(19)
(11) EP 0 797 051 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
24.09.1997  Patentblatt  1997/39

(21) Anmeldenummer: 97810112.9

(22) Anmeldetag:  03.03.1997
(51) Internationale Patentklassifikation (IPC)6F23D 17/00, F23D 11/40, F23D 14/02, F23C 7/00
(84) Benannte Vertragsstaaten:
DE FR GB IT

(30) Priorität: 20.03.1996 DE 19610930

(71) Anmelder: ABB RESEARCH LTD.
8050 Zürich (CH)

(72) Erfinder:
  • Sattelmayer, Thomas, Dr.
    5318 Mandach (CH)
  • Valk, Martin, Dr.
    5442 Fislisbach (CH)

(74) Vertreter: Klein, Ernest et al
Asea Brown Boveri AG Immaterialgüterrecht(TEI) Haselstrasse 16/699 I
5401 Baden
5401 Baden (CH)

   


(54) Brenner für einen Wärmeerzeuger


(57) Bei einem Brenner, der im wesentlichen aus einem Drallerzeuger (100) für einen Verbrennungsluftstrom (115) und aus Mitteln zur Eindüsung eines Brennstoffes in den Verbrennungsluftstrom (115) besteht, ist stromab des erwähnten Drallerzeugers eine Mischstrecke (220) angeordnet. Diese Mischstrecke (220) weist innerhalb einer ersten Teilstrecke (200) eine Anzahl von in Strömungsrichtung verlaufenden Uebergangskanälen (201), welche die nahtlose Ueberführung der im Drallerzeuger (100) gebildeten Strömung (40) in ein nachgeschaltetes Mischrohr (20) sicherstellen. Die Austrittsebene dieses Mischrohres (20) zur Brennkammer (30) ist mit einer Abrisskante ausgebildet, welche der Stabilisierung und Vergrösserung einer sich stromab bildenden Rückströmzone (50) dient. Konzentrisch zur Mischstrecke (220) ist eine Anzahl Mischelemente (300) vorgesehen, welche der Bildung eines Gemisches (304) aus Verbrennungsluft (115a) und einem Brennstoff (303) dienen. Dieses Gemisch (303) aus dem jeweiligen Mischelement (300) bildet dann jeweils eine Pilotstufe der Brennkammer (30).




Beschreibung

Technisches Gebiet



[0001] Die vorliegende Erfindung betrifft einen Brenner gemäss Oberbegriff des Anspruchs 1.

Stand der Technik



[0002] Alle Brenner, die als reine Vormischbrenner betrieben werden, liefern die niedrigsten NOx-Emissionen an Betriebspunkten, die sehr nahe an der mageren Löschgrenze liegen. Von daher wird die Luftverteilung beim Betrieb von Gasturbinen mit Vormischbrennkammern so ausgelegt, dass sich ein möglichst magerer, aber noch sicher betreibbarer Betriebspunkt ergibt. Wird die Last unter die maximale Leistung abgesenkt, indem die Brennstoffmenge reduziert wird, resultiert ohne Regeleingriff in den Kompressor ein Flammenlöschen, da die magere Löschgrenze überschritten wird. Kann in diesem Zusammenhang die Kompressorluftmenge moduliert werden, wie dies bei modernen Gasturbinen der Fall ist, so kann das Flammenlöschen im Prinzip zwar durch die Reduzierung der Luftmenge verhindert werden, in dem Sinne, als die adiabate Flammentemperatur etwa konstant gehalten wird. Im allgemeinen steigt aber infolge des kleiner werdenden Turbinendruckverhältnisses die Temperatur im Niederdruckteil der Turbine unzulässig an. Uebliche Methoden dieses Problem zu umgehen sind:

a) Luftbypass in der Brennkammer;

b) Herunterfahren der Brennstoffmenge bei einem Teil der operierenden Brenner;

c) Umschalten auf eine Diffusionsstufe, wie dies üblicherweise als Standardmethode bewerkstelligt wird.

Die ersten zwei Methoden gemäss a) und b) bedingen komplexe Brennkammerkonstruktionen oder Brennstoffverteilsysteme. Die dritte Methode gemäss c) führt zu einem sprunghaften Anstieg der NOx-Emissionen, dergestalt, dass diese in den höheren Lastbereichen über die vom Gesetzgeber maximal festgelegten Werte fallen.

[0003] Aus EP-B1-0 321 809 ist ein aus mehreren Schalen bestehender kegelförmiger Brenner, sogenannter Doppelkegelbrenner, zur Erzeugung einer geschlossenen Drallströmung im Kegelkopf bekanntgeworden, welche aufgrund des zunehmenden Dralls entlang der Kegelachse instabil wird und in eine annulare Drallströmung mit Rückströmung im Kern übergeht. Brennstoffe, wie beispielsweise gasförmige Brennstoffe, werden entlang der durch die einzelnen benachbarten Schalen gebildeten Kanäle, auch Lufteintrittsschlitze genannt, eingedüst und homogen mit der Luft vermischt, bevor die Verbrennung durch Zündung am Staupunkt der Rückströmzone oder Rückströmblase, welche als Flammenhalter benutzt wird, einsetzt. Flüssige Brennstoffe werden vorzugsweise über eine zentrale Düse am Brennerkopf eingedüst und verdampfen dann im Kegelhohlraum. Unter gasturbinentypischen Bedingungen findet die Zündung dieser flüssigen Brennstoffe schon früh in der Nähe der Brennstoffdüse statt, womit nicht zu umgehen ist, dass die NOx-Werte gerade aufgrund dieser mangelnden Vormischung kräftig ansteigen, was beispielsweise das Einspritzen von Wasser notwendig macht. Darüber hinaus musste festgestellt werden, dass der Versuch, wasserstoffhaltige Gase ähnlich wie Erdgas zu verbrennen, zu Frühzündproblemen an den Gasbohrungen mit anschliessender Ueberhitzung des Brenners geführt haben. Hiergegen hat man Abhilfe gesucht, indem am Brenneraustritt eine spezielle Injektionsmethode für solche gasförmige Brennstoffe eingeführt worden ist, deren Resultate aber nicht ganz zu befriedigen vermochten.

Darstellung der Erfindung



[0004] Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Verfahren der eingangs genannten Art Vorkehrungen vorzuschlagen, durch welche eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt und durch welche eine betriebssichere und optimale Flammenpositionierung an erwünschter Stelle erreicht wird.

[0005] Zum einen beinhaltet der vorgeschlagene Brenner Vorkehrungen, welche kopfseitig und stromauf einer nachgeschalteten Mischstrecke einen Drallerzeuger aufweist, der vorzugsweise dahingehend ausgelegt werden kann, dass die aerodynamischen Grundprinzipien des sogenannten Doppelkegelbrenners nach EP-A1-0 321 809 benutzt werden. Grundsätzlich ist aber auch der Einsatz eines axialen oder radialen Drallerzeugers möglich. Die Mischstrecke selbst besteht vorzugsweise aus einem rohrförmigen Mischelement, im folgenden Mischrohr genannt, welches ein wesentlich verbessertes Vormischen von Brennstoffen verschiedener Art gestattet.

[0006] Die Strömung aus dem Drallerzeuger wird nahtlos in das Mischrohr eingeleitet: Dies geschieht durch eine Uebergangsgeometrie, die aus Uebergangskanälen besteht, welche in der Anfangsphase dieses Mischrohres ausgenommen sind, und welche die Strömung in den anschliessenden effektiven Durchflussquerschnitt des Mischrohres überführen. Diese verlustarme Strömungseinleitung zwischen Drallerzeuger und Mischrohr verhindert zunächst die unmittelbare Bildung einer Rückströmzone am Ausgang des Drallerzeugers.

[0007] Zunächst wird die Drallstärke im Drallerzeuger über seine Geometrie so gewählt, dass das Aufplatzen des Wirbels nicht im Mischrohr, sondern weiter stromab am Brennkammereintritt erfolgt, wobei die Länge dieses Mischrohres so dimensioniert ist, dass sich eine ausreichende Mischungsgüte für alle Brennstoffarten ergibt. Ist beispielsweise der eingesetzte Drallerzeuger nach den Grundzügen des Doppelkegelbrenners aufgebaut, so ergibt sich die Drallstärke aus der Auslegung des entsprechenden Kegelwinkels, der Lufteintrittsschlitze und deren Anzahl.

[0008] Im Mischrohr besitzt das Axialgeschindigkeits-Profil ein ausgeprägtes Maximum auf der Achse und verhindert dadurch Rückzündungen in diesem Bereich. Die Axialgeschwindigkeit fällt zur Wand hin ab. Um Rückzündungen auch in diesem Bereich zu unterbinden, werden verschiedene Vorkehrungen vorgesehen: Beispielsweise zum einen lässt sich das gesamte Geschwindigkeitsniveau durch Verwendung eines Mischrohres mit einem ausreichend kleinen Durchmesser anheben. Eine andere Möglichkeit besteht darin, nur die Geschwindigkeit im Aussenbereich des Mischrohres zu erhöhen, indem ein kleiner Teil der Verbrennungsluft über einen Ringspalt oder durch Filmlegungsbohrungen stromab der Uebergangskanäle in das Mischrohr einströmt.

[0009] Was die erwähnten Uebergangskanäle zur Einleitung der Strömung aus dem Drallerzeuger in das Mischrohr betrifft, so ist zu sagen, dass der Verlauf dieser Uebergangskanäle spiralförmig verengend oder erweiternd ausgebildet sein kann, entsprechend dem effektiven anschliessenden Durchflussquerschnitt des Mischrohres.

[0010] Ein Teil des allenfalls erzeugten Druckverlustes kann durch Anbringung eines Diffusors am Ende des Mischrohres wettgemacht werden. In diesem Bereich oder stromauf kann auch eine Venturistrecke vorgesehen werden.

[0011] Am Ende des Mischrohres schliesst sich die Brennkammer mit einem Querschnittssprung an. Hier bildet sich eine zentrale Rückströmzone, deren Eigenschaften die eines Flammenhalters sind.
Die Erzeugung einer stabilen Rückströmzone erfordert eine ausreichend hohe Drallzahl im Mischrohr. Ist aber eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner, stark verdrallter Luftmengen, 5-20% der Gesamtluftmenge, am Rohrende erzeugt werden.

[0012] In Verbindung mit dem erwähnten Querschnittssprung wird das Ende des Mischrohres mit einer Abrisskante ausgebildet, welche der Rückströmzone eine hohe räumliche Stabilität verleiht. Allgemein lassen sich durch die erwähnten Massnahmen folgende Vorteile erzielen:

a) Stabile Flammenposition;

b) Tiefere Schadstoff-Emissionen (Co, UHC, NOx);

c) Minimierung der Pulsationen;

d) Vollständiger Ausbrand;

e) Grosse Betriebsbereich-Abdeckung;

f) Gute Querzündung zwischen den verschiedenen Brennern, insbesondere bei gestufter Lasterstellung, bei welcher die Brenner untereinander interdependent betrieben werden;

g) Die Flamme kann der entsprechenden Brennkammergeometrie angepasst werden;

h) Kompakte Bauweise;

i) Verbesserte Mischung der Strömungsmedien;

j) Verbesserter "Patternfaktor" der Temperaturverteilung in der Brennkammer (= ausgeglichenes Temperaturprofil der Brennkammerströmung).



[0013] Zum anderen kann dieser Brenner dergestalt erweitert werden, dass im Bereich des Querschnittsprunges, konzentrisch zum Mischrohr, eine Anzahl einzelner, in sich abgeschlossener Mischelemente angeordnet sind, wobei jedes Mischelement die Eigenschaften eines Pilotbrenners zeigt, solange die Luftzahl entsprechend gewählt ist. Ein kleiner Teil der Verbrennungsluft wird vom Hauptluftstrom abgezweigt und strömt in die besagten Mischelemente, wobei hier 2 bis 10% Verbrennungsluft ausreichend sind. Zu jedem Mischelement gehört mindestens eine Brennstoffdüse, wobei das hierin gebildete Gemisch über Eindüsungsöffnungen in der Frontwand in die Brennkammer eingedüst wird. Bei einer Ueberlastung im Bereich der Verbrennungsluftzufuhr fördert das Mischelement praktisch nur Brennstoff, wie dies bei einer normalen Diffusionsstufe der Fall ist. Dies ist von besonderer Bedeutung, da damit das Anforderungsprofil des Brenners, nämlich minimale NOx-Emissionen und hoher Stabilitätsbereich der Flamme bei Leerlauf und Lastabwurf, erfüllt werden kann, ohne dass getrennte Brennstoff zuführungen zur Maschine notwendig sind. Eine solche Erweiterung mit Mischelementen vermag auch den Brenner gemäss EP-B1-0 321 809 qualitativ zu steigern.

[0014] Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.

[0015] Im folgenden werden anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung unwesentlichen Merkmale sind fortgelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.

Kurze Bezeichnung der Zeichnungen



[0016] Es zeigt:
Fig. 1
einen Brenner mit anschliessender Brennkammer,
Fig. 2
einen Drallerzeuger in perspektivischer Darstellung, entsprechend aufgeschnitten,
Fig. 3
einen Schnitt durch den 2-Schalen-Drallerzeuger, nach Fig. 2,
Fig. 4
einen Schnitt durch einen 4-Schalen-Drallerzeuger,
Fig. 5
einen Schitt durch einen Drallerzeuger, dessen Schalen schaufelförmig profiliert sind,
Fig. 6
eine Darstellung der Form der Uebergangsgeometrie zwischen Drallerzeuger und Mischrohr und
Fig. 7
eine Abrisskante zur räumlichen Stabilisierung derRückströmzone.

Wege zur Ausführung der Erfindung, gewerbliche Verwertbarkeit



[0017] Fig. 1 zeigt den Gesamtaufbau eines Brenners. Anfänglich ist ein Drallerzeuger 100 wirksam, dessen Ausgestaltung in den nachfolgenden Fig. 2-5 noch näher gezeigt und beschrieben wird. Es handelt sich bei diesem Drallerzeuger 100 um ein kegelförmiges Gebilde, das tangential mehrfach von einem tangential einströmenden Verbrennungsluftstromes 115 beaufschlagt wird. Die sich hierein bildende Strömung wird anhand einer stromab des Drallerzeugers 100 vorgesehenen Uebergangsgeometrie nahtlos in ein Uebergangsstück 200 übergeleitet, dergestalt, dass dort keine Ablösungsgebiete auftreten können. Die Konfiguration dieser Uebergangsgeometrie wird unter Fig. 6 näher beschrieben. Dieses Uebergangsstück 200 ist abströmungsseitig der Uebergangsgeometrie durch ein Rohr 20 verlängert, wobei beide Teile das eigentliche Mischrohr 220, auch Mischstrecke genannt, des Brenners bilden. Selbstverständlich kann das Mischrohr 220 aus einem einzigen Stück bestehen, d.h. dann, dass das Uebergangsstück 200 und Rohr 20 zu einem einzigen zusammenhängenden Gebilde verschmolzen sind, wobei die Charakteristiken eines jeden Teils erhalten bleiben. Werden Uebergangsstück 200 und Rohr 20 aus zwei Teilen erstellt, so sind diese durch einen Buchsenring 10 verbunden, wobei der gleiche Buchsenring 10 kopfseitig als Verankerungsfläche für den Drallerzeuger 100 dient. Ein solcher Buchsenring 10 hat darüber hinaus den Vorteil, dass verschiedene Mischrohre eingesetzt werden können. Abströmungsseitig des Rohres 20 befindet sich die eigentliche Brennkammer 30, welche hier lediglich durch das Flammrohr versinnbildlicht ist. Das Mischrohr 220 erfüllt die Bedingung, dass stromab des Drallerzeugers 100 eine definierte Mischstrecke bereitgestellt wird, in welcher eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt wird. Diese Mischstrecke, also das Mischrohr 220, ermöglicht des weiteren eine verlustfreie Strömungsführung, so dass sich auch in Wirkverbindung mit der Uebergangsgeometrie zunächst keine Rückströmzone bilden kann, womit über die Länge des Mischrohres 220 auf die Mischungsgüte für alle Brennstoffarten Einfluss ausgeübt werden kann. Dieses Mischrohr 220 hat aber noch eine andere Eigenschaft, welche darin besteht, dass im Mischrohr 220 selbst das Axialgeschwindigkeitsprofil ein ausgeprägtes Maximum auf der Achse besitzt, so dass eine Rückzündung der Flamme aus der Brennkammer nicht möglich ist. Allerdings ist es richtig, dass bei einer solchen Konfiguration diese Axialgeschwindigkeit zur Wand hin abfällt. Um Rückzündung auch in diesem Bereich zu unterbinden, wird das Mischrohr 220 in Strömungsund Umfangsrichtung mit einer Anzahl regelmässig oder unregelmässig verteilten Bohrungen 21 verschiedenster Querschnitte und Richtungen gegenüber der Brennerachse 60 versehen, durch welche eine Luftmenge in das Innere des Mischrohres 220 strömt, und entlang der Wand im Sinne einer Filmlegung eine Erhöhung der Geschwindigkeit induzieren. Eine andere Möglichkeit die gleiche Wirkung zu erzielen, besteht darin, dass der Durchflussquerschnitt des Mischrohres 220 abströmungsseitig der Uebergangskanäle 201, welche die bereits genannten Uebergangsgeometrie bilden, eine Verengung erfährt, wodurch das gesamte Geschwindigkeitsniveau innerhalb des Mischrohres 220 angehoben wird. In der Figur verlaufen diese Bohrungen 21 unter einem spitzen Winkel gegenüber der Brennerachse 60. Des weiteren fällt der Auslauf der Uebergangskanäle 201 mit dem engsten Durchflussquerschnitt des Mischrohres 220 zusammen. Die genannten Uebergangskanäle 201 überbrücken sonach den jeweiligen Querschnittsunterschied, ohne dabei die gebildete Strömung negativ zu beeinflussen. Wenn die gewählte Vorkehrung bei der Führung der Rohrströmung 40 entlang des Mischrohres 220 einen nicht tolerierbaren Druckverlust auslöst, so kann hiergegen Abhilfe geschaffen werden, indem am Ende des Mischrohres ein in der Figur nicht gezeigter Diffusor vorgesehen wird. Am Ende des Mischrohres 220 schliesst sich eine Brennkammer 30 an, wobei zwischen den beiden Durchflussquerschnitten ein durch eine Frontwand 80 gebildeter Querschnittssprung 70 vorhanden ist. Erst hier bildet sich eine zentrale Rückströmzone 50, welche die Eigenschaften eines Flammenhalters aufweist. Bildet sich innerhalb dieses Querschnittssprunges 70 während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, so führt dies zu einer verstärkten Ringstabilisation der Rückströmzone 50. Die Erzeugung einer stabilen Rückströmzone 50 erfordert eine ausreichend hohe Drallzahl im betreffenden Rohr. Ist eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner stark verdrallter Luftströmungen am Rohrende, beispielsweise durch tangentiale Oeffnungen, erzeugt werden. Dabei geht man hier davon aus, dass die hierzu benötigte Luftmenge in etwa 5-20% der Gesamtluftmenge beträgt.

[0018] Was die Ausgestaltung der Abrisskante am Ende des Mischrohres 220 betrifft, wird auf die Beschreibung unter Fig. 7 verwiesen.

[0019] Senkrecht oder quasi-senkrecht zur Frontwand 80 werden konzentrisch zum Mischrohr 20 eine Anzahl Mischelemente 300 angeordnet, welche aus einem rohrförmigen Strömungskanal bestehen, wobei diese mit einem Teil 115a Verbrennungsluft durchströmt werden, in der Regel 2-10% der gesamthaft zur Verfügung stehenden Verbrennungsluft 115. Das Mischelement weist an geeigneter Stelle mindestens eine Zuführung 301 zur Einbringung eines Brennstoffes 303. Bei geigneter Ausbildung sowohl des Mischelementes 300, dessen Lufteintrittsgeometrie als auch der Brennstoffeindüsung können hier sowohl flüssige als auch gasförmige Brennstoffe zum Einsatz gelangen. Die Grössen der Lufteintrittsgeometrie und der Brennstoffeindüsung sind so ausgelegt, dass die volle Verbrennungsluftresp. Brennstoffmenge, die für einen gestützten Betrieb über den ganzen Lastbereich notwendig sind, in das Mischelement 300 eingebracht werden können. Bei Vollast werden die Brennstoffmengen zwischen Hauptstufe (100) und Pilotstufe (300) etwa proportional zur Luftverteilung gewählt. Der brennkammerseitige Ausgang des im Mischelement 300 gebildeten Gemisches 304 wird von einer Düse 31 übernommen, welche in die Frontwand 80 intergriert ist. Die Anzahl der kranzförmig um das Mischrohr 20 angeordneten Mischelemente 300 ist der jeweiligen Konfiguration des Brenners sowie dessen Betriebsparametern angepasst.

[0020] Es hat sich im Zusammenhang mit den Mischelementen 300 gezeigt, dass man den Luftzahlbereich des hier auf Vormischung betreibbaren Brenners in Richtung magerer Gemische ein Stück weit erweitern kann, ohne dass erhöhte CO-Emissionen in Kauf genommen werden müssen, wenn sich in der direkten Nähe des Brenners eine starke Zündquelle befindet. Solcherart bildet sich eine Flammenfront, die sich durch das Gemisch fortpflanzt. Vorzugsweise wird daher mit fallender Last nur die Brennstoffmenge der Hauptstufe reduziert, wobei eine mässige Erhöhung der Brennstoffmenge der Pilotstufe, innerhalb deren Grenze hinsichtlich der NOx-Emissionen, zulässig ist, dergestalt, dass bei dieser Konfiguration eine Erhöhung der Zündwirkung gegeben ist.

[0021] Ueber eine gewisse Brennluftzahl, d.h. unter einer Grenzlast der Brennkammer 30, breitet sich die Flammenfront nicht mehr genügend schnell aus, so dass unverbrannter Brennstoff emitiert wird. Hiergegen wird Abhilfe geschaffen, indem der Brennstoff 303 mehr und mehr nur dem als Pilotstufe betreibbaren Mischelement 300 zugeführt wird. Da die Luftzahl hierbei sehr schnell sehr kleine Werte (<< 1) annimmt, und die Luftströmung durch die Strömungskanäle infolge der grossen Brennstoffmenge teilweise blockiert wird, unterscheidet sich diese Betriebsart der Pilotstufen nicht wesentlich von dem einer gewöhnlichen Diffusionsbrennstufe.

[0022] Grundsätzlich zeigt das Mischelementes 300 die gleichen Eigenschaften eines Pilotbrenners, solange die Luftzahl entsprechend gewählt ist. Bei Ueberlastung hinsichtlich der Verbrennungsluftmenge fördert das Mischelement 300 praktisch nur Brennstoff, wie dies eine normale Diffusuionsbrennstufe auch tut. Dies ist von besonderer Bedeutung, da mithin die Anforderungsprofile hinsichtlich minimierter NOx-Emissionen der Stützflamme im hohen Lastbereich der Brennkammer sowie des exstrem hohen Stabilitätsbereichs der Stützflamme bei Leerlauf und Lastabwurf erfüllt werden, ohne dass getrennte Brennstoff zuführungen zur Brennkammer 30 notwendig sind.

[0023] Das Vorsehen der beschriebenen Mischelemente 300 ist nicht auf den hier gezeigten Brenner beschränkt. In ähnlicher Weise können diese Elemente auch bei einem Brenner gemäss EP-0 321 809 B1 im Bereich der dort beschrieben und gezeigten Frontwand vorgesehen werden. Diese Druckschrift bildet sonach integrierenden Bestandteil dieser Beschreibung.

[0024] Um den Aufbau des Drallerzeugers 100 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 2 mindestens Fig. 3 herangezogen wird. Des weiteren, um diese Fig. 2 nicht unnötig unübersichtlich zu gestalten, sind in ihr die nach den Figur 3 schematisch gezeigten Leitbleche 121a, 121b nur andeutungsweise aufgenommen worden. Im folgenden wird bei der Beschreibung von Fig. 2 nach Bedarf auf die genannten Figuren hingewiesen.

[0025] Der erste Teil des Brenners nach Fig. 1 bildet den nach Fig. 2 gezeigten Drallerzeuger 100. Dieser besteht aus zwei hohlen kegelförmigen Teilkörpern 101, 102, die versetzt zueinander ineinandergeschachtelt sind. Die Anzahl der kegelförmigen Teilkörper kann selbstverständlich grösser als zwei sein, wie die Figuren 4 und 5 zeigen; dies hängt jeweils, wie weiter unten noch näher zur Erläuterung kommen wird, von der Betreibungsart des ganzen Brenners ab. Es ist bei bestimmten Betriebskonstellationen nicht ausgeschlossen, einen aus einer einzigen Spirale bestehenden Drallerzeuger vorzusehen. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachsen 101b, 102b der kegeligen Teilkörper 101, 102 zueinander schafft bei der benachbarten Wandung, in spiegelbildlicher Anordnung, jeweils einen tangentialen Kanal, d.h. einen Lufteintrittsschlitz 119, 120 (Fig. 3), durch welche die Verbrennungsluft 115 in Innenraum des Drallerzeugers 100, d.h. in den Kegelhohlraum 114 desselben strömt. Die Kegelform der gezeigten Teilkörper 101, 102 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teilkörper 101, 102 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich einer Trompete resp. Tulpe. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 101, 102 weisen je einen zylindrischen Anfangsteil 101a, 102a, die ebenfalls, analog den kegeligen Teilkörpern 101, 102, versetzt zueinander verlaufen, so dass die tangentialen Lufteintrittsschlitze 119, 120 über die ganze Länge des Drallerzeugers 100 vorhanden sind. Im Bereich des zylindrischen Anfangsteils ist eine Düse 103 vorzugsweise für einen flüssigen Brennstoff 112 untergebracht, deren Eindüsung 104 in etwa mit dem engsten Querschnitt des durch die kegeligen Teilkörper 101, 102 gebildeten Kegelhohlraumes 114 zusammenfällt. Die Eindüsungskapazität und die Art dieser Düse 103 richtet sich nach den vorgegebenen Parametern des jeweiligen Brenners. Selbstverständlich kann der Drallerzeuger 100 rein kegelig, also ohne zylindrische Anfangsteile 101a, 102a, ausgeführt sein. Die kegeligen Teilkörper 101, 102 weisen des weiteren je eine Brennstoffleitung 108, 109 auf, welche entlang der tangentialen Lufteintrittsschlitze 119, 120 angeordnet und mit Eindüsungsöffnungen 117 versehen sind, durch welche vorzugsweise ein gasförmiger Brennstoff 113 in die dort durchströmende Verbrennungsluft 115 eingedüst wird, wie dies die Pfeile 116 versinnbildlichen wollen. Diese Brennstoffleitungen 108, 109 sind vorzugsweise spätestens am Ende der tangentialen Einströmung, vor Eintritt in den Kegelhohlraum 114, plaziert, dies um eine optimale Luft/Brennstoff-Mischung zu erhalten. Bei dem durch die Düse 103 herangeführten Brennstoff 112 handelt es sich, wie erwähnt, im Normalfall um einen flüssigen Brennstoff, wobei eine Gemischbildung mit einem anderen Medium ohne weiteres möglich ist. Dieser Brennstoff 112 wird unter einem spitzen Winkel in den Kegelhohlraum 114 eingedüst. Aus der Düse 103 bildet sich sonach ein kegeliges Brennstoffspray 105, das von der tangential einströmenden rotierenden Verbrennungsluft 115 umschlossen wird. In axialer Richtung wird die Konzentration des eingedüsten Brennstoffes 112 fortlaufend durch die einströmenden Verbrennungsluft 115 zu einer Vermischung mit Verdampfungsqualität abgebaut. Wird ein gasförmiger Brennstoff 113 über die Oeffnungsdüsen 117 eingebracht, geschieht die Bildung des Brennstoff/Luft-Gemisches direkt am Ende der Lufteintrittsschlitze 119, 120. Ist die Verbrennungsluft 115 zusätzlich vorgeheizt, oder beispielsweise mit einem rückgeführten Rauchgas oder Abgas angereichert, so unterstützt dies nachhaltig die Verdampfung des flüssigen Brennstoffes 112, bevor dieses Gemisch in die nachgeschaltete Stufe strömt. Die gleichen Ueberlegungen gelten auch, wenn über die Leitungen 108, 109 flüssige Brennstoffe zugeführt werden sollten. Bei der Gestaltung der kegeligen Teilkörper 101, 102 hinsichtlich des Kegelwinkels und der Breite der tangentialen Lufteintrittsschlitze 119, 120 sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft 115 am Ausgang des Drallerzeugers 100 einstellen kann. Allgemein ist zu sagen, dass eine Verkleinerung der tangentialen Lufteintrittsschlitze 119, 120 die schnellere Bildung einer Rückströmzone bereits im Bereich des Drallerzeugers begünstigt. Die Axialgeschwindigkeit innerhalb des Drallerzeugers 100 lässt sich durch eine entsprechende nicht gezeigte Zuführung eines axialen Verbrennungsluftstromes verändern. Eine entsprechende Drallerzeugung verhindert die Bildung von Strömungsablösungen innerhalb des dem Drallerzeuger 100 nachgeschalteten Mischrohres. Die Konstruktion des Drallerzeugers 100 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 119, 120 zu verändern, womit ohne Veränderung der Baulänge des Drallerzeugers 100 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 101, 102 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben vorgesehen werden kann. Es ist des weiteren möglich, die Teilkörper 101, 102 durch eine gegenläufig drehende Bewegung spiralartig ineinander zu verschachteln. Somit ist es möglich, die Form, die Grösse und die Konfiguration der tangentialen Lufteintrittsschlitze 119, 120 beliebig zu variieren, womit der Drallerzeuger 100 ohne Veränderung seiner Baulänge universell einsetzbar ist.

[0026] Aus Fig. 3 geht nunmehr die geometrische Konfiguration der Leitbleche 121a, 121b hervor. Sie haben Strömungseinleitungsfunktion, wobei diese, entsprechend ihrer Länge, das jeweilige Ende der kegeligen Teilkörper 101, 102 in Anströmungsrichtung gegenüber der Verbrennungsluft 115 verlängern. Die Kanalisierung der Verbrennungsluft 115 in den Kegelhohlraum 114 kann durch Oeffnen bzw. Schliessen der Leitbleche 121a, 121b um einen im Bereich des Eintritts dieses Kanals in den Kegelhohlraum 114 plazierten Drehpunkt 123 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 119, 120 dynamisch verändert werden soll. Selbstverständlich können diese dynamische Vorkehrungen auch statisch vorgesehen werden, indem bedarfsmässige Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 101, 102 bilden. Ebenfalls kann der Drallerzeuger 100 auch ohne Leitbleche betrieben werden, oder es können andere Hilfsmittel hierfür vogesehen werden.

[0027] Fig. 4 zeigt gegenüber Fig. 3, dass der Drallerzeuger 100 nunmehr aus vier Teilkörpern 130, 131, 132, 133 aufgebaut ist. Die dazugehörigen Längssymmetrieachsen zu jedem Teilkörper sind mit der Buchstabe a gekennzeichnet. Zu dieser Konfiguration ist zu sagen, dass sie sich aufgrund der damit erzeugten, geringeren Drallstärke und im Zusammenwirken mit einer entsprechend vergrösserten Schlitzbreite bestens eignet, das Aufplatzen der Wirbelströmung abströmungsseitig des Drallerzeugers im Mischrohr zu verhindern, womit das Mischrohr die ihm zugedachte Rolle bestens erfüllen kann.

[0028] Fig. 5 unterscheidet sich gegenüber Fig. 4 insoweit, als hier die Teilkörper 140, 141, 142, 143 eine Schaufelprofilform haben, welche zur Bereitstellung einer gewissen Strömung vorgesehen wird. Ansonsten ist die Betreibungsart des Drallerzeugers die gleiche geblieben. Die Zumischung des Brennstoffes 116 in den Verbrennungsluftstromes 115 geschieht aus dem Innern der Schaufelprofile heraus, d.h. die Brennstoffleitung 108 ist nunmehr in die einzelnen Schaufeln integriert. Auch hier sind die Längssymmetrieachsen zu den einzelnen Teilkörpern mit der Buchstabe a gekennzeichnet.

[0029] Fig. 6 zeigt das Uebergangsstück 200 in dreidimensionaler Ansicht. Die Uebergangsgeometrie ist für einen Drallerzeuger 100 mit vier Teilkörpern, entsprechend der Fig. 4 oder 5, aufgebaut. Dementsprechend weist die Uebergangsgeometrie als natürliche Verlängerung der stromauf wirkenden Teilkörper vier Uebergangskanäle 201 auf, wodurch die Kegelviertelfläche der genannten Teilkörper verlängert wird, bis sie die Wand des Rohres 20 resp. des Mischrohres 220 schneidet. Die gleichen Ueberlegungen gelten auch, wenn der Drallerzeuger aus einem anderen Prinzip, als den unter Fig. 2 beschriebenen, aufgebaut ist. Die nach unten in Strömungsrichtung verlaufende Fläche der einzelnen Uebergangskanäle 201 weist eine in Strömungsrichtung spiralförmig verlaufende Form auf, welche einen sichelförmigen Verlauf beschreibt, entsprechend der Tatsache, dass sich vorliegend der Durchflussquerschnitt des Uebergangsstückes 200 in Strömungsrichtung konisch erweitert. Der Drallwinkel der Uebergangskanäle 201 in Strömungsrichtung ist so gewählt, dass der Rohrströmung anschliessend bis zum Querschnittssprung 70 am Brennkammereintritt noch eine genügend grosse Strecke verbleibt, um eine perfekte Vormischung mit dem eingedüsten Brennstoff zu bewerkstelligen. Ferner erhöht sich durch die oben genannten Massnahmen auch die Axialgeschwindigkeit an der Mischrohrwand stromab des Drallerzeugers. Die Uebergangsgeometrie und die Massnahmen im Bereich des Mischrohres bewirken eine deutliche Steigerung des Axialgeschwindigkeitsprofils zum Mittelpunkt des Mischrohres hin, so dass der Gefahr einer Frühzündung entscheidend entgegengewirkt wird.

[0030] Fig. 7 zeigt die bereits angesprochene Abrisskante, welche am Brenneraustritt gebildet ist. Der Durchflussquerschnitt des Rohres 20 erhält in diesem Bereich einen Uebergangsradius R, dessen Grösse grundsätzlich von der Strömung innerhalb des Rohres 20 abhängt. Dieser Radius R wird so gewählt, dass sich die Strömung an die Wand anlegt und so die Drallzahl stark ansteigen lässt. Quantitativ lässt sich die Grösse des Radius R so definieren, dass dieser > 10% des Innendurchmessers d des Rohres 20 beträgt. Gegenüber einer Strömung ohne Radius vergrössert sich nun die Rückströmblase 50 gewaltig. Dieser Radius R verläuft bis zur Austrittsebene des Rohres 20, wobei der Winkel β zwischen Anfang und Ende der Krümmung < 90° beträgt. Entlang des einen Schenkels des Winkels β verläuft die Abrisskante A ins Innere des Rohres 20 und bildet somit eine Abrissstufe S gegenüber dem vorderen Punkt der Abrisskante A, deren Tiefe > 3 mm beträgt. Selbstverständlich kann die hier parall zur Austrittsebene des Rohres 20 verlaufende Kante anhand eines gekrümmten Verlaufs wieder auf Stufe Austrittsebene gebracht werden. Der Winkel β', der sich zwischen Tangente der Abrisskante A und Senkrechte zur Austrittsebene des Rohres 20 ausbreitet, ist gleich gross wie Winkel β. Auf die Vorteile dieser Ausbildung ist bereits oben unter dem Kapitel "Darstellung der Erfindung" näher eingegangen.

Bezugszeichenliste



[0031] 
10
Buchenring
20
Mischrohr, Mischstrecke
21
Bohrungen, Oeffnungen
30
Brennkammer
31
Gemischdüse
40
Strömung, Rohrströmung im Mischrohr
50
Rückströmzone, Rückströmblase
60
Brennerachse
70
Querschnittssprung
80
Frontwand
100
Drallerzeuger
101, 102
Teilkörper
101a, 102b
Zylindrische Anfangsteile
101b, 102b
Längssymmetrieachsen
103
Brennstoffdüse
104
Brennstoffeindüsung
105
Brennstoffspray (Brennstoffeindüsungsprofil)
108, 109
Brennstoffleitungen
112
Flüssiger Brennstoff
113
Gasförmiger Brennstoff
114
Kegelhohlraum
115
Verbrennungsluft (Verbrennungsluftstrom)
115a
Teil Verbrennungsluft
116
Brennstoff-Eindüsung aus den Leitungen 108, 109
117
Brennstoffdüsen
119, 120
Tangentiale Lufteintrittsschlitze
121a, 121b
Leitbleche
123
Drehpunkt der Leitbleche
130, 131, 132, 133
Teilkörper
131a, 131a, 132a, 133a
Längssymmetrieachsen
140, 141, 142, 143
Schaufelprofilförmige Teilkörper
140a, 141a, 142a, 143a
Längssymmetrieachsen
200
Uebergangsstück
201
Uebergangskanäle
220
Mischrohr
300
Mischelement, Pilotstufe
301
Brennstoffleitung
303
Brennstoff
304
Gemisch aus 115a und 303
d
Innendurchmesser des Rohres 20
R
Uebergangsradius
T
Tangentiale der Abrisskante
A
Abrisskante
S
Abrissstufe
β
Uebergangswinkel von R
β'
Winkel zwischen T und A



Ansprüche

1. Brenner für einen Wärmeerzeuger, im wesentlichen bestehend aus einem Drallerzeuger für eine Verbrennungsluft, aus Mitteln zur Eindüsung mindestens eines Brennstoffes in die Verbrennungsluft und aus einer mit dem Drallerzeuger in Wirkverbindung stehenden Mischstrecke, die stromauf einer Brennkammer angeordnet sind, dadurch gekennzeichnet, dass im Bereich des durch einen Querschnittssprunges (70) charakterisierten Ueberganges zwischen Drallerzeuger und Mischstrecke (100, 220) und Brennkammer (30) konzentrisch oder quasi-konzentrisch zur Mischstrecke eine Anzahl Mischelemente (300) angeordnet sind, in welchen eine Gemischbildung zwischen einem Anteil Verbrennungsluft (115a) und einem Brennstoff (303) stattfindet, und dass die Mischelemente in Wirkverbindung mit der Mischstrecke Pilotstufen der Brennkammer sind.
 
2. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Drallerzeuger zugleich Mischstrecke des Brenners ist.
 
3. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Mischstrecke (220) stromab des Drallerzeugeugers (100) angeordnet ist, welche innerhalb eines ersten Streckenteils (200) in Strömungsrichtung verlaufende Uebergangskanäle (201) zur Ueberführung einer im Drallerzeuger (100) gebildeten Strömung (40) in ein stromab der Uebergangskanäle (201) nachgeschaltetes Mischrohr (20) aufweist.
 
4. Brenner nach Anspruch 3, dadurch gekennzeichnet, dass das Mischrohr (20) im Bereich des Austrittes in die Brennkammer (30) mit einer Abrisskante (A) zur Stabilisierung und Vergrösserung einer sich stromab bildenden Rückströmzone (50) versehen ist.
 
5. Brenner nach Anspruch 4, dadurch gekennzeichnet, dass die Abrisskante (A) aus einem Uebergangsradius (R) im Bereich des Austrittes des Mischrohres (20) und einer von dem Austritt des Mischrohres abgesetzten Abrissstufe (S) besteht.
 
6. Brenner nach Anspruch 5, dadurch gekennzeichnet, dass der Uebergangsradius (R) > 10% des Innendurchmessers des Mischrohres (20) beträgt, und dass die Abrissstufe (S) eine Tiefe > 3 mm aufweist.
 
7. Brenner nach Anspruch 3, dadurch gekennzeichnet, dass die Anzahl der Uebergangskanäle (201) in der Mischstrecke (220) der Anzahl der vom Drallerzeuger (100) gebildeten Teilströme entspricht.
 
8. Brenner nach Anspruch 3, dadurch gekennzeichnet, dass das der Uebergangskanäle (201) nachgeschaltete Mischrohr (20) in Strömungs- und Umfangsrichtung mit Oeffnungen (21) zur Eindüsung eines Luftstromes ins Innere des Mischrohres (20) versehen ist.
 
9. Brenner nach Anspruch 8, dadurch gekennzeichnet, dass die Oeffnungen (21) unter einem spitzen Winkel gegenüber der Brennerachse (60) des Mischrohres (20) verlaufen.
 
10. Brenner nach Anspruch 3, dadurch gekennzeichnet, dass der Durchflussquerschnitt des Mischrohres (20) stromab der Uebergangskanäle (201) kleiner, gleich gross oder grösser als der Querschnitt der im Drallerzeuger (100) gebildeten Strömung (40) ist.
 
11. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass im Bereich des Querschnittssprunges (70) eine Rückströmzone (50) wirkbar ist.
 
12. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass stromauf des Querschnittssprunges (70) ein Diffusor und/oder eine Venturistrecke vorhanden ist.
 
13. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Drallerzeuger (100) aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) besteht, dass die jeweiligen Längssymmetrieachsen (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) dieser Teilkörper gegeneinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper in deren Längserstreckung tangentiale Kanäle (119, 120) für einen Verbrennungsluftstromes (115) bilden, und dass im von den Teilkörpern gebildeten Kegelhohlraum (114) mindestens eine Brennstoffdüse (103) angeordnet ist.
 
14. Brenner nach Anspruch 13, dadurch gekennzeichnet, dass im Bereich der tangentialen Kanäle (119, 120) in deren Längserstreckung weitere Brennstoffdüsen (117) angeordnet sind.
 
15. Brenner nach Anspruch 13, dadurch gekennzeichnet, dass die Teilkörper (140, 141, 142, 143) im Querschnitt eine schaufelförmige Profilierung aufweisen.
 
16. Brenner nach Anspruch 13, dadurch gekennzeichnet, dass die Teilkörper in Strömungsrichtung einen festen Kegelwinkel, oder eine zunehmende Kegelneigung, oder eine abnehmende Kegelneigung aufweisen.
 
17. Brenner nach Anspruch 13, dadurch gekennzeichnet, dass die Teilkörper spiralförmig ineinandergeschachtelt sind.
 




Zeichnung