fault creating current fluctuation in excess of a predetermined level, costs can be
saved by incorporating fewer responses to these circumstances. For example, in simpler
forms of the invention, some of these aspects can be omitted to save costs, say the
short and long timer can be replaced by a simple time delay relay to switch relay
contact 500A. Similarly, the voltage sensor and step sensors shown in figure 4 can
be omitted.
[0076] In addition, the relay contact 500A in box 51 is shown as a relay contact which can
be operated by a coil. It will be appreciated that control of the operation of the
relay contact within box 51 can take many forms. For example, it can be dependent
on a complex of timers, for example as shown in figure 4, or it can be dependent on
a time delay relay. The latter is particularly appropriate for the control of loads
having just one or two units, such as street lighting.
[0077] Although mechanically operated relay contacts could be employed, it will be apparent
that electronically operated switches could be used as an alternative. However, it
should be noted that by having the relay contacts 100A and 200A located at the neutral
end of the winding 3, much smaller switching currents are encountered than with prior
art arrangements. Indeed, by use of the present invention, it has been possible to
dramatically reduce the power rating of the relay contacts required. For example,
a 20 KVA system can be handled with the relay contact rating of a 2 KVA system without
the deterioration normally associated with switching large inductive loads. Thus,
extremely high reliability is assured.
[0078] Whilst the current sensor 21 is located on the rail 1, it will be appreciated that
the current sensor could be located on the rail connected to terminal T.
[0079] Thus, the present embodiment provides a system which can output a voltage which can
be switched between a level approximating to mains voltage (or a chosen voltage) and
a fully reduced level at switch on of the load, and to a reduced voltage value which
does not produce a noticeable drop in effect on the load, say illumination of lighting,
but which provides a substantial improvement in economy whilst all the time providing
a secure and reliable failsafe condition in the event of a fault thereby enhancing
the safety of the system and ensuring that the system complies with various legal
requirements.
[0080] It will be apparent that although the present invention has been described in connection
with an fluorescent lighting, it will be apparent that the present invention can be
applied to other lighting systems and other loads in general.
1. A method of controlling an electrical power system for providing one of a plurality
of selected voltages to a load, the method comprising the steps of:-
(a) electrically connecting one end of a winding (3) to the positive terminal (L)
of a source of electrical power, the winding being tapped at a predetermined position
(18) for supplying an output terminal (T) with a selected voltage;
(b) enabling a terminal connection means (200A) to electrically connect the other
end (14) of said winding to a neutral terminal (N) of said source of electrical power
in response to supply of power being required;
(c) excluding a predetermined number of turns of said winding in response to a request
for another selected voltage;
(d) monitoring for at least one type of fault condition; and
(e) electrically disconnecting the winding from the neutral terminal and electrically
short-circuiting said other end of the winding to said predetermined position when
a fault condition is monitored.
2. A method according to claim 1 wherein step (c) comprises disabling the terminal connection
means to electrically disconnect said other end of said winding from the neutral terminal
and enabling a switching means (100A) to electrically connect to the neutral terminal
to exclude a predetermined number of turns of said winding from said other end of
the winding.
3. A method according to claim 2 wherein step (e) comprises disabling said terminal connection
means and said switching means and enabling a further switching means (300A) to electrically
short-circuit said other end of said winding to said predetermined position.
4. A method according to any preceding claim further comprising the step of monitoring
for an increased load demand and stopping step (c) in response to a predetermined
load demand.
5. A method according to any preceding claim further comprising the step of monitoring
the voltage to said one end of the winding and stopping step (c) in response to the
voltage falling below a predetermined value.
6. A method according to any preceding claim further comprising the step of supplying
said request for another selected voltage after the lapse of a predetermined time
interval following supply of power being required.
7. An electrical power control system for providing one of a plurality of selected voltages
to a load, the electrical power control system comprising:-
a positive and neutral terminal (L,N) for connection to a source of electrical power;
an output terminal (T) for supplying a plurality of selected voltages;
a winding (3) having one end (13) electrically connected to the positive terminal
and being tapped at a predetermined position (18) for supplying the output terminal
(T) with a selected voltage characterized by;
a terminal connection means (200A) capable of being enabled to electrically connect
the other end (14) of the winding to the neutral terminal;
a switching means (100A) capable of being enabled to exclude a predetermined number
of turns of said winding in response to a request for another selected voltage;
monitoring means for monitoring at least one type of fault condition; and
further switching means (300A) capable of being enabled to electrically short-circuit
said other end of the winding to said predetermined position when a fault condition
is monitored.
8. A system according to claim 7 wherein said switching means (100A) is connected to
the neutral terminal (N) to exclude the predetermined number of turns of said winding
from said other end of the winding.
9. A system according to claim 8 wherein in response to monitoring of a fault condition,
said monitoring means disables said terminal connection means (200A) and said switching
means (100A) to electrically disconnect said other end of the winding from the neutral
terminal and enables said further switching means (300A).
10. A system according to any one of claims 7 to 9 wherein said monitoring means further
comprises a current demand sensing means (21) for sensing for transient current changes
in the current demand by the load; wherein said monitoring means disables said switching
means in response to transient changes in current above a predetermined level.
11. A system according to any one of claims 7 to 10 wherein said monitoring means further
comprises a current overload monitoring means for monitoring current to the winding;
wherein said monitoring means disables said terminal connection means and said switching
means to electrically disconnect said other end of the winding from the neutral terminal
and enables said further switching means in response to a monitored current above
a predetermined maximum level.
12. A system according to any one of claims 7 to 11 wherein said monitoring means further
comprises a voltage monitoring means (30) for monitoring voltage to said one end of
the winding; and wherein said monitoring means disables said switching means in response
to a voltage below a predetermined minimum.
13. A system according to any one of claims 7 to 12 wherein said monitoring means further
comprises timer means (25,31) for measuring the time starting from a supply of said
a selected voltage; wherein said monitoring means enables said switching means when
said measured time exceeds a predetermined time interval.
14. A system according in claim 12 and 13 wherein said timer means monitors a further
time starting from supply of said selected voltage; wherein said monitoring means
enables said switching means only when said further time exceeds a further predetermined
time interval during which the voltage to said one end of said winding has not fallen
below said predetermined minimum.
15. A system according to claim 13 or 14 wherein said timer means is reset whenever the
switching means is disabled or said further switching means is enabled.
16. A system according to any one of claims 7 to 15 wherein the terminal connection means,
the switching means and the further switching means comprise relay contacts.
17. A system according to 16 as dependent on any one of claims 10 to 15 further comprising
a zero crossing detector so that movement of the relay contacts can take place at
optimum points during the cycle.
1. Verfahren zum Steuern eines elektrischen Leistungssystems zur Bereitstellung einer
gewählten Spannung aus einer Mehrzahl von wählbaren Spannungen für einen Verbraucher,
wobei das Verfahren die folgenden Schritte aufweist:
(a) elektrisches Verbinden eines Endes einer Wicklung (3) mit dem positiven Anschluß
(L) einer elektrischen Energiequelle, wobei die Wicklung an einer vorbestimmten Position
(18) zur Versorgung eines Ausgangsanschlusses (T) mit einer gewählten Spannung abgegriffen
wird;
(b) Aktivieren einer Anschlußverbindungseinrichtung (200A) zum elektrischen Verbinden
des anderen Endes (14) der Wicklung mit einem neutralen Anschluß (N) der elektrischen
Energiequelle in Abhängigkeit der erforderlichen Leistungsversorgung;
c) Ausnehmen einer vorbestimmten Anzahl von Windungen der Wicklung in Abhängigkeit
einer Anforderung einer anderen gewählten Spannung;
d) Überwachen wenigstens einer Fehlerzustandsart; und
e) elektrisches Trennen der Wicklung von dem neutralen Anschluß und elektrisches Kurzschließen
des anderen Endes der Wicklung in der vorbestimmten Position, wenn bei der Überwachung
ein Fehlerzustand festgestellt wird.
2. Verfahren nach Anspruch 1, bei dem der Schritt (c) aufweist, daß die Anschlußverbindungseinrichtung
desaktiviert wird, um das andere Ende der Wicklung von dem neutralen Anschluß elektrisch
abzukoppeln und eine Schalteinrichtung (100A) aktiviert wird, um elektrisch den neutralen
Anschluß in Verbindungszustand zu bringen und eine vorbestimmte Anzahl von Windungen
der Wicklung von dem anderen Ende der Wicklung auszunehmen.
3. Verfahren nach Anspruch 2, bei dem der Schritt (e) aufweist, daß die Anschlußverbindungseinrichtung
und die Schalteinrichtung desaktiviert werden und eine weitere Schalteinrichtung (300A)
aktiviert wird, um das andere Ende der Wicklung in der vorbestimmten Position elektrisch
kurzzuschließen.
4. Verfahren nach einem der vorangehenden Ansprüche, welches ferner den Schritt aufweist,
gemäß dem eine größer werdende Verbraucheranforderung und der Anhalteschritt (c) in
Abhängigkeit von einer vorbestimmten Verbraucheranforderung überwacht werden.
5. Verfahren nach einem der vorangehenden Ansprüche, welches ferner aufweist, daß der
Schritt zum Überwachen der Spannung an einem Ende der Wicklung und der Anhalteschritt
(c) in Abhängigkeit davon erfolgt, daß die Spannung unter einen vorbestimmten Wert
abfällt.
6. Verfahren nach einem der vorangehenden Ansprüche, welches ferner den Schritt aufweist,
gemäß dem die geforderte weitere ausgewählte Spannung angelegt wird, nachdem ein vorbestimmtes
Zeitintervall im Anschluß an die erforderliche Energieversorgung verstrichen ist.
7. Elektrisches Leistungssteuersystem zum Bereitstellen einer Mehrzahl von ausgewählten
Spannungen für einen Verbraucher, wobei das elektrische Leistungssteuersystem folgendes
aufweist:
einen positiven und neutralen Anschluß (L, N) zum Verbinden mit einer elektrischen
Energiequelle;
einen Ausgangsanschluß (T) zum Versorgen eines Verbrauchers mit einer Mehrzahl von
wählbaren Spannungen;
eine Wicklung (3), welche ein Ende (13) hat, welches elektrisch mit dem positiven
Anschluß verbunden ist, und die an einer vorbestimmten Position (18) zur Versorgung
des Ausgangsanschlusses (T) mit der gewünschten Spannung abgegriffen wird, gekennzeichnet durch:
eine Anschlußverbindungseinrichtung (200A), welche aktiviert werden kann, um das andere
Ende (14) der Wicklung mit dem neutralen Anschluß elektrisch zu verbinden;
eine Schalteinrichtung (100A), welche eine Aktivierung gestattet, um eine vorbestimmte
Anzahl von Windungen der Wicklung in Abhängigkeit von einer Anforderung einer anderen
gewählten Spannung auszunehmen;
eine Überwachungseinrichtung zum Überwachen wenigstens einer Fehlerzustandsart; und
eine weitere Schalteinrichtung (300A), welche aktiviert werden kann, um das andere
Ende der Wicklung mit der vorbestimmten Position elektrisch kurzzuschließen, wenn
bei der Überwachung ein Fehlerzustand erkannt wird.
8. System nach Anspruch 7, bei dem die Schalteinrichtung (100A) mit dem neutralen Anschluß
(N) verbunden ist, um die vorbestimmte Anzahl von Wicklungen der Windung ausgehend
von dem anderen Ende der Wicklung auszunehmen.
9. System nach Anspruch 8, bei dem in Abhängigkeit von der Überwachung eines Fehlerzustands
die Überwachungseinrichtung die Anschlußverbindungseinrichtung (200A) desaktiviert,
die Schalteinrichtung (100A) das andere Ende der Wicklung von dem neutralen Anschluß
elektrisch abkoppelt und die weitere Schalteinrichtung (300A) aktiviert.
10. System nach einem der Ansprüche 7 bis 9, bei dem die Überwachungseinrichtung ferner
eine Stromanforderungssensoreinrichtung (21) zum Erfassen von Zwischenstromänderungen
bei der Stromanforderung durch den Verbraucher aufweist, und bei dem die Überwachungseinrichtung
die Schalteinrichtung in Abhängigkeit von den Zwischenstromänderungen oberhalb eines
vorbestimmten Pegels desaktiviert.
11. System nach einem der Ansprüche 7 bis 10, bei dem die Überwachungseinrichtung ferner
eine Stromüberlastungs-Überwachungseinrichtung zum Überwachen des an die Wicklung
angelegten Stromes aufweist, wobei die Überwachungseinrichtung die Anschlußverbindungseinrichtung
und die Schalteinrichtung desaktiviert, um das andere Ende der Wicklung von dem neutralen
Anschluß elektrisch abzukoppeln und die weitere Schalteinrichtung in Abhängigkeit
von einem überwachten Strom oberhalb eines vorbestimmten maximalen Wertes zu aktivieren.
12. System nach einem der Ansprüche 7 bis 11, bei dem die Überwachungseinrichtung ferner
eine Spannungsüberwachungseinrichtung (30) zum Überwachen der Spannung an einem Ende
der Wicklung aufweist, und bei dem die Überwachungseinrichtung die Schalteinrichtung
in Abhängigkeit von einer Spannung unterhalb eines vorbestimmten minimalen Wertes
desaktiviert.
13. System nach einem der Ansprüche 7 bis 12, bei dem die Überwachungseinrichtung ferner
eine Zeitgebereinrichtung (25, 31) zum Messen der Zeit ausgehend von einem Anlegen
einer gewünschten Spannung aufweist, und bei dem die Überwachungseinrichtung die Schalteinrichtung
aktiviert, wenn die gemessene Zeit ein vorbestimmtes Zeitintervall überschreitet.
14. System nach Anspruch 12 und 13, bei dem die Zeitgebereinrichtung eine weitere Zeit
ausgehend von einem Anlegen einer ausgewählten Spannung überwacht, und bei dem die
Überwachungseinrichtung die Schalteinrichtung nur dann aktiviert, wenn diese weitere
Zeit ein vorbestimmtes Zeitintervall überschreitet, währenddem die Spannung an dem
einen Ende der Wicklung nicht unter den vorbestimmten minimalen Wert abgefallen ist.
15. System nach Anspruch 13 oder 14, bei dem die Zeitgebereinrichtung jedes mal dann zurückgesetzt
wird, wenn die Schalteinrichtung desaktiviert wird oder wenn die weitere Schalteinrichtung
aktiviert wird.
16. System nach einem der Ansprüche 7 bis 15, bei dem die Anschlußverbindungseinrichtung,
die Schalteinrichtung und die weitere Schalteinrichtung Relaiskontakte aufweisen.
17. System nach Anspruch 1 in Abhängigkeit von einem der Ansprüche 10 bis 15, welches
ferner einen Nulldurchgangsdetektor aufweist, so daß die Bewegung der Relaiskontakte
an den optimalen Punkten während des Zyklus erfolgen kann.
1. Procédé de commande d'un système d'alimentation électrique pour fournir l'une parmi
plusieurs tensions sélectionnées à une charge, le procédé comprenant les étapes consistant
à :
(a) connecter électriquement l'une des extrémités d'un enroulement (3) à la borne
positive (L) d'une source de courant électrique, l'enroulement étant dérivé à une
position prédéterminée (18) pour délivrer une tension sélectionnée à une borne de
sortie (T) ;
(b) mettre en circuit un moyen de raccord terminal (200A) pour connecter électriquement
l'autre extrémité (14) dudit enroulement à une borne neutre (N) de ladite source de
courant électrique en réponse à une demande d'alimentation en courant ;
(c) exclure un nombre prédéterminé de spires dudit enroulement en réponse à une demande
pour une autre tension sélectionnée ;
(d) surveiller pour détecter au moins un type d'état de défaillance ; et
(e) déconnecter électriquement l'enroulement de la borne neutre et court-circuiter
électriquement ladite autre extrémité de l'enroulement à ladite position prédéterminée
lorsqu'un état de défaillance est détecté.
2. Procédé selon la revendication 1, dans lequel l'étape (c) comprend la mise hors circuit
du moyen de raccord terminal pour déconnecter électriquement de la borne neutre ladite
autre extrémité dudit enroulement, et la mise en circuit d'un moyen de commutation
(100A) pour se connecter électriquement à la borne neutre pour exclure de ladite autre
extrémité de l'enroulement un nombre prédéterminé de spires dudit enroulement.
3. Procédé selon la revendication 2, dans lequel l'étape (e) comprend la mise hors circuit
dudit moyen de raccord terminal et dudit moyen de commutation, et la mise en circuit
d'un autre moyen de commutation (300A) pour court-circuiter électriquement ladite
autre extrémité dudit enroulement à ladite position prédéterminée.
4. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
l'étape de surveillance d'une demande de charge accrue et une étape d'arrêt (c) en
réponse à une demande de charge prédéterminée.
5. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
l'étape de surveillance de la tension à la première extrémité précitée de l'enroulement
et une étape d'arrêt (c) en réponse à la chute de la tension au-dessous d'une valeur
prédéterminée.
6. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
l'étape consistant à adresser ladite requête pour une autre tension sélectionnée après
l'écoulement d'un intervalle de temps prédéterminé après la demande d'alimentation
en courant.
7. Système de commande d'alimentation électrique pour fournir l'une parmi plusieurs tensions
sélectionnées à une charge, le système de commande d'alimentation électrique comprenant
:
- une borne positive (L) et une borne neutre (N) en vue de la connexion à une source
de courant électrique ;
- une borne de sortie (T) pour fournir plusieurs tensions sélectionnées ;
- un enroulement (3) ayant une extrémité (13) connectée électriquement à la borne
positive et étant dérivé à une position prédéterminée (18) pour délivrer une tension
sélectionnée à la borne de sortie (T),
caractérisé par :
- un moyen de raccord terminal (200A), capable d'être mis en circuit pour connecter
électriquement l'autre extrémité (14) de l'enroulement à la borne neutre ;
- un moyen de commutation (100A), capable d'être mis en circuit pour exclure un nombre
prédéterminé de spires dudit enroulement en réponse à une demande pour une autre tension
sélectionnée ;
- un moyen de surveillance pour surveiller au moins un type d'état de défaillance
; et
- un autre moyen de commutation (300A), capable d'être mis en circuit pour court-circuiter
électriquement ladite autre extrémité de l'enroulement à ladite position prédéterminée
lorsqu'un état de défaillance est détecté.
8. Système selon la revendication 7, dans lequel ledit moyen de commutation (100A) est
connecté à la borne neutre (N) pour exclure de ladite autre extrémité de l'enroulement
le nombre prédéterminé de spires dudit enroulement.
9. système selon la revendication 8, dans lequel, en réponse à la détection d'un état
de défaillance, ledit moyen de surveillance met hors circuit ledit moyen de raccord
terminal (200A) et ledit moyen de commutation (100A) pour déconnecter électriquement
de la borne neutre ladite autre extrémité de l'enroulement, et met en circuit ledit
autre moyen de commutation (300A).
10. Système selon l'une quelconque des revendications 7 à 9, dans lequel ledit moyen de
surveillance comprend en outre un moyen (21) de détection de la demande en courant
pour détecter des changements de courant transitoires dans la demande en courant par
la charge ; dans lequel ledit moyen de surveillance met hors circuit ledit moyen de
commutation en réponse à des changements transitoires dans le courant au-dessus d'un
niveau prédéterminé.
11. Système selon l'une quelconque des revendications 7 à 10, dans lequel ledit moyen
de surveillance comprend en outre un moyen de surveillance d'une surcharge de courant
pour surveiller du courant à l'enroulement ; dans lequel ledit moyen de surveillance
met hors circuit ledit moyen de raccord terminal et ledit moyen de commutation pour
déconnecter électriquement de la borne neutre ladite autre extrémité de l'enroulement,
et met en circuit ledit autre moyen de commutation en réponse à un courant détecté
au-dessus d'un niveau maximal prédéterminé.
12. Système selon l'une quelconque des revendications 7 à 11, dans lequel ledit moyen
de surveillance comprend en outre un moyen (30) de surveillance de tension, pour surveiller
la tension à la première extrémité précitée de l'enroulement ; et dans lequel ledit
moyen de surveillance met hors circuit ledit moyen de commutation en réponse à une
tension au-dessous d'un minimum prédéterminé.
13. Système selon l'une quelconque des revendications 7 à 12, dans lequel ledit moyen
de surveillance comprend en outre un moyen d'horloge (25, 31) pour mesurer le temps
à partir d'une délivrance de ladite tension sélectionnée ; dans lequel ledit moyen
de surveillance met en circuit ledit moyen de commutation lorsque ledit temps mesuré
dépasse un intervalle de temps prédéterminé.
14. Système selon l'une des revendications 12 et 13, dans lequel ledit moyen d'horloge
surveille un autre temps partant de la délivrance de ladite tension sélectionnée ;
dans lequel ledit moyen de surveillance met en circuit ledit moyen de commutation
seulement lorsque ledit autre temps dépasse un autre intervalle de temps prédéterminé
pendant lequel la tension à la première extrémité précitée dudit enroulement n'est
pas tombée au-dessous dudit minimum prédéterminé.
15. système selon l'une des revendications 13 ou 14, dans lequel ledit moyen d'horloge
est remis à zéro chaque fois que le moyen de commutation est mis hors circuit ou que
ledit autre moyen de commutation est mis en circuit.
16. Système selon l'une quelconque des revendications 7 à 15, dans lequel le moyen de
raccord terminal, le moyen de commutation et l'autre moyen de commutation comprennent
des contacts de relais.
17. système selon la revendication 16 en tant qu'elle est dépendante de l'une quelconque
des revendications 10 à 15, comprenant en outre un détecteur de croisement zéro, de
telle sorte que le mouvement des contacts de relais puisse avoir lieu en des points
optimaux pendant le cycle.