(19)
(11) EP 0 780 822 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
25.06.1997  Patentblatt  1997/26

(21) Anmeldenummer: 96203531.7

(22) Anmeldetag:  13.12.1996
(51) Internationale Patentklassifikation (IPC)6G08C 17/04
(84) Benannte Vertragsstaaten:
DE FR GB IT

(30) Priorität: 20.12.1995 DE 19547684

(71) Anmelder:
  • Philips Patentverwaltung GmbH
    22335 Hamburg (DE)

    DE 
  • Philips Electronics N.V.
    5621 BA Eindhoven (NL)

    FR GB IT 

(72) Erfinder:
  • Ritter, Siegfried
    99310 Arnstadt (DE)

(74) Vertreter: Poddig, Dieter, Dipl.-Ing. 
Philips Patentverwaltung GmbH, Röntgenstrasse 24
22335 Hamburg
22335 Hamburg (DE)

   


(54) Verfahren und Anordnung zum kontaktlosen Übertragen von Messwerten


(57) Eine nicht leicht zugängliche Meßstelle ist häufig mit einer Energiequelle versehen, die die Elemente für den Meßvorgang speist, insbesondere die Umsetzung eines analogen Meßsignals in digitale Meßdaten und ggf. deren Abspeicherung. Diese Meßdaten einer Meßstelle werden berührungslos zu einer Basisstation übertragen, sobald diese in die Nähe der Meßstelle gebracht wird und ein Signal aussendet. Um die Energiequelle möglichst wenig zu belasten, wird erfindungsgemäß vorgeschlagen, den Sender für die Übertragung der Meßdaten von der Meßstelle zur Basisstation nicht von der Energiequelle zu speisen, sondern dafür ein von der Basisstation ausgesandtes Signal zu verwenden. Aus diesem Signal kann in der Meßstelle beispielsweise eine Spannung zum Speisen des Senders gewonnen werden, während eine weitere Möglichkeit darin besteht, daß bei einer induktiven Kopplung zwischen Basisstation und Meßstelle über Schwingkreise an den Schwingkreis der Meßstelle eine Impedanz über einen Schalter angeschlossen wird, der von den übetragenden Meßdaten gesteuert wird. In der Basisstation kann diese Impedanzänderung beispielsweise durch Messung des Schwingkreisstroms ausgewertet werden. Das von der Basisstation ausgesandte Signal kann in der Meßstelle zusätzlich verwendet werden, um die Energiequelle wieder aufzuladen.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zum kontaktlosen Übertragen von Meßwerten sowie eine entsprechende Anordnung zum kontaktlosen Übertragen von Meßwerten.

[0002] Verfahren bzw. Anordnungen zum kontaktlosen Übertragen werden bevorzugt für Meßwerte von solchen Meßstellen verwendet, die nicht leicht zugänglich sind und deren Meßwerte nicht kontinuierlich benötigt werden. Hierzu gehören beispielsweise viele Verbrauchsdatenmessungen sowie Temperaturmessungen wie die Messung einer Raumtemperatur zur Steuerung einer Heizungsanlage. Auch im medizinischen Bereich, wenn physiologische Meßwerte von einer implantierten Meßstelle über einen längeren Zeitraum benötigt werden, sind derartige Verfahren bzw. Anordnungen vorteilhaft einsetzbar.

[0003] Aus der WO 95-27272 ist ein Verfahren und ein Gerät bekannt, mit dem Meßwerte von einer entfernten Meßstelle von einem Lesegerät erfaßt werden können. An der Meßstelle ist ein Sensor und eine elektronische Schnittstellenschaltung vorhanden, die von einer örtlichen Energiequelle betrieben wird und die die Meßwerte des Sensors in vorzugsweise digitale Meßdaten umsetzt. Ferner sind sowohl Meßstelle als auch Lesegerät mit einer Sende/Empfangsanordnung versehen. Um möglichst wenig Energie aus der Energiequelle zu verbrauchen, wird die Schnittstellenschaltung während längerer Zeitabschnitte inaktiv geschaltet und nur periodisch empfangsbereit geschaltet. Wenn Daten übertragen werden sollen, sendet das Lesegerät ein Datenanforderungssignal aus, ggf. mehrmals hintereinander, bis ein Anforderungssignal in eine Zeitspanne fällt, in der die Schnittstellenschaltung aktiv geschaltet ist. Diese Schnittstellenschaltung veranlaßt daraufhin das Aussenden eines Meßwerts oder eine Folge von Meßwerten. Dieses Aussenden von Daten benötigt relativ viel Energie aus der Energiequelle, wenn auch nur kurze Zeit, so daß insbesondere bei einer häufigen Meßdatenübertragung die Energiequelle stark belastet wird und eine geringe Lebensdauer hat.

[0004] Aus der EP 0 601 739 A2 ist ein Verfahren und eine Anordnung zur Datenübertragung von einer Meßstelle mit Hilfe einer Abfrageschaltung bekannt, wobei die Schaltung der Meßstelle und die Abfrageschaltung über Antennen miteinander gekoppelt sind. Über diese Antennen wird die Energie zum Betreiben des Sensors und zum Umsetzen der Meßwerte und für deren Übertragung geliefert. Dabei benötigt die Meßstelle also keine eigene Energiequelle. Dabei kann eine Messung jedoch nur erfolgen, wenn die Schnittstellenschaltung aktiv ist. Außerdem kann auf diese Weise von einer Schnittstellenschaltung praktisch nur eine Meßstelle erfaßt werden. Andererseits kann bei diesem bekannten Verfahren nicht der Fall eintreten, daß eine Messung bzw. Übertragung von Meßdaten nicht mehr möglich ist, weil eine Energiequelle vorzeitig erschöpft ist, da die Abfrageschaltung leicht zugänglich bzw. stationär ist und daher mit ausreichend großen Energiereserven versehen werden kann.

[0005] Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren bzw. eine Anordnung anzugeben, mit der die Meßdaten von vorzugsweise mehreren Meßstellen erfaßt werden können, wobei diese Meßstellen Energiequellen enthalten, deren Lebensdauer bei kleinen Abmessungen möglichst lang ist.

[0006] Zur Lösung dieser Aufgabe wird die Energiequelle der bzw. jeder Meßstelle nur zum Aufnehmen und Umsetzen der Meßwerte verwendet, während zum Übertragen, d.h. zum Aussenden der Meßdaten von der Meßstelle zu einer Basisstation, die von der Basisstation ausgesendete Energie verwendet wird. Dadurch wird die Energiequelle der Meßstelle zum Aussenden der Daten nicht belastet und hat somit eine längere Lebensdauer. Die Basisstation, insbesondere wenn diese für die Übertragung von Meßwerten von mehreren Meßstellen verwendet wird, kann mit einer derartigen Sendeleistung ausgestattet werden, daß auch bei einer gewissen Entfernung von der Meßstelle in dieser noch genügend Energie empfangen wird, die zum Übertragen der Meßwerte verwendet werden kann.

[0007] Eine noch längere Lebensdauer der Energiequelle wird möglich, wenn in der Meßstelle die von der Basisstation empfangene Energie dazu verwendet wird, um der Energiequelle Energie zum Aufladen bzw. zum Nachladen zuzuführen. Bei entsprechender Sendedauer der Basisstation ist es dann möglich, die gesamte Energie, die zwischen zwei Übertragungsvorgängen in der Meßstelle verbraucht wurde, wieder in die Energiequelle nachzuladen, so daß ein nahezu zeitlich unbegrenzter Betrieb der Meßstelle auch bei sehr kleinen Energiequellen möglich ist, sofern diese ausreichend Energie speichern, die für die zwischen zwei Übertragungsvorgängen in der Meßstelle stattfindenden Funktionen notwendig ist.

[0008] Dies ist besonders dann wichtig, wenn die Zeitpunkte der Übertragungen von Meßdaten zeitlich relativ weit auseinander liegen und in den Zwischenzeiten häufig Meßwerte des Sensors in Meßdaten umgesetzt und in einem Speicher der Auswerteschaltung zwischengespeichert werden. Die Datenerfassung zwischen den Übertragungsvorgängen muß von der Energiequelle der Meßstelle gespeist werden. Die gespeicherten Meßdaten werden dann für eine Übertragung aus dem Speicher über den Sender/Empfänger der Meßstelle zur Basisstation übertragen.

[0009] Die Verwendung der in der Meßstelle von der Basisstation empfangenen Energie zum Aussenden der Meßdaten kann dadurch erfolgen, daß aus dieser Energie, die beispielsweise über eine Spule oder einen Kondensator aufgenommen wird, eine Gleichspannung erzeugt wird, die zum Speisen des Senders der Meßstelle verwendet wird. Dieser Sender sendet dann vorzugsweise auf einer anderen Frequenz als die Baisstation. Eine andere Möglichkeit besteht darin, wenn die Basisstation und die Meßstelle induktiv über je eine als Spule ausgeführte Antenne miteinander gekoppelt sind, daß an die Spule der Meßstelle eine steuerbare Impedanz angeschlossen ist, die von den Meßdaten gesteuert wird, und daß in der Basisstation die Änderung der Impedanz ausgewertet wird. Dieses Prinzip ist grundsätzlich bei Datenaustauschanordnungen mit einem tragbaren Datenträger und einer festen Station bekannt, beispielsweise aus der DE 43 23 530 Al, in der auch das Nachladen eines Energiespeichers mittels der von der festen Station ausgesendeten Energie beschrieben ist.

[0010] Die Erfindung wird anhand eines in der Figur dargestellten Ausführungsbeispiels näher erläutert.

[0011] Darin sind die für die Erfindung wichtigsten Elemente einer Basisstation 1 und einer Meßstelle 2 dargestellt. Die Basisstation 1 enthält eine Steueranordnung 14, die allgemein durch einen Prozessor, insbesondere einen Mikroprozessor mit weiteren Elementen gebildet wird. Diese Steueranordnung 14 steuert einen Sender/Empfänger 12, der u.a. einen Oszillator und einen Demodulator enthält. Diese sind an einen Reihenschwingkreis aus einer Reihenschaltung eines Kondensators 11 und einer Spule 10 angeschlossen, wobei diese Spule eine Antenne darstellt.

[0012] Diese Spule 10 ist während einer Übertragung von Meßwerten mit einer Spule 20 der Meßstelle 2 induktiv gekoppelt, die die Antenne dieser Meßstelle darstellt. Die Spule 20 bildet mit einem Kondensator 21 einen Parallelschwingkreis, der u.a. mit einem Gleichrichter 22 verbunden ist, der aus der in der Spule 20 induzierten Spannung eine Gleichspannung erzeugt. Wenn diese Gleichspannung einen genügend großen Wert hat, wird in einer Ladeschaltung 24 eine Ladespannung für einen Energiespeicher 26, der hier als Akkumulator dargestellt ist, erzeugt und der Akkumulator 26 damit aufgeladen. Die beiden Spannungspole des Akkumulators 26 sind mit VS und VD bezeichnet und mit den entsprechend gezeichneten Speisespannungsanschlüssen von zwei Elementen 32 und 34 verbunden, die nachfolgend erläutert werden.

[0013] Der Parallelschwingkreis aus der Spule 20 und dem Kondensator 21 ist ferner mit einem Sender 30 und einem Empfänger 28 der Meßstelle 2 verbunden. Der Empfänger 28 demoduliert ein Signal, mit dem der Sender/Empfänger 12 der Basisstation 1 die über den Reihenschwingkreis aus der Spule 10 und dem Kondensator 11 ausgesendete Schwingung moduliert hat. Diese Modulation enthält insbesondere ein Kommando für die Meßstation 2, nachfolgend nach diesem Kommando Meßdaten zu übertragen.

[0014] Dieses Kommando wird einer Auswerteschaltung 34 zugeführt, die auch als einfacher Mikroprozessor ausgeführt sein kann und die mit einem Sensor 36 gekoppelt ist, der Meßwerte abgibt. Ein Meßwert kann beispielsweise durch ein analoges elektrisches Signal dargestellt sein, und dieses wird in der Auswerteschaltung 34 in digitale Meßdaten umgesetzt.

[0015] Diese Meßdaten werden einem nichtflüchtigen Speicher 32 zugeführt und darin eingeschrieben. Wenn von der Basisstation 1 ein Kommando zum Übertragen von Meßdaten im Empfänger 28 erkannt wird, steuert die Auswerteschaltung 34 den Speicher 32 an und liest die gespeicherten Meßwerte aus und führt diese dem Sender 30 zu. Der Sender 30 enthält hier die Reihenschaltung eines Schalters und einer Impedanz Z. Diese Impedanz kann im einfachsten Fall ein Widerstand sein, der bei geschlossenem Schalter den Schwingkreis aus der Spule 20 und dem Kondensator 21 belastet. Diese zusätzliche Belastung kann in dem Sender/Empfänger 12 der Basisstation 1 ausgewertet werden, beispielsweise dadurch, daß bei einer zusätzlichen Belastung in der Meßstelle 1 in dem Reihenschwingkreis aus der Spule 10 und dem Kondensator 11 der Basisstation 2 ein höherer Strom fließt. Die Impedanz Z kann jedoch auch beispielsweise als Kondensator ausgeführt sein, so daß bei geschlossenem Schalter die Resonanzfrequenz des Parallelschwingkreises aus der Spule 20 und dem Kondensator 21 sowie der dann kapazitiven Impedanz Z auf einen anderen Wert abgestimmt wird. Auch dies kann in dem Sender/Empfänger 12 ausgewertet werden.

[0016] Es sei bemerkt, daß der Reihenschwingkreis aus der Spule 10 und dem Kondensator 11 sowie der Parallelschwingkreis aus der Spule 20 und dem Kondensator 21 zumindest bei offenem Schalter in dem Sender 30 auf die im wesentlichen gleiche Resonanzfrequenz abgestimmt sind.

[0017] Das Übertragen der Meßwerte von der Meßstelle 2 zur Basisstation 1 erfolgt also dadurch, daß lediglich ein Schalter geschlossen bzw. geöffnet wird. Das für die Steuerung des Schalters benötigte Steuersignal erfordert nur eine äußerst geringe Leistung, insbesondere wenn der Schalter als Feldeffekttransistor ausgeführt ist. Wenn auch die Auswerteschaltung 34 und der nichtflüchtige Speicher 32 in MOS-Technik ausgeführt sind, wird für deren Betrieb nur sehr wenig elektrische Energie aus dem Akkumulator 26 benötigt. Dadurch ist es möglich, daß auch während der Zeit, in der die Meßstelle 2 nicht mit der Basisstation 1 gekoppelt ist bzw. letztere kein Signal aussendet, wiederholt Meßwerte des Sensors 36 in Meßdaten umgesetzt und im Speicher 32 nacheinander abgespeichert werden. Dies kann zu wiederholten Zeitpunkten geschehen, wofür die Auswerteschaltung 34 dann mit einer zeitgesteuerten Meßschaltung versehen ist, oder wenn das vom Sensor 36 gelieferte Meßsignal bestimmte Bedingungen erfüllt, beispielsweise bestimmte Grenzwerte oder Änderungsgeschwindigkeiten überschreitet. Für die Anzahl der im Speicher 32 abgespeicherten Meßdaten sowie die gesamte Betriebsdauer der Meßstelle 2 zwischen zwei Übertragungen von Meßdaten zur Basisstation steht nahezu die gesamte Kapazität des Akkumulators 26 zur Verfügung, da er bei jeder Übertragung wieder auf seine maximale Kapazität aufgeladen werden kann, indem die Basisstation genügend lange ein Signal aussendet.

[0018] Der Speicher 32, genauer ein Teil davon, kann auch dazu verwendet werden, ein Programm zu speichern, nach dem die Anordnung 34 arbeitet. Dieses Programm oder Teile von Programmen können auch von der Basisstation 1 über den Empfänger 28 der Meßstelle 2 in den Speicher 32 eingeschrieben werden. Dadurch kann beispielsweise während des Betriebs der Meßstelle das Auswerteprogramm für die Meßwerte des Sensors 36 geändert werden.

[0019] Die Elemente 22, 24 sowie 28 bis 34 können zweckmäßig in einer einzigen integrierten Schaltung zusammengefaßt werden, um einen möglichst kleinen und kostengünstigen Aufbau zu verwirklichen. Über die Schnittstelle zum Sensor 36 oder noch günstiger an eine aus der integrierten Schaltung herausgeführten Schnittstelle zum Speicher 32 können dann externe Speicher zusätzlich oder sogar anstelle des Sensors 36 angeschlossen werden, wodurch die integrierte Schaltung als vergrößerter Speicher einer Datenaustauschanordnung dient.


Ansprüche

1. Verfahren zum kontaktlosen Übertragen von Meßwerten wenigstens einer Meßstelle, an der die Meßwerte mittels eines Sensors gewonnen und in einer Auswerteschaltung, die von einer örtlichen Energiequelle betrieben wird, in Meßdaten umgesetzt werden, die zu einer Basisstation übertragen werden, wenn diese Basisstation in räumliche Nähe zur Meßstelle gebracht wird und ein Signal zur Meßstelle aussendet, dadurch gekennzeichnet,
daß die Energiequelle nur zum Betrieb der Auswerteschaltung verwendet wird und daß die Meßdaten von der Meßstelle zur Basisstation mit Hilfe der Energie übertragen werden, die das von der Basisstation zur Meßstelle gesendete Signal enthält.
 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
daß in der Meßstelle empfangene Energie aus dem von der Basisstation ausgesendeten Signal außerdem verwendet wird, um der Energiequelle zusätzliche Energie zuzuführen.
 
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,
daß die Auswerteschaltung zu bestimmten Zeitpunkten betrieben wird, um Meßsignale des Sensors in Meßdaten umzusetzen und diese Meßdaten in einem Speicher der Auswerteschaltung zwischenzuspeichern, wobei die Meßdaten aus dem Speicher unabhängig von ihrer Erfassungszeit zur Basisstation übertragen werden.
 
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Basisstation und die Meßstelle induktiv über je eine Spule miteinander gekoppelt sind, dadurch gekennzeichnet,
daß die Meßdaten durch Änderung einer mit der Spule der Meßstelle gekoppelten Impedanz und Auswertung der Impedanzänderung in der Basisstation übertragen werden.
 
5. Anordnung zum kontaktlosen Übertragen von Meßwerten wenigstens einer Meßstelle mit

für jede Meßstelle wenigstens einem Sensor und einer Auswerteschaltung zum Umsetzen der Meßwerte des Sensors in Meßdaten,

einer Energiequelle und einem Sender/Empfänger zum Aussenden von Meßdaten und zum Empfangen von Signalen,

wenigstens einer Basisstation mit einer Steuerschaltung und einem

Sender/Empfänger zum Aussenden von Signalen an den Sender/Empfänger der Meßstelle und zum Empfangen von Meßdaten von der Meßstelle,

wobei die Sender/Empfänger der Meßstelle und der Basisstation zeitweise miteinander gekoppelt sind und die Meßstelle erst bei Empfang des Signals der Basisstation Meßdaten aussendet, dadurch gekennzeichnet,

daß die Energiequelle der Meßstelle mit einem Speisespannungsanschluß nur der Auswerteschaltung verbunden ist und daß der Sender der Meßstelle nur mittels der von der Basisstation empfangenen Energie die Meßdaten zur Basisstation überträgt.


 
6. Anordnung nach Anspruch 6, dadurch gekennzeichnet,
daß an dem Sender/Empfänger der Meßstelle eine Ladeschaltung angeschlossen ist, die bei Empfang von Energie im Empfänger eine Spannung zum Aufladen der Energiequelle abgibt.
 
7. Anordnung nach Anspruch 5 oder 6, dadurch gekennzeichnet,
daß die Auswerteschaltung eine Meßsteuerschaltung aufweist, um die Auswerteschaltung nur während vorgegebener erster Zeitspannen in einen Umsetzzustand und während der übrigen Zeitspannen in einen Energiesparzustand zu versetzen und daß die Auswerteschaltung einen Speicher zum Speichern von zu diesen in ersten Zeitspannen umgesetzten Meßdaten aufweist und daß ein Ausgang des Speichers mit dem Sender/Empfänger der Meßstelle gekoppelt ist.
 
8. Anordnung nach einem der Ansprüche 5 bis 7, wobei der Sender/Empfänger sowohl der Meßstelle als auch der Basisstation eine als Spule ausgeführte Antenne aufweisen, die miteinander induktiv koppelbar sind, dadurch gekennzeichnet, daß an die Spule der Meßstelle eine von der Auswerteschaltung steuerbare Impedanz angeschlossen ist.
 
9. Meßstelle für eine Anordnung nach einem der Ansprüche 5 bis 8, mit einem Sensor zum Abgeben von Meßwerten, einer Energiequelle, einer Auswerteschaltung zum Umsetzen der Meßwerte in Meßdaten und einem Sender/Empfänger zum Übertragen von Meßdaten und zum Empfangen von Signalen, dadurch gekennzeichnet,
daß die Energiequelle nur mit einem Speisespannungsanschluß der Auswerteschaltung gekoppelt ist und daß der Sender/Empfänger eingerichtet ist, um Meßdaten nur bei Empfang eines Signals unter Verwendung der mit diesem Signal empfangenen Energie auszusenden.
 
10. Meßstelle nach Anspruch 9, dadurch gekennzeichnet,
daß ein Speicher zum Zwischenspeichern von Meßdaten vorgesehen ist, dessen Ausgang mit dem Sender/Empfänger gekoppelt ist, wobei die Auswerteschaltung, der Speicher und der Sender/Empfänger in einer integrierten Schaltung zusammengefaßt sind.
 
11. Meßstelle nach Anspruch 10, dadurch gekennzeichnet,
daß ein Datenanschluß des Speichers aus der integrierten Schaltung herausgeführt ist zum Anschluß weiterer Speicher.
 




Zeichnung







Recherchenbericht