(19)
(11) EP 0 798 451 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
01.10.1997  Patentblatt  1997/40

(21) Anmeldenummer: 97102494.8

(22) Anmeldetag:  15.02.1997
(51) Internationale Patentklassifikation (IPC)6F01L 13/00
(84) Benannte Vertragsstaaten:
DE FR GB IT

(30) Priorität: 25.03.1996 DE 19611641

(71) Anmelder: Dr.Ing.h.c. F. Porsche Aktiengesellschaft
70435 Stuttgart (DE)

(72) Erfinder:
  • Tiede, Klaus
    74343 Sachsenheim (DE)

   


(54) Ventiltrieb einer Brennkraftmaschine


(57) Der erfindungsgemäße Ventiltrieb einer Brennkraftmaschine ermöglicht die Betätigung eines Gaswechselventils (1) mit mehreren unterschiedlichen Hubkurven. Dazu ist auf der Nockenwelle (6) ein Nocken (5) mit mehreren Nockenbahnen (4a,4b,4c) drehfest aber axial verschieblich gelagert. Dieser Nocken (5) weist eine Hubkontur (9,10) auf, in die ein Betätigungselement eingreift (15,16) und somit eine axiale Verschiebung des Nockens (5) erzeugt, wobei ein Umschalten von einer zu einer anderen Nockenbahn (4a,4b,4c) erfolgt.




Beschreibung


[0001] Die Erfindung betrifft einen Ventiltrieb einer Brennkraftmaschine nach der Gattung des Hauptanspruches.

[0002] Ein derartiger Ventiltrieb ist beispielsweise in der DE 42 30 877 A1 beschrieben und zeigt eine Nockenwelle, auf der ein Nockenblock mit zwei unterschiedlichen Nockenbahnen drehfest aber axial verschieblich geführt ist. Der Nockenblock wirkt mit einem Gaswechselventil der Brennkraftmaschine zusammen, wobei je nach Arbeitsstellung des Nockenblockes der Hubverlauf einer der beiden Nockenbahnen auf das Gaswechselventil übertragen wird. Im Bereich einer der beiden Stirnseiten des Nockenblockes ist in die Nockenwelle eine spiralförmige Führungsnut eingearbeitet, in die ein federnd gelagerter Schwenkbügel eingreifen kann. Dieser Schwenkbügel legt sich beim Eingreifen in die Spiralnut in Abhängigkeit von der Drehstellung der Nockenwelle an der Stirnseite des Nockenblockes an. Dadurch wird dieser gegen die Wirkung einer Druckfeder durch die Zwangsführung in der Führungsnut in axialer Richtung bewegt, so daß eine Umschaltung von einer ersten Nockenbahn, die mit dem Gaswechselventil zusammenwirkt, zur zweiten Nockenbahn erfolgt. Bei Erreichen der zweiten Arbeitsstellung des Nockenblockes wird dieser durch ein hydraulisch betätigtes Sperrelement festgesetzt. Die Spiralnut verläuft nur über einen Teil der Umfangsfläche, wobei am Ende der Spiralnut das Bügelelement außer Eingriff steht. Nach Lösen der hydraulischen Verriegelung kann der Nockenblock dann aufgrund der Wirkung der Druckfeder in seine Ausgangsstellung zurückbewegt werden. Die Spiralnut in der Nockenwelle ist dabei so ausgebildet und in einer definierten Winkelzuordnung zur Drehbewegung der Nockenwelle positioniert, daß das Verschieben des Nockenblockes nur während der Grundkreisphase der ersten Nockenbahn erfolgen kann. Die Nockenwelle für einen derartigen Ventiltrieb ist jedoch sehr aufwendig zu fertigen, da die Spiralnut für jeden zu betätigenden Nockenblock winkelrichtig zugeordnet werden muß. Darüber hinaus erfordert die Anbringung einer derartigen Nut in der Nockenwelle mehrere Bearbeitungsvorgänge, so daß insgesamt die Herstellung der Nockenwelle aufwendig und teuer ist. Weiterhin bedeutet die Anbringung einer derartigen Spiralnut in der Nockenwelle eine nicht unerhebliche Querschnittsverminderung, so daß unter Umständen der Wellendurchmesser relativ groß gewählt werden muß, um die aus dem Ventiltrieb resultierenden Kräfte und Momente aufnehmen zu können. Darüber hinaus ist die Betätigung mit einem federnd gelagerten Schwenkbügel aufwendig und erfordert einen nicht unerheblichen Einbauraum. Fehlschaltungen durch die federnde Lagerung sind nicht auszuschließen. Weiterhin ist durch eine derartige Betätigung nur die Umschaltung zwischen zwei Nockenbahnen möglich.

[0003] Demgegenüber ist es Aufgabe der Erfindung, einen derartigen Ventiltrieb einer Brennkraftmaschine so zu verbessern, daß die Nockenwelle zusammen mit den verschieblichen Nocken insgesamt kostengünstiger und einfacher hergestellt werden kann und die Zuordnung des Hubprofiles zur jeweiligen Drehlage des zu verschiebenden Nockens bei der Herstellung und Montage vereinfacht wird.

[0004] Diese Aufgabe wird erfindungsgemäß mit den kennzeichnenden Merkmalen des Patentanspruches 1 gelöst. Durch Ausbildung des Hubprofiles am Nocken kann eine von der Welle unabhängige Bearbeitung des Hubprofiles erfolgen. Die Welle selbst wird dadurch in ihrem Querschnitt nicht mehr beeinträchtigt, so daß auch sehr geringe Wellendurchmesser möglich sind. Darüber hinaus ist die phasenrichtige Positionierung des Hubprofils zum jeweils axial verschieblichen Nocken einfacher zu gewährleisten, da die Nockenbahn und das Hubprofil am gleichen Bauteil ausgebildet sind.
Lageabweichungen bzw. Phasenabweichungen von Nockengrundkreis und Hubprofil können dadurch bei der Montage nicht auftreten. Die Nockenwelle selbst kann dabei beispielsweise als gezogenes und daher preisgünstiges Bauteil gefertigt werden. Es ist weiterhin möglich, die Nockenwelle aus relativ preisgünstigem Material herzustellen, da sich die durch die Verschiebungsbewegung verursachten Kräfte und Momente im Nocken selber auswirken, der schon aufgrund seiner durch die Betriebsbelastungen notwendigen höheren Materialgüte gefertigt ist. Dabei wirkt der Nocken in vorteilhafter Weise mit einem radial zur Nockenwelle angeordneten Betätigungsstift zusammen, der verschieblich in Eingriff mit dem Hubprofil zu bringen ist. Eine derartige Anordnung kann mit sehr geringem Bau- und Platzaufwand im Zylinderkopf angeordnet werden und ermöglicht eine sichere Betätigung ohne die Gefahr von Fehlschaltungen.
Ein besonders vorteilhafter Ventiltrieb mit drei verschiedenen Hubprofilen je Nocken ergibt sich, wenn drei Nockenbahnen hintereinander angeordnet werden. Das Verschieben des Nockens mit diesen drei Nockenbahnen erfolgt besonders vorteilhaft, wenn am Nocken zwei Hubkurven ausgebildet sind, die an jeweils einer Stirnseite des Nockens ausgebildet sind.

[0005] Eine besonders vorteilhafte Betätigung des axial verschieblichen Nockens ergibt sich, wenn jede Hubkurve mit zwei beabstandeten Betätigungsstiften zusammenwirkt, die beim Eingriff in die Hubkurve in Abhängigkeit von der Ausgangslage des Nockens Axialbewegungen auslösen. Insbesondere bei der Verwendung von zwei Hubkurven kann damit auf die Verwendung von Rückstellelementen in Form von Druckfedern oder ähnlichem verzichtet werden. Dies führt auch dazu, daß die dadurch verursachten Fehlschaltungen vermieden werden können.

[0006] Die Sicherung des Nockens in seiner jeweiligen Axialposition kann auf besonders einfache Weise durch federbelastete Rastelemente erfolgen, die in eine der jeweiligen Arbeitsstellung zugeordnete Rastnut am Nocken eingreifen.

[0007] Weitere Vorteile und vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der Beschreibung.

[0008] Ein Ausführungsbeispiel der Erfindung ist in der nachfolgenden Beschreibung und Zeichnung näher erläutert. Letztere zeigt in
Fig.1
einen vereinfachten Querschnitt durch den Ventiltrieb der Brennkraftmaschine,
Fig. 2
einen Längsschnitt durch eine nur teilweise dargestellte Nockenwelle und
Fig. 3
eine Abwicklung des Nockenumfanges und der Hubkurven.


[0009] Der in Fig. 1 vereinfacht dargestellte Ventiltrieb der Brennkraftmaschine zeigt ein Gaswechselventil 1, das mit einem an sich bekannten Rollenschlepphebel 2 zusammenwirkt, dessen Rolle 3 an der Nockenbahn 4 eines Nockens 5 anliegt. Der Nocken 5 ist drehfest, aber axial verschieblich auf einer Nockenwelle 6 geführt, die auf an sich bekannte Weise angetrieben wird. Durch das Zusammenwirken der Nockenbahn 4 mit der Rolle 3 des Rollenschlepphebels 2 werden die Drehbewegungen der Nockenwelle 6 in Hubbewegungen des Gaswechselventils 1 überführt.

[0010] Der Nocken 5 weist drei axial nebeneinander liegende Nockenbahnen 4a bis 4c (Fig. 2) auf, die sich in ihrem Hubprofil, ihrer Hubhöhe und/oder ihrer Phasenlage unterscheiden. Die Breite der Nockenbahnen 4a bis 4c ist so gewählt, daß sie etwas größer als die Breite der Rolle 3 des Rollenschlepphebels 2 ist, so daß im Betrieb der Brennkraftmaschine jeweils eine Nockenbahn mit der Rolle 3 des Rollenschlepphebels 2 und damit mit dem Gaswechselventil 1 zusammenwirkt.

[0011] Um den Rollenschlepphebel 2 in Eingriff mit einer der drei Nockenbahnen 4a bis 4c zu bringen, ist der Nocken 5 axial verschieblich auf der Nockenwelle 6 geführt. Diese weist dazu an ihrem Umfang eine axial verlaufende Profilierung auf, die mit einer entsprechenden Profilierung des Nockens 5 zusammenwirkt und so eine Übertragung der Drehbewegung bei gleichzeitiger Axialverschieblichkeit ermöglicht. Der Nocken 5 weist an seinen beiden Stirnseiten jeweils einen zylindrischen Fortsatz 7, 8 auf, in den jeweils eine sich über einen Teil des Umfanges erstreckende Hubkurve 9, 10 in Form einer Vertiefung eingearbeitet ist. Im Bereich des zylindrischen Fortsatzes 7 sind zwei Betätigungselemente 11, 12 angeordnet, zwei weitere Betätigungselemente 13, 14 sind im Bereich des zylindrischen Fortsatzes 8 angeordnet. Diese Betätigungselemente 11 bis 14 haben jeweils einen Betätigungsstift 15 bis 18, der etwa radial zur Nockenwelle 6 verläuft und axial verschieblich ist. Im hier dargestellten Ausführungsbeispiel sind die Betätigungsstifte 15 bis 18 als hydraulische Kolben ausgebildet, die durch Druckbeaufschlagung der Betätigungselemente 11 bis 14 gegen die Wirkung einer Druckfeder 31 in Richtung auf die Nockenwelle 6 axial verschieblich sind.

[0012] Die Betätigungselemente 11 bis 14 mit ihren Betätigungsstiften 15 bis 18 sind so angeordnet, daß in Abhängigkeit von der axialen Stellung des Nockens 5 die Betätigungsstifte bei Druckbeaufschlagung der Betätigungselemente am zylindrischen Fortsatz 7 bzw. 8 anlegen und in Abhängigkeit von der Drehlage der Nockenwelle 6 und des Nockens 5 in die jeweils zugeordnete Hubkurve 9 oder 10 eingreifen. Greift einer der Betätigungsstifte 15 bis 18 in die jeweils zugeordnete Hubkurve 9 oder 10 ein, wird der Nocken 5 aufgrund des Kurvenverlaufes der Hubkurve 9 oder 10 axial verschoben. Dabei wird durch das Zusammenwirken der Hubkurve 9 (linke Hubkurve gem. Fig 2) mit den Betätigungsstiften 15 oder 16 eine Verschiebung von der jeweiligen Ausgangslage nach links erzeugt. Durch Zusammenwirken eines der Betätigungsstifte 13 oder 14 mit der Hubkurve 10 (rechte Hubkurve gem. Fig 2) wird aufgrund des Kurvenverlaufes entsprechend eine Verschiebung des Nockens 5 aus seiner jeweiligen Arbeitsstellung nach rechts verursacht. Durch Änderung der Steigungsrichtung der Hubkurve ist ohne weiteres eine Umkehrung der Verstellrichtung möglich.

[0013] Der Nocken 5 weist im Zusammenwirken mit den Betätigungselementen 11 bis 14 drei unterschiedliche Arbeitsstellungen

bis

auf, in denen jeweils eine der Nockenbahnen 4a bis 4c mit der Rolle 3 des Rollenschlepphebels 2 zusammenwirkt.
Um den Nocken 5 in seiner jeweiligen Arbeitsstellung

bis

zu arretieren, weist er an seiner inneren Umfangsfläche drei ringförmig umlaufende Nuten 19 bis 21 auf. In der Nockenwelle 6 ist in einer zylindrischen Vertiefung 22 eine Rastkugel 23 geführt, die durch Wirkung eines Federelementes 24 in eine der drei Nuten 19 bis 21 eingreift.

[0014] In der in Fig. 2 dargestellten Lage des Nockens ist dieser durch die Rastkugel 23 im Zusammenwirken mit der Nut 20 in der mittleren Arbeitsstellung

rastiert. In dieser Arbeitsstellung

wirkt die Rolle 3 des Rollenschlepphebels 2 mit der Nockenbahn 4b zusammen. Soll aus dieser Ausgangslage der Ventiltrieb so umgeschaltet werden, daß das Gaswechselventil dem Hubverlauf der Nockenbahn 4c folgt, wird der Betätigungsstift 15 durch Druckbeaufschlagung des Betätigungselementes 11 abgesenkt. Dieser liegt dann auf dem zylindrischen Fortsatz 7 an und greift bei Erreichen der zugeordneten Drehlage des Nockens in die Hubkurve 9 ein, in deren weiterem Verlauf der Nocken nach links bewegt wird. Fig. 3 zeigt dabei im wesentlichen eine Darstellung der Wirkebenen, d. h. die Zuordnung von Hubkurbven und Nockenverlauf (Grundkreisbereich 25, 25' und Erhebungsbereich 30, 30'). Die winkelrichtige Zuordnung der Hubkurven zum Nockenverlauf ist abhängig von der Winkelposition der Verstellelemente. Am Ende der Hubkurve 9 hat der Nocken 5 seine linke Endstellung erreicht, die der Arbeitsstellung

entspricht, und in der die Rolle 3 mit der Nockenbahn 4c zusammenwirkt. Die Hubkurven 9 und 10 sind dabei in ihrer Erstreckung und Winkelzuordnung so ausgebildet, daß die axiale Verschiebung nur erfolgt, solange die Rolle 3 im Grundkreisbereich 25 an der jeweiligen Nockenbahnen 4a bis 4c anliegt. Die Nockenbahnen 4a bis 4c sind dabei so ausgebildet, daß sie jeweils einen Grundkreisbereich 25 aufweisen, der zumindest über den wesentlichen Teil seiner Länge parallel und in gleicher Höhe zu den Grundkreisbereichen der benachbarten Nockenbahnen verläuft. Diesem Grundkreisbereich 25 der Nockenbahnen ist der Grundkreisbereich 25' der Hubkurven 9, 10 bzw. der zylindrischen Fortsätze 7, 8 zugordnet, der in Abhängikeit von der räumlichen Lage der Verstellelemente winkelverschoben ist. Nach Erreichen der Schaltstellung

wird das Betätigungselement 11 drucklos geschaltet, so daß der Betätigungsstift 11 durch die Wirkung der Druckfeder 31 in seine Ausgangslage zurückbewegt wird. Der Nocken 5 wird aufgrund der Rastierung in seiner Schaltstellung gehalten. Wird die Druckbeaufschlagung des jeweiligen Verstellelementes nach Erreichen der Endstellung des Nockens nicht zurückgenommen, bleibt dies ohne Einfluß auf die Verstellbewegung. Der jeweilige Betätigungsstift liegt dann weiterhin am jeweiligen zylindrischen Fortsatz an, gelangt aber erst im Auslaufbereich der jeweiligen Hubkurve mit dieser in Eingriff, so daß keine Verstellung erfolgt. Der jeweilige Einlaufbereich 26, 27 und Auslaufbereich 28, 29 der Hubkurven 9, 10 gehen ohne Stufe in die Umfangsfläche der zylindrischen Fortsätze über.

[0015] Soll der Nocken aus der Arbeitsstellung

in die mittlere Arbeitsstellung

zurückbewegt werden, wird das Betätigungselement 13 druckbeaufschlagt, so daß der Betätigungsstift 17 am zylindrischen Fortsatz 8 anliegt und bei Erreichen der Grundkreisphase in die Hubkurve 10 eingreift. Durch das Zusammenwirken des Betätigungsstiftes 17 und der Hubkurve 10 wird der Nocken in die mittlere Arbeitsstellung

zurückbewegt.

[0016] Eine Verschiebung des Nockens aus der mittleren Arbeitsstellung

in die rechte Arbeiststellung

erfolgt durch Beaufschlagung des Betätigungselementes 14, das ebenfalls mit der Hubkurve 10 zusammenwirkt und den Nocken nach rechts bewegt.
Das Zurückstellen des Nockens in die mittlere Arbeitsstellung

erfolgt auf analoge Weise durch Druckbeaufschlagen des Betätigungselementes 12, das mit der Hubkurve 9 zusammenwirkt.

[0017] Durch geeignete Aussteuerung der Betätigungselemente 11 bis 14 wird dabei sichergestellt, daß jeweils nur ein Betätigungsstift 15 bis 18 abgesenkt werden kann, während die drei anderen Betätigungsstifte in ihrer Ausgangslage zurückbewegt sind und dort verbleiben.

[0018] Im Gegensatz zum hier dargestellten Ausführungsbeispiel kann die Betätigung der Betätigungselemente 11 bis 14 beispielsweise auch pneumatisch, rein mechanisch oder elektromagnetisch erfolgen. Es ist auch möglich anstelle des dargestellten und beschriebenen Rollenschlepphebels andere - an sich bekannte - Übertragungsmechanismen einzusetzen, die die Drehbewegung des Nockens in eine Hubbewegung des Gaswechselventils überführen.


Ansprüche

1. Ventiltrieb einer Brennkraftmaschine mit einer Nockenwelle (6) mit Nocken (5) zur Betätigung von Gaswechselventilen (1), von denen mindestens ein Nocken mit mehreren axial hintereinander angeordneten Nockenbahnen (4a bis 4c) versehen und drehfest aber axialverschieblich auf der Nockenwelle geführt ist, und mit einem Hubprofil (9, 10), das mit einem Betätigungselement (11 bis 14) zum Verschieben des Nockens zusammenwirkt, dadurch gekennzeichnet, daß das Hubprofil (9, 10) am Nocken (5) ausgebildet ist, und das Betätigungselement (11 bis 14) einen radial zur Nockenwelle angeordneten Betätigungsstift (15 bis 18) aufweist, der verschieblich in Eingriff mit dem Hubprofil (9, 10) zu bringen ist.
 
2. Ventiltrieb nach Anspruch 1, dadurch gekennzeichnet, daß das Hubprofil (9, 10) durch eine Kurvenbahn gebildet ist, die in einem benachbart zu den Nockenbahnen angeordneten Zylinderabschnitt (7, 8) ausgebildet ist.
 
3. Ventiltrieb nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der verschiebliche Nocken (5) mit drei hintereinander angeordneten Nockenbahnen (4a bis 4c) versehen ist, und daß am Nocken zwei Hubkurven (9, 10) ausgebildet sind, zwischen denen die Nockenbahnen verlaufen.
 
4. Ventiltrieb nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß jede Hubkurve (9, 10) in Abhängigkeit von der axialen Schaltstellung des Nockens (5) mit einem von zwei Betätigungsstiften (15, 16; 17, 18) zusammenwirkt, die beim Eingriff in die Hubkurve (9, 19) Axialverschiebungen auslösen.
 
5. Ventiltrieb nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem verschieblichen Nocken (5) und der Nockenwelle (6) ein Rastmittel (19 bis 24) angeordnet ist, das den Nocken in seiner jeweiligen axialen Schaltstellung verrastet.
 
6. Ventiltrieb nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Rastmittel eine federbelastete Kugel (23) ist, die in jeweils eine Rastnut (19, 20, 21) eingreift.
 




Zeichnung










Recherchenbericht