
European  Patent  Office  
^   ̂ H  ^  I  H  ̂   H  ̂   II  ̂   II  ̂   H  ̂   H  ̂   H  ̂    ̂ ̂   H  ̂    ̂ ̂    ̂ ̂   I  ̂  

�   
Office  europeen  des  brevets  E P   0  7 7 4   7 5 0   A 2  

(12)  EUROPEAN  PATENT  A P P L I C A T I O N  

(43)  Date  of  publication:  (51)  |nt  CI.6:  G10L  9 / 1 4  
21.05.1997  Bulletin  1997/21 

(21)  Application  number:  96308081.7 

(22)  Date  of  filing:  07.11.1996 

(84)  Designated  Contracting  States:  (72)  Inventor:  Ruoppila,  Vesa  T. 
DE  FR  GB  SE  33720  Tampere  (Fl) 

(30)  Priority:  15.11.1995  US  6787  (74)  Representative:  Slingsby,  Philip  Roy  et  al 
23.10.1996  US  735827  NOKIA  MOBILE  PHONES, 

Patent  Department, 
(71)  Applicant:  NOKIA  MOBILE  PHONES  LTD.  St.  Georges  Court, 

24101  Salo  (Fl)  St.  Georges  Road, 
9  High  Street 
Camberley,  Surrey  GU15  3QZ  (GB) 

(54)  Determination  of  line  spectrum  frequencies  for  use  in  a  radiotelephone 

CM 
<  
O  
i o  
Is- 
^> 
Is- 
Is- 
o  
a .  
LU 

(57)  An  audio  signal,  such  as  a  speech  signal,  is  ap- 
plied  to  a  LPC  filter.  A  method  is  disclosed  for  determin- 
ing  line  spectrum  frequencies  of  the  LPC  filter,  ex- 
pressed  by  symmetric  and  antisymmetric  auxiliary  pol- 
ynomials,  the  zeros  of  which  determine  the  line  spec- 
trum  frequencies  of  the  LPC  filter.  The  method  includes 
the  steps  of  (a)  expressing  the  auxiliary  polynomials  us- 
ing  explicit  forms  of  Chebyshev  polynomials;  (b)  itera- 
tively  solving  a  zero  of  a  first  of  the  polynomials  using  a 
zero  of  the  other  one  of  the  polynomials;  and  (c)  suc- 
cessively  eliminating  zeroes  from  the  polynomials  by 
polynomial  deflation  so  as  to  determine  the  line  spec- 
trum  frequencies.  Also  disclosed  is  a  method  for  deter- 
mining  the  immittance  spectrum  frequencies. 

(  START  ) 
I 

COMPUTE  COEFFICIENTS 
r0,r1,...AND  SqS!,... 

k=1 

NO 

YES 

COMPUTE  ZERO 
Xk  OF  R(x) 

COMPUTE  ZERO 
Xk  OF  S(x) 

<(deg  S=2̂ > YES 

<deg  R=2  ^- 
NO 

DIVIDE  ZERO 
Xk  FROM  R(x) 

NO 

DIVIDE  ZERO 
Xk  FROM  S(x) 

k:=k+i  - 

SOLVE  THE  LAST  ZERO 
FROM  R(x)  AND  S(x) 

_L 
FIG.  2 (  END  ) 

Printed  by  Jouve,  75001  PARIS  (FR) 



EP  0  774  750  A2 

Description 

This  invention  relates  generally  to  speech  encoding  methods  and  apparatus  and,  in  particular,  to  linear  predictive 
coding  (LPC)  speech  and  audio  coding  techniques  that  employ  a  line  spectrum  frequency  representation  of  an  LPC 

5  filter. 
Linear  predictive  coding  (LPC)  is  a  known  technique  for  analyzing  a  speech  signal  and  for  characterizing  the  signal 

in  terms  of  coefficients  which  are  encoded,  broadcast,  received  and  decoded  to  recover  an  approximation  of  the  original 
signal.  The  parameters  of  a  LPC  filter  are  coded  and  sent  as  a  part  of  the  information  stream.  The  use  of  line  spectrum 
frequencies  is  an  alternative  to  the  use  of,  for  example,  polynomial  coefficients  or  reflection  coefficients  for  representing 

10  the  LPC  filter.  The  line  spectrum  frequencies  have  useful  properties  for  quantization  and  interpolation  which  make  them 
a  more  attractive  representation  than  polynomial  or  reflection  coefficients. 

However,  in  known  types  of  speech  encoders  that  employ  line  spectrum  frequencies,  the  procedure  for  deriving 
the  line  spectrum  frequencies  is  computationally  expensive.  This  disadvantage  becomes  especially  apparent  when 
implemented  in  real  time  or  substantially  real  time  in  a  speech  encoder  of,  by  example,  a  digital  cellular  telephone. 

is  it  is  a  first  potential  aim  of  this  invention  to  provide  a  simplified  and  efficient  technique  for  reducing  the  complexity 
of  the  line  spectrum  frequency  computation. 

It  is  a  second  potential  aim  of  this  invention  to  provide  a  radiotelephone  having  an  LPC-based  speech/audio  en- 
coder  that  employs  line  spectrum  frequencies  that  are  obtained  in  accordance  with  the  method  of  this  invention. 

The  foregoing  and  other  problems  may  preferably  be  overcome  and  the  potential  aims  of  the  invention  realized 
20  by  methods  and  apparatus  in  accordance  with  embodiments  of  this  invention. 

In  this  invention,  a  method  for  determining  line  spectrum  frequencies  of  a  LPC  filter  is  disclosed.  The  predictor 
polynominal  of  the  LPC  filter  is  decomposed  into  symmetric  and  antisymmetric  auxiliary  polynomials,  the  zeros  of  which 
determine  the  line  spectrum  frequencies  of  the  filter.  In  other  words,  the  line  spectrum  frequency  representation  is 
determined  by  solving  the  zeros  of  the  two  auxiliary  polynomials.  Due  to  the  symmetry  of  the  auxiliary  polynomials, 

25  their  zeros  are  preferably  solved  from  two  cosine  series.  In  speech  codecs  this  is  usually  done  by  a  bisection  algorithm, 
and  by  employing  the  definition  of  Chebyshev  polynomials  to  evaluate  the  cosine  series. 

A  potential  aim  of  this  invention  is  to  reduce  the  complexity  of  the  line  spectrum  frequency  computation.  This  may 
be  obtained  by  rewriting  the  cosine  series  as  polynomials  using  explicit  forms  of  Chebyshev  polynomials.  This  enables 
an  evaluation  of  the  series  by  nested  multiplications.  Moreover,  the  already-computed  zeros  are  successively  elimi- 

30  nated  from  the  polynomial  by  polynomial  deflation.  This  procedure  and  the  properties  of  the  auxiliary  polynomials  can 
enable  the  initial  values  to  be  chosen  in  the  zero  finding  algorithm  such  that  a  zero  is  found  by  only  a  few  iterations 
using  the  zero  of  the  other  polynomial.  Thus,  the  invention  may  reduce  considerably  the  arithmetic  operations  required 
to  compute  the  line  spectrum  frequencies.  The  method  of  this  invention  thus  has  the  potential  to  be  implemented  with 
relatively  low  complexity,  and  furthermore  to  be  accomplished  using  fixed-point  arithmetic. 

35  The  above  set  forth  and  other  features  of  the  invention  are  made  more  apparent  in  the  ensuing  detailed  description 
of  the  invention  when  read  in  conjunction  with  the  attached  Drawings,  wherein: 

Fig.  1  is  a  block  diagram  showing  a  speech  encoder  employing  a  line  spectrum  frequency  representation  of  the 
LPC  filter. 

Fig.  2  is  a  flow  chart  describing  one  method  to  implement  the  present  invention.  The  procedure  employed  for 
computing  the  zeros  of  the  auxiliary  polynomials  R  and  S  (the  block  Compute  zero)  is  presented  in  more  detail 
in  Figure  3. 

45  Fig.  3  is  a  flow  chart  of  one  method  to  implement  Newton's  method.  The  polynomial  G  =  R  if  i  is  odd.  Otherwise 
G  =  S.  G'(x)  denotes  the  first  derivative  of  the  polynomial  G  at  the  point  x.  An  additional  refining  procedure  is  often 
unnecessary  if  sufficient  numerical  accuracy  is  employed. 

Figs.  4A-4D  illustrate  the  progress  of  the  technique  (algorithm  (29))  employing  polynomial  deflation. 
50 

A  simplified  block  diagram  of  a  speech  encoder  10  employing  the  spectrum  frequency  representation  of  the  LPC 
filter  is  presented  in  Fig.  1  .  The  speech  encoder  1  0  may  form  a  portion  of  a  radiotelephone,  such  as  a  digital  cellular 
user  terminal  or  a  personal  communicator  device.  An  input  audio  signal,  such  as  a  speech  signal  obtained  from  a 
speech  transducer  or  microphone  5,  is  converted  into  a  digital  form  by  an  analog-to-digital  (A/D)  converter  12.  The 

55  digital  output  of  the  A/D  converter  is  preprocessed  by  separating  the  signal  into  frames  of  convenient  length,  typically 
of  the  order  of  tens  of  milliseconds.  It  should  be  noted  that  the  A/D  conversion  is  not  necessary  if  the  signal  is  already 
in  digital  form.  After  preprocessing,  the  signal  is  applied  to  an  LPC  analysis  block  14.  The  LPC  analysis  produces 
coefficients  for  an  LPC  filter,  also  referred  to  herein  as  an  LPC-analysis  filter  16.  The  output  of  the  LPC  analysis  block 

2 
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1  4  is  transformed  into  a  line  spectrum  frequency  (LSF)  representation  in  block  1  8.  The  LSF  coefficients  may  be  quan- 
tized  in  block  20  and  then  interpolated  in  block  22  in  order  to  construct  a  LPC  analysis  filter  for  each  speech  subframe. 
By  example,  and  for  a  speech  frame  having  a  duration  of  20  milliseconds,  four  5  millesecond  subframes  may  be  used, 
wherein  the  analysis  filter  is  constructed  separately  for  each  subframe.  After  the  LPC  filtering  in  block  16  the  coefficients 

5  of  a  long-term  prediction  (LTP)  filter  are  searched,  and  the  residual  is  generated  in  the  block  labeled  LTP  analysis  and 
filtering  24.  The  residual  is  encoded  in  the  excitation  encoding  block  26,  and  the  resulting  encoded  residual,  i.e.,  an 
encoded  excitation  signal,  is  multiplexed  (block  28)  with  the  quantized  LSF  coefficients  into  a  bit  stream  transmitted 
to  a  speech  decoder  (not  shown)  via  a  communication  channel  30.  By  example,  the  communication  channel  30  is  a 
radio  channel  linking  the  mobile  terminal  to  a  base  station  (not  shown)  by  a  transmitter  32  and  an  antenna  34.  The 

10  "side  information"  input  to  the  multiplexer  28  determines,  for  example,  the  operational  mode  of  the  speech  coder, 
particularly  for  variable  rate  codecs  such  as  QCELP.  For  a  speech  coder  operated  in  a  fixed  rate  mode,  this  input  may 
not  be  required. 

The  following  detailed  description  of  the  invention  pertains  most  particularly  to  the  operation  of  the  LPC  to  LSF 
block  18  of  Fig.  1.  The  present  invention  does  not  require  any  modifications  to  other  blocks  presented  in  Fig.  1.  It  is 

is  also  noted  that  the  LPC  is  LSF  transformation  is  not  used  in  a  decoder  of  present  speech  codecs.  Therefore,  the 
decoder  of  the  speech  codec  is  not  considered  in  this  description,  although  a  decoder  that  employs  a  LPC  to  LSF 
transformation  is  also  within  the  scope  of  the  teaching  of  this  invention. 

1.1  Line  Spectrum  Frequency  Representation 
20 

The  nth  degree  predictor  polynomial  of  the  LPC  filter 

(1)  An(z)=  1+a1z"1+...+anz"n 
25 

satisfies  the  recurrence  formula 

(2)  An+1(z)  =  An(z)+kn+1z-n-1An(z-1), 
30 

wherein  k-,,  k2,...,kn+1  are  reflection  coefficients.  The  recurrence  formula  (2)  is  called  the  Levinson-Durbin  solution  to 
the  Yule-Walker  equations.  It  expresses  the  relationship  between  the  (n+1  )th  and  the  nth  degree  predictor  polynomials. 
For  the  purposes  of  this  description  it  is  assumed  that  all  roots  of  the  predictor  polynomial  AJz)  are  inside  the  unit 
circle,  i.e.,  that  the  predictor  polynomial  is  minimum  phase. 

35  By  setting  kn+1  =  1  ,  the  recurrence  formula  (2)  gives  the  polynomial: 

(3)  Pn+1(z)AAn(z)+Z"n"1An(z"1). 

40  By  construction,  (3)  is  a  symmetric  polynomial  in  a  sense  that  it  satisfies  the  relation 

Pn+l(Z)  =  Z"n"1pn+l(Z"1)- 

45  Similarly,  by  setting  kn+1  =-1  in  (2)  one  obtains  an  antisymmetric  polynomial 

(4)  Qn+i(z)AAn(z)-z-n-1An(z-1) 

50  which  has  the  property 

Qn+1(z)  =  -z"n"1Qn+1(z-1). 

55  From  (3)  and  (4)  it  follows  that  the  predictor  polynomial  (1)  can  be  decomposed  into  a  sum  of  symmetric  and 
antisymmetric  polynomials: 

3 
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By  explicitly  using  the  symmetry  of  the  polynomial,  P(z)  defined  in  (8)  can  be  written  in  the  form 

....  nit  .  -1  -2  -2mp+2  -2mp+1  -2mp (11)  P(z)  =  1  +  P|Z  +  p2z  +..  +p2z  +P-,Z  +Z 
 ̂ mp  ..  mp  - m p . .   mp-1  -mp+1  . .  =  z-  {(z  +z  H)  +  p1(z  +z  )  +  ..+Pmp}, 

where  p-,,  p2,...,  pmp  are  the  coefficients  of  P(z).  By  substituting  z=  eia>  and  by  employing  the  relation 

k  -k  Ja>k  -ja>k  „  , z  +  z  =e  +e  =  2  cos  co  k, 

equation  (11)  gives 

15 

(12)  P(eo)  =  e~Jta ' 'p[2cosmpa)  +  2plcos(mp  - l )a>+-"+pmp} 

20  The  symmetric  polynomial  Q(z)  can  be  rewritten  similarly  to  the  form 

(13)  0{co)=  e~jco"l~  \lcosmQCO  +  2qx  cos(/?/g  -  \)a>+---+qmo\ 

25 
where  q  ̂ q2,...,  qmQ  are  the  coefficients  of  the  polynomial  Q(z). 

From  equation  (8)  it  follows  that  line  spectrum  frequencies  co-|,co3,...,co2mp  are  the  zeros  of  P(co)  in  the  interval  [0, 
it].  Correspondingly,  line  spectrum  frequencies  co2,  co4,...,  co2mQ  are  the  zeros  of  Q(co)  when  co  G  [0,ji].  Hence,  the  line 
spectrum  frequencies  of  An(z)  can  be  found  by  solving  zeros  of  series 

30 

(14)  R(co)  A  cosmpco  +  p-jCOsfrrip  -  1)co  +  ...  +  (1/2)pmp, 

35  (15)  S(co)AcosmQco  +  q1cos(mQ-1)co  +  ...  +(1/2)qmQ, 

where  co  G  [0,  n].  In  a  QCELP  speech  coder,  by  example,  line  spectrum  frequencies  are  solved  directly  from  (14)  and 
(15)  (see,  by  example,  TIA/EIA/IS-96-A,  Speech  Service  Option  Standard  for  Wideband  Spread  Spectrum  Digital  Cel- 
lular  System  (1  994)).  However,  it  is  more  desirable  to  rewrite  the  cosine  series  as  polynomials  in  order  to  obviate  the 

40  evaluation  of  trigonometric  functions.  This  is  discussed  in  more  detail  in  the  following  section. 
The  relations  between  the  coefficients  of  the  predictor  polynomial  and  the  coefficients  of  the  cosine  series  (14) 

and  (15)  can  be  derived  from  equations  (3),  (4)  and  (6)-(9). 

1.2  Chebyshev  Polynomials 
45 

The  Chebyshev  polynomials  of  the  first  kind  are  defined  by  the  recurrence  formula 

(16)  Tk+1(x)  =  2xTk(x)-Tk.1(x),  k=  1,2,.. 

50 
with  initial  conditions  T0(x)  =  1  and  T1  (x)  =  x.  For  x  in  the  interval  [-1  ,  1  ],  the  Chebyshev  polynomials  have  the  closed- 
form  expression 

55  (17)  Tk(x)  =  cos{k  arccos  x],  k  =  0,1,.. 

The  explicit  forms  of  the  first  few  Tk  are 

5 
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2 T2(x)  =  cos  {2arccosx}  =  2x  -1  , 

3 T3(x)  =  cos  {3arccosx}  =  4x  -3x, 

4  2 T4(x)  =  cos  {4arccosx}  =  8x  -8x  +  1  , 

10  5  3 T5(x)  =  cos  {5arccosx}  =  1  6x  -  20x  +  5x. 

By  changing  a  variable, 

15 
(18)  co  =  arccosx, 

and  using  (12),  equations  (14)  and  (15)  give 

20  O9)  RW  =  Tmp(x)  +  PlTmM  (x)  +..+  (1/2)Pmp, 

(2°)  S(x)  =  TmQ(x)  +  q j ^   (x)  +..+  (1/2)qmQ, 

25 
The  line  spectrum  frequencies  {co;}  can  be  determined  by  solving  the  equations  R(x)  =0  and  S(x)  =0  for  x  in  the 

interval  [-1,1].  Once  the  roots  {X;}  are  solved,  the  corresponding  line  spectrum  frequencies  are  given  by  co;  =  arccos  Xj. 
Various  methods  to  solve  the  zeros  of  (14)  and  (15)  have  been  suggested  in  the  literature.  So  as  to  provide  a 

background  for  the  teaching  of  this  invention,  a  brief  survey  is  made  of  a  few  algorithms  presented  in  the  literature. 
30  Also,  the  methods  employed  in  some  currently  standardized  speech  codecs  are  discussed. 

The  procedure  introduced  by  Soong  and  Juang  evaluates  (14)  and  (1  5)  on  a  fine  grid  by  discrete  cosine  transfor- 
mation.  Sign  changes  at  adjacent  grid  points  isolate  intervals  containing  roots.  After  a  sign  change  has  been  detected, 
the  interval  is  bisected  until  a  sufficiently  accurate  numerical  estimate  for  the  zero  is  obtained.  A  similar  bisection  based 
algorithm  is  used  also  in  the  QCELP  speech  codec  (i.e.,  TIA/EIA/IS-96-A,  Speech  Service  Option  Standard  for  Wide- 

35  band  Spread  Spectrum  Digital  Cellular  System  (1994)).  However,  in  QCELP  the  equations  (14)  and  (15)  are  evaluated 
by  computing  directly  all  the  terms  of  the  series  without  transformations.  Since  a  large  number  of  trigonometric  functions 
have  to  be  evaluated,  the  algorithm  becomes  inevitably  complex,  and  the  numerical  accuracy  may  be  poor  in  a  fixed- 
point  implementation. 

Kang  and  Fransen  ("Application  of  line  spectrum  pairs  to  low  bit  rate  speech  encoders",  Proceedings  of  IEEE 
40  International  Conference  on  Acoustics,  Speech,  and  Signal  Processing,  Tampa,  FL,  pp.  7.3.1-7.3.4,  March  1984)  have 

proposed  autocorrelation  based  and  ratio-filter  based  methods  for  finding  line  spectrum  frequencies.  However,  these 
two  methods  also  require  an  evaluation  of  a  large  number  of  trigonometric  functions. 

In  order  to  obviate  evaluation  of  trigonometric  functions,  Kabal  and  Ramachandran  ("The  computation  of  line  spec- 
trum  frequencies  using  Chebyshev  polynomials",  IEEE  Transactions  on  Speech  and  Audio  Processing,  vol.  34,  no.  6, 

45  pp.  1  41  9-1  426,  1  986)  suggested  that  the  cosine  series  (1  4)  and  (15)  are  transformed  to  the  form  (1  9)  and  (20).  Then 
line  spectrum  frequencies  {coj  can  be  determined  by  solving  the  zeros  of  (19)  and  (20)  in  the  interval  [-1,1].  Also  Kabal 
and  Ramachandran  employed  the  bisection  algorithm;  Equations  (19)  and  (20)  are  evaluated  on  a  grid  to  locate  sign 
changes  at  adjacent  grid  points.  After  a  sign  change  has  been  detected,  the  zero  is  computed  by  successively  bisecting 
the  interval.  Since  this  method  is  currently  used  in  several  speech  codecs,  e.g.,  in  (TIA/EIA/IS-641  TDMA  Cellular/ 

so  PCS-Radio  Interface-Enhanced  Full-Rate  Speech  Codec  (1996)),  it  is  described  in  more  detail  in  the  next  section. 
Saoudi  et  al.  ("A  new  efficient  algorithm  to  compute  the  LSP  parameters  for  speech  coding",  Signal  Processing, 

vol.  28,  pp.  201  -21  2,  1  992)  reformulated  the  problem.  That  is,  they  introduced  an  algorithm  which  solves  line  spectrum 
frequencies  from  eigenvalues  of  tridiagonal  symmetric  matrices  without  computing  the  predictor  polynomial.  The  ei- 
genvalues  are  computed  by  the  bisection  method.  Saoudi  et  al.  also  compared  the  complexity  of  several  algorithms 

55  introduced  for  computing  the  line  spectrum  frequencies.  Unfortunately,  the  results  of  the  comparison  are  not  compre- 
hensive. 

Also  it  is  noted  that  Chan  ("Computation  of  LSF  parameters  from  reflection  coefficients,"  Electronic  Letters,  vol. 
27,  no.  19,  pp.  1773-1774,  1991,  and  "Efficient  interconversion  algorithm  for  PARCOR  and  LSP  parameters,"  in  Pro- 
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10 

20 

25 

ceedings  of  International  Symposium  on  Speech,  Image  Processing  and  Neural  Networks,  Hong  Kong,  pp.  603-606, 
13-16  April  1994)  has  introduced  a  method  for  forming  polynomials  Pk=i(z)  and  Q|<=i,2...,n(z)  f°r  k  without  computing 
explicitly  the  coefficients  of  the  predictor  polynomial.  However,  this  approach  does  not  solve  the  zero  finding  problem. 

As  was  mentioned  above,  Kabal  and  Ramachandran  suggested  that  the  cosine  series  (14)  and  (15)  be  rewritten 
to  the  form  (19)  and  (20)  by  exploiting  the  Chebyshev  polynomials.  This  allows  an  evaluation  of  the  equations  with  a 
simple  recursion,  and  without  trigonometric  functions.  Kabal  and  Ramachandran  have  used  the  property  (1  0),  or  equiv- 
alent^ 

(21)  1  >  x1  >  x2  >...>  xn  >  -1  , 

to  reduce  the  complexity  of  their  algorithm. 
(23)  Algorithm 

15  (a)  Initialization.  Compute  the  coefficients  of  (19)  and  (20)  when  An(z)  is  given.  Partitate  the  upper  half  of  the  unit 
circle  into  N  subintervals  [coGk,  coG(k+1],  k  =  1,2,  N  and  such  that  coG1  =  0  and  coGN  =  n.  Map  the  grid  points  {coGk} 
into  the  real  axis  by  xGk  =  cos  coGk.  Set  k  =  1  and  start  the  search  from  the  polynomial  R(x). 

(b)  Check  if  the  polynomial  under  investigation  has  a  sign  change  in  the  interval  [XQk'xG(k+i)]- 

(c)  If  a  sign  change  is  detected,  locate  the  zero  X;  from  the  interval  [xGk,xG(k+1)]  by  the  bisection  algorithm.  After 
the  zero  has  been  found,  continue  the  search  from  another  polynomial. 

(d)  Set  k:  =  k+1  .  Continue  to  (b)  until  all  n  zeros  are  found  or  all  intervals  are  gone  through. 

Although  the  algorithm  (22)  is  known  to  be  used  in  speech  codecs,  it  has  several  shortcomings.  For  example,  if 
some  zeros  of  the  polynomials  are  sufficiently  near  each  other,  the  algorithm  has  a  tendency  to  miss  zeros,  since  the 
sign  change  is  not  detected.  This  shortcoming  can  be  circumvented  by  making  the  grid  denser.  In  other  words,  the 
intervals  are  made  sufficiently  small  so  that  two  or  more  roots  do  not  occur  in  the  same  interval.  The  definitive  choice 

30  of  the  grid  interval  is  always  a  compromise  between  a  reliability  and  computational  burden.  That  is,  as  the  grid  interval 
is  made  more  dense,  the  overall  processing  burden  increases  as  well. 

In  accordance  with  the  teaching  of  this  invention,  a  reduction  in  the  complexity  of  the  speech  encoding,  and  more 
particularly,  the  computation  of  line  spectrum  frequencies  is  made  possible.  In  accordance  with  the  teaching  of  this 
invention,  a  significant  improvement  is  achieved  by  evaluating  (1  9)  and  (20)  with  a  recursion  requiring  fewer  arithmetic 

35  operations  than  the  methods  used  in  current  speech  encoders. 
Further  in  accordance  with  the  teaching  of  this  invention,  the  method  successively  eliminates  already-found  zeros 

from  the  polynomials.  The  procedure  is  known  as  polynomial  deflation,  or  as  synthetic  division  in  numerical  analysis, 
see,  e.g.,  Kincaid  and  Chaney.  The  use  of  polynomial  deflation  allows  for  the  elimination  of  the  sign-change  detection 
procedure  from  the  algorithm.  Another  advantage  is  that  efficient  algorithms  (which  have  better  convergence  properties 

40  than  the  bisection  method)  can  be  exploited  together  with  the  property  (21)  to  locate  the  zeros.  For  example,  when 
zeros  are  computed  by  Newton's  method,  the  algorithm  is  guaranteed  to  find  all  line  spectrum  frequencies  if  sufficient 
numerical  accuracy  is  used. 

The  methods  of  this  invention  are  presented  in  more  detail  in  the  following  discussion. 
Consider  now  the  evaluation  of  R(x)  and  S(x)  for  a  given  value  of  x  in  the  interval  [-1  ,  1  ].  The  Chebyshev  series 

45  (19),  and  similarly  (20),  to  be  evaluated  can  be  represented  as 

in  p  in  p 
( 2 3 ) R ( x ) =   X  P„ip.kTk(x)  +  (J>  2 ) p ) t i p A ^ T a k T k ( x )  

so  k  =  l  k  =  0 

with  p0  =  1  ,  a0  =  (1/2)  pmp  and  ak  =  pmp.k.  The  summation  in  (23)  reduces  to 

55  '"P 
(24)  R(x)  =  X  akTk(x)=  b0(x)-b2(x)+  a0 ,  

k  =  0 
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where  b0(x)  and  b2  (x)  are  given  by  the  backward  recurrence  formula 

bk(x)  =  2xbk+1  (x)  -  bk+2(x)  +  ak, 
5 

bmp(X)  =  bmp+l(X)  =  0- 

Kabal  and  Ramachandran  have  employed  this  technique  in  their  algorithm. 
10  Although  (25)  is  a  numerically  robust  method  for  evaluating  the  Chebyshev  series,  it  requires  (mp  +  1)  multiplica- 

tions  and  (2mp  -  1  )  additions  in  this  particular  application.  Also  several  data-move  operations  increase  the  workload  in 
a  DSP  implementation. 

In  this  invention,  there  is  instead  employed  a  more  efficient  method.  To  evaluate  R(x)  and  S(x),  instead  convert 
(1  9)  and  (20)  to  the  polynomials 

15 

.  mp  mp-1 (25)  R(x)  =  r0x  ^ ^ x   +..+  rmp, 

so  (26)  S(x)  =  s0x  +Slx  +.+smQ, 

with  the  explicit  forms  of  the  Chebyshev  polynomials.  The  polynomials  (25)  and  (26)  can  then  be  evaluated  effectively 
by  the  procedure  of  nested  multiplications,  known  also  as  Horner's  algorithm  (see,  for  example,  Kincaid  and  Cheney, 
Numerical  Analysis:  Mathematics  of  Scientific  Computing,  Brooks/Cole  Publishing  Company,  1991). 

25  Horner's  algorithm  produces  R(x)  =  b0(x),  and  similarly  S(x),  by  the  backward  recurrence  relation 

(27)  bk(x)  =  xbk+1  (x)  +  rk 

30  with  an  initial  value  bmp(x)  =  rmp.  The  equation  (27)  requires  mp  multiplications  and  mp  additions.  Naturally,  the  recursion 
(27)  can  be  used  also  in  other  mathematically  equivalent  forms. 

Example 

35  Consideration  is  made  of  the  case  when  the  degree  of  An(z)  is  ten  (n  =  10).  Hence  mp  =  5.  The  conversion  from 
(19)  to  (25)  gives  polynomial  coefficients 
r0=16,  r-,  =  8p-,, 
r2  =  4p2-20,  r3  =  2p3-8p1, 
r4  =  -3p2  +  p4  +  5  r5  =  Pt  -  p3  +  p5/2, 

40  when  the  polynomial 
R(x)  =  {1  6x5  -  20x3  +  5x}  +  Pt  {8x4  -  8x2  +  1  } 
+  p2{4x3  -3x}  +  p3{2x2  -  1  }  +  p4x  +  p5/2 
is  written  in  the  open  form.  In  this  form  the  evaluation  of  R(x)  requires  5  multiplications  and  5  additions  using  Horner's 
algorithm,  while  the  method  (24)  would  require  6  multiplications  and  9  additions.  The  difference  is  a  total  of  five  oper- 

45  ations  (plus  data-move  operations  in  a  fixed-point  implementation).  As  can  be  appreciated,  in  some  speech  coders 
the  polynomials  are  evaluated  hundreds  of  times  in  a  single  speech  frame  during  the  computation  of  line  spectrum 
frequencies  and,  as  a  result,  a  large  number  of  operations  can  be  eliminated.  The  computation  of  r0,  r-,,..,  r5  requires 
six  additions  and  six  multiplications.  However,  these  coefficients  are  usually  computed  only  once  per  frame. 

A  discussion  is  now  made  of  the  polynomial  deflation  aspects  of  this  invention.  It  is  first  pointed  out  that  it  is  possible 
50  to  avoid  the  checking  of  sign-changes  if  already-found  zeros  are  successively  eliminated  from  the  polynomials  R(x) 

and  S(x),  or  equivalently  from  R(co)  and  S(co).  In  numerical  analysis  this  procedure  is  known  as  polynomial  deflation  or 
synthetic  division.  The  polynomial  deflation  is  based  on  the  relation 

55  (28)  R(x)  =  ra(x-x1)(x-x3)...Ara(x-x1)RQ(x). 

By  example,  assume  that  n  is  even,  and  a  zero  x  =  x1  of  R(x)  has  been  located.  Then,  the  remaining  zeros  x3,.., 
xn_-|  are  also  zeros  of  RQ(x).  To  compute  these  zeros,  the  polynomial  R(x)  can  be  replaced  by  the  quotient  polynomial 
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RQ(x).  This  is  referred  to  as  the  polynomial  deflation.  The  procedure  can  be  repeated;  as  soon  as  a  zero  is  found,  it 
can  be  factored  out.  In  this  way,  the  zero  finding  technique  can  operate  with  polynomials  of  lower  and  lower  degree. 
The  known  zeros  can  be  removed  from  a  polynomial  by  the  use  of  Horner's  algorithm.  Clearly,  the  use  of  polynomial 
deflation  saves  arithmetic  operations. 

5  Now,  the  algorithm  employing  polynomial  deflation  for  computing  the  line  spectrum  frequencies,  in  accordance 
with  the  teaching  of  this  invention,  can  be  summarized  as  follows: 
(29)  Algorithm 

(a)  Initialization.  Compute  the  coefficients  of  (25)  and  (26)  when  An(z)  is  given.  Start  the  search  from  the  polynomial 
10  R(x)  with  an  initial  value  x0  =  1  .  Set  k  =  1  . 

(b)  Compute  the  zeroxk  £  (-1  ,  xk-1)  by  Newton's  method.  The  previous  zeroxk.1  is  a  reasonable  initial  value.  See 
Fig.  3. 

is  (c)  Refine  the  numerical  estimate  of  the  zero  xk  by  taking  additional  steps  in  Newton's  method  using  the  undeflated 
polynomial  (Fig.  3).  It  is  noted  that  this  step  of  refining  the  numerical  estimate  is  optional. 

(d)  If  the  degree  of  the  polynomial  is  two,  solve  the  last  zero  analytically  (see  the  next  section).  Otherwise  eliminate 
the  zero  xkf  rom  the  polynomial  by  the  polynomial  division  technique.  Continue  the  search  from  the  other  polynomial. 

20 
(e)  Set  k:  =  k  +  1  .  Continue  to  (b)  until  all  n  zeros  are  found. 

Solution  of  the  last  zero  of  R(x)  and  S(x) 

25  When  the  deflated  polynomials  R(x)  and  S(x)  are  of  degree  2,  and  their  other  zero  is  known,  the  last  zero  of  the 
polynomials  can  be  solved  analytically.  For  example,  consider  the  polynomial 

2 
Rq(X)  =  rQ0X  +  rQ1  X  +  rQ2' 

30 
which  is  obtained  by  dividing  already-found  zeros  from  the  polynomial  R(x).  Zeros  of  RQ(x)  are  denoted  by  xQ1  and  xQ2. 

Assume  now  that  the  zero  xQ1  has  already  been  found,  and  the  task  is  to  solve  xQ2.  Since  the  polynomial  division 
(rQ0x2  +  rQix  +  rQ2V(x  "  xqi)  gives  the  quotient  RQ1  (x)  =  rQOx  +  rQ1  +  rQOxQ1,  the  zero  xQ2  is  readily  obtained  from  the 
equation  RQ1  (x)  =  0.  The  equation  gives  xQ2  =  -xQ1  -rQ1/rQ0.  By  this  way  the  computation  of  the  square  root  resulting 

35  from  the  solution  of  RQ(x)  =  0  is  obviated.  Moreover,  unnecessary  Newton's  iterations  are  not  needed. 
This  procedure  is  applied  in  step  (d)  of  algorithm  (29),  i.e.,  in  the  block  Solve  the  last  zero  in  Fig.  2. 
Newton's  method  is  described  in  Fig.  3  in  more  detail.  Both  the  value  of  the  polynomial,  and  its  first  derivative,  are 

computed  effectively  by  Horner's  method. 
Errors  in  the  numerical  estimate  of  xk  accumulate  when  k  increases  because  the  zeros  of  the  successive  quotient 

40  polynomials  deviate  more  and  more  from  the  zeros  of  the  undeflated  polynomial.  This  is  obviated  by  refining  the  zeros 
given  by  step  (b)  of  algorithm  (29).  The  zero  can  be  refined  by  taking  additional  steps  in  Newton's  method,  but  now 
using  the  undeflated  polynomials  (Fig.  3).  However,  if  an  adequate  numerical  accuracy  is  used,  the  refining  step  is  not 
usually  necessary. 

The  term  1/G(x)  employed  in  the  Newton's  method  can  be  approximated,  for  example,  by  tabulating  its  values  in 
45  an  appropriate  range  of  G(x).  If  this  approximation  is  denoted  by  GA(x),  the  Newton's  step  xk:  =xk  -  G(xk)/G(xk)  can  be 

simplified  to  the  form  xk:=xk  -  GA(x)G(xk).  Hence  the  division  operation  is  not  needed.  However,  it  is  obvious  that  the 
approximation  weakens  the  convergence  properties  of  the  zero  finder,  although  it  also  reduces  the  complexity  of  the 
fixed-point  implementation. 

In  addition  to  the  Newton's  method,  other  algorithms  such  as  the  secant  method,  see  Kincaid  and  Cheney,  can  be 
50  used  for  locating  or  refining  the  zeros. 

Also  the  initial  values  can  be  chosen  differently.  For  example,  the  algorithm  can  be  started  from  x0  =  -1.  In  this 
case  the  estimates  of  zeros  given  by  the  procedure  would  be  in  ascending  order  -1  <  x-̂  <  x2  <  ...  <  xn  <  1  . 

It  should  be  noted  that  all  equations  required  in  the  algorithm  (29)  can  be  derived  straightforwardly  in  accordance 
with  the  teaching  of  this  invention  for  the  more  general  form  of  the  polynomial  An(z),  that  is 

55 

An(z)  =  a0  +alZ"1  +  ...  +anz"n. 

9 
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Consequently,  the  teaching  of  the  present  invention  is  not  limited  to  the  all-pole  form  of  the  LPC  filter. 
Figs.  4A-4D  illustrate  the  progress  of  the  technique  (algorithm  (29))  employing  polynomial  deflation.  The  zeros  of 

the  polynomials  R(x)  and  S(x)  corresponding  to  A10(z)  are  presented  in  Fig.  4A  by  crosses  (x)  and  circles  (o),  respec- 
tively.  The  zero  locating  procedure  is  begun  from  x0  =  1  (Fig.  4B).  After  the  first  zero  x-,  has  been  found,  (x  -  x-,)  is 

5  divided  from  the  polynomial  R(x).  The  polynomial  R(x)  after  the  first  deflation  is  shown  in  Fig.  4C.  Next,  the  search  is 
continued  from  S(x)  using  x1  as  an  initial  value.  When  x2  has  been  located,  the  procedure  is  again  switched  back  to 
the  deflated  R(x)  polynomial,  and  x2  acts  as  a  new  initial  value.  The  procedure  is  continued  until  all  zeros  have  been 
found.  Fig.  4D  illustrates  the  polynomial  R(x)  after  two  deflations. 

It  can  thus  be  appreciated  that  the  is  invention  teaches  in  one  aspect  a  method  for  determining  line  spectrum 
10  frequencies  of  a  linear  predictive  coder  (LPC)  filter  that  is  expressed  as  symmetric  and  antisymmetric  polynomials,  the 

zeros  of  which  determine  the  line  spectrum  frequencies  of  the  LPC  filter.  The  method  includes  the  steps  of  (a)  expressing 
the  polynomials  using  explicit  forms  of  Chebyshev  polynomials;  (b)  interatively  solving  a  zero  of  a  first  of  the  polynomials 
using  a  zero  of  the  other  one  of  the  polynomials;  and  (c)  successively  eliminating  zeros  from  the  polynomials  by  pol- 
ynomial  division  so  as  to  determine  the  line  spectrum  frequencies. 

is  With  regard  to  the  step  of  iteratively  solving,  it  should  be  noted  that  the  first  polynomial  can  be  either  the  symmetric 
or  the  antisymmetric  polynomial,  in  which  case  the  other  polynomial  is  then  the  antisymmetric  or  the  symmetric  poly- 
nomial,  respectively.  Reference  with  regard  to  this  step  can  also  be  made  to  elements  (b)  and  (d)  of  algorithm  (29), 
the  equation  xk=xk-1  in  Fig.  3,  and  the  two  separate  branches  (k  odd/even)  in  Fig.  2.  It  should  be  further  noted  that 
any  of  the  zeros  of  the  first  polynomial  can  be  solved  using  any  of  the  zeros  of  the  other  polynomial. 

20 
1.3  Immittance  Spectrum  Frequency  Representation 

Reference  can  be  made  to  Y.  Bistritz  and  S.  Peller,  "Immittance  spectral  pairs  (ISP)  for  speech  encoding,"  in 
Proceedings  of  IEEE  International  Conference  on  Acoustics,  Speech,  and  Signal  Processing,  Minneapolis,  Ml,  U.S. 

25  A.,  Vol.  2,  pp.  9-12,  27-30  April  1993,  for  a  more  detailed  understanding  of  this  section. 
The  immittance  spectrum  frequency  representation  of  the  LPC  filter  is  based  on  a  similar  polynomial  decomposition 

of  a  predictor  polynomial  as  the  line  spectrum  frequency  representation.  The  immittance  spectrum  frequency  repre- 
sentation  (see  Y.  Bistritz  and  Peller)  is  obtained  when  the  polynomial  An(z)  is  decomposed  as 

30  
(30)  An(z)  =  (1/2)(Pn(z)+Qn(z)), 

where 

(31)  P„(z)A  An(z)+zn  An(z1), 

(32)  QJz)A  An(z)-znAn(z1). 
40 

The  symmetric  polynomial  Pn(z)  and  the  antisymmetric  polynomial  Qn(z)  also  have  similar  properties  as  polyno- 
mials  (3)  and  (4).  The  roots  of  Pn(z)  and  Qn(z)  are  on  the  unit  circle,  and  they  are  simple  and  separate  from  each  other. 
Hence,  Pn(z)  and  Qn(z)  can  be  factored  as  follows: 

45 

(33)  Pn(z)  = 
50 

55 

n  even Y\  (1  -  2z  cos  co  i  ■  +  z  )  n  even 
i  =  U  n - l  

(l  +  r-1)  ] ~ [ ( l - 2 r ~ 1   cos<y,  +r~2)   n  odd  

/=l,3...,/?-2 

10 
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(34)  On(z )  

K ( l - z ~ 2 )   Yl  (1-2^   c o s c o j + z 1 )   n e v e n  
/=2,4  n -2  

K ( l - z   )  Yl  ( l -2z_1coscy ,   +z  2)  n  odd  

/  =  2,4  n - l  

where  K  =  -(kn  +  1)/(kn  -  1),  and  co-,,  co,  con_-|  are  the  phase  angles  of  the  zeros  of  the  polynomials 

(35)  P(z)A  Yl  ( l - 2 z - l c o s c o , ~   z ' 2 )  
i  =  l,3... 

(36)  Q(z)A  Yl  (1  -  2  z~l  cos  c o r z - 2 )  
i=2.4... 

such  that 

0  <  C01  <  C02  <  ...  <  C0n1  <  71. 

The  phase  angles  co-,,  co2,  con_-|  and  the  parameter  k  give  an  unique  parametrization  for  the  LPC  filter.  The 
properties  of  the  immittance  spectrum  frequencies  and  their  relation  to  line  spectrum  frequencies  have  been  discussed 
in  more  detail  by  Bistritz  and  Peller. 

It  should  be  noted  that  the  polynomials  (35)  and  (36)  are  not  identical  to  the  polynomials  defined  in  (3)  and  (4). 
The  degrees  of  the  symmetric  polynomials  P(z)  and  Q(z)  defined  in  (35)  and  (36)  are  2mp  and  2mQ,  respectively, 

where 

[ n i l  /;  even 

n  odd 

and 

M o  
f ( w - 2 ) / 2  
[ ( / ' - ! ) /   2 

//  even 

n  odd 

For  example,  if  the  degree  of  the  predictor  polynomial  is  ten  (n  =  10),  then  mp  =  5  and  mQ  =  4.  The  polynomial  A10 
(z)  has  only  n  -  1  =  mp  +  mQ  =  9  immittance  spectrum  frequencies.  This  is  the  most  apparent  difference  to  the  line 
spectrum  frequency  representation.  Note  also,  that  immittance  spectrum  frequencies  cannot  generally  be  solved  from 
line  spectrum  frequencies. 

The  relations  between  the  coefficients  of  An(z)  and  the  coefficients  of  the  polynomials  P(z)  and  Q(z)  are  obtained 
straightforwardly  from  the  equations 

,nnN  [—  ,  /  \  j  -1  -2  -2mp+2  -2mp+1  -2mp (38)  P(z)  =  1+p1z  +p2z  +...+p2z  H  +P-,Z  +Z 

,„„,  _,,  . . ,   -1  -2  -2mp+2  -2mp+1  -2mp (39)  Q(z)  =  1+q1z  +q2z  +...  +  q2z  +q-,z  +z 

and  equations  (31  )-(34).  Equations  (38)  and  (39)  can  be  written  to  the  form  (25)  and  (26)  by  proceeding  as  described 
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above.  Hence,  the  immittance  spectrum  frequencies  co-,,  co2,  con_-|  can  be  solved  in  accordance  with  this  invention 
by  the  techniques  summarized  in  the  algorithm  (29). 

Although  described  above  in  the  context  of  an  audio  encoder  for  use  in  a  radiotelephone,  it  should  be  realized  that 
the  teachings  of  this  invention  are  not  limited  for  use  in  only  this  one  important  application.  For  example,  and  referring 

5  again  to  Fig.  1,  the  audio  encoder  can  be  used  in  a  PC  or  workstation  connected  to  a  network.  The  communication 
channel  30  may  then  be  a  wired  network  (e.g.,  Internet). 

Thus,  the  invention  has  been  particularly  shown  and  described  with  respect  to  preferred  embodiments  thereof,  it 
will  be  understood  by  those  skilled  in  the  art  that  changes  in  form  and  details  may  be  made  therein  without  departing 
from  the  scope  and  spirit  of  the  invention. 

10 

Claims 

1.  A  method  for  determining  line  spectrum  frequencies  of  a  linear  predictive  coder  (LPC)  filter  that  is  expressed  as 
is  symmetric  and  antisymmetric  polynomials,  the  zeros  of  which  determine  the  line  spectrum  frequencies  of  the  LPC 

filter,  comprising  the  steps  of: 

expressing  the  polynomials  using  explicit  forms  of  Chebyshev  polynomials; 

20  interatively  solving  a  zero  of  a  first  of  the  polynomials  using  a  zero  of  the  other  one  of  the  polynomials;  and 

successively  eliminating  zeros  from  the  polynomials  by  polynomial  division  so  as  to  determine  the  line  spectrum 
frequencies. 

25  2.  A  method  as  set  forth  in  claim  1  ,  and  further  comprising  a  step  of  transmitting  a  LPC  coded  signal  to  a  communi- 
cation  channel. 

3.  A  method  as  set  forth  in  claim  2,  wherein  the  step  of  transmitting  transmits  the  LPC  coded  signal  to  a  radio  com- 
munication  channel. 

30 
4.  A  method  as  set  forth  in  any  preceding  claim,  wherein  the  zero  of  the  other  one  of  the  polynomials  is  used  as  an 

initial  value  in  iteratively  solving  the  zero  of  the  first  one  of  the  polynomials. 

5.  A  mobile  station  capable  of  wireless  communications  over  a  communication  channel,  said  mobile  station  compris- 
es  ing  a  speech  transducer  for  outputting  a  speech  signal,  and  further  comprising: 

a  linear  predictive  coder  (LPC)  having  an  input  coupled  to  the  speech  signal  and  an  output  coupled  to  the 
communication  channel;  said  LPC  comprising, 

40  a  LPC  filter  having  a  first  input  coupled  to  the  speech  signal  and  an  output; 

a  LPC  analysis  block  having  an  input  coupled  to  the  speech  signal  and  an  output  for  generating  LPC  coefficients 
for  said  LPC  filter;  and 

45  a  transform  block  having  an  input  coupled  to  said  output  of  said  LPC  analysis  block  for  transforming  said  LPC 
coefficients  into  a  line  spectrum  frequency  (LSF)  representation  thereof,  said  transform  block  having  an  output 
coupled  to  a  second  input  of  said  LPC  filter;  wherein 

said  LPC  filter  comprises  symmetric  and  antisymmetric  auxiliary  polynomials,  the  zeros  of  which  determine 
so  the  line  spectrum  frequencies  of  the  LPC  filter,  and  wherein 

said  transform  block  includes  first  means  for  expressing  the  auxiliary  polynomials  using  explicit  forms  of  Cheby- 
shev  polynomials; 

55  second  means  for  iteratively  solving  a  zero  of  a  first  of  the  polynomials  using  a  zero  of  the  other  one  of  the 
polynomials;  and 

said  transform  block  further  comprises  third  means  for  successively  eliminating  zeros  from  the  polynomials 

12 
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by  polynomial  division  so  as  to  determine  the  line  spectrum  frequencies. 

A  mobile  station  as  set  forth  in  claim  5,  and  further  comprising  a  quantizer  block  and  an  interpolator  block  coupled 
in  series  between  said  output  of  said  transform  block  and  said  second  input  of  said  LPC  analysis  filter. 

A  mobile  station  as  set  forth  in  claim  5  or  6,  wherein  said  third  means  is  responsive  to  a  degree  of  a  given  one  of 
the  polynomials  being  two,  for  solving  the  last  zero  analytically. 

A  method  for  determining  the  immittance  spectrum  frequencies  of  a  Linear  Predictive  Coder  (LPC)  filter  expressed 
as  symmetric  and  antisymmetric  polynomials,  the  zeros  of  which  determine  the  immittance  spectrum  frequencies, 
comprising  the  steps  of: 

expressing  the  polynomials  using  explicit  forms  of  Chebyshev  polynomials; 

iteratively  solving  a  zero  of  a  first  one  of  the  polynomials  using  a  zero  of  the  other  one  of  the  polynomials;  and 

successively  eliminating  zeros  from  the  polynomials  by  polynomial  division  so  as  to  determine  the  immittance 
spectrum  frequencies. 

A  method  as  set  forth  in  claim  8,  and  further  comprising  a  step  of  transmitting  a  LPC  coded  signal  to  a  communi- 
cation  channel. 

A  method  as  set  forth  in  claim  9,  wherein  the  step  of  transmitting  transmits  the  LPC  coded  signal  to  a  radio  com- 
munication  channel. 

A  method  as  set  forth  in  any  of  claims  8  to  10,  wherein  the  zero  of  the  other  one  of  the  polynomials  is  used  as  an 
initial  value  in  iteratively  solving  the  zero  of  the  first  one  of  the  polynomials. 

13 
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