BACKGROUND OF THE INVENTION
[0001] The present invention relates to a tappet in an internal combustion engine and a
method of manufacturing it.
[0002] For example, to increase wear resistance of a conventional tappet, as shown in Fig.
8, a helical groove 13 is formed on the outer circumferential surface of raw material
for a tappet to make a core material 15, the surface of which is thermally sprayed
by wear resistant material such as Fe metal to form a coating layer 17 which covers
the helical groove 13. The outer circumferential surface of the coating layer is ground
to form a cylindrical portion 18, the end 19 of which is chamfered.
[0003] However, at the chamfered end of the tappet, as clearly shown in Fig. 9, the cylindrical
wear resistant coating layer 17 in which the groove 13 of the core material 15 is
embedded is slightly left as a fine string-like portion 16, which is likely to peel
off as small pieces.
SUMMARY OF THE INVENTION
[0004] It is an object of the present invention to provide a tappet in an internal combustion
engine in which a core material which has a helical groove on the outer circumferential
surface is covered with wear resistant material, thereby preventing a fine string
portion of a coating layer from peeling off at the chamfered end.
[0005] It is another object of the present invention to provide a method of manufacturing
a tappet in an internal combustion engine economically.
[0006] According to one aspect of the present invention, there is provided a tappet in an
internal combustion engine, the tappet comprising a core material having a helical
groove on the outer circumferential surface and a wear resistant coating layer which
covers the outer circumferential surface of the core material, the end of the outer
circumfential surface being chamfered, characterized in that in the vicinity of the
end of the outer circumferential surface, said helical groove gradually becomes smaller
in diameter toward the end, thereby preventing peaks of the helical groove from being
exposed over the outer circumferential surface of said coating layer.
[0007] According to another aspect of the present invention, there is provided a tappet
in an internal combustion engine, the tappet comprising a core material having a helical
groove on the outer circumferential surface and a wear resistant coating layer which
covers the outer circumferential surface of the core material, the end of the outer
circumfential surface being chamfered, characterized in that the end of said helical
groove is terminated at a position slightly spaced from the end of the core, an annular
groove being formed at the end of the helical groove, thereby preventing peaks of
the helical groove from being exposed over the outer circumferential surface of said
coating layer.
[0008] According to a further aspect of the present invention, there is provided a tappet
in an internal combustion engine, the tappet comprising a core material having a helical
groove on the outer circumferential surface and a wear resistant coating layer which
covers the outer circumferential surface of the core material, the end of the outer
circumfential surface being chamfered, characterized in that in the vicinity of the
end of the outer circumferential surface, said helical groove gradually becomes smaller
in diameter toward the end, the end of said helical groove is terminated at a position
slightly spaced from the end of the core, an annular groove being formed at the end
of the helical groove, thereby preventing peaks of the helical groove from being exposed
over the outer circumferential surface of said coating layer.
[0009] According to yet another aspect of the present invention, there is provided a method
of manufacturing a tappet in an internal combustion engine, the method comprising
the steps of forming a helical groove on the outer circumferential surface of a core
material so that the groove may become smaller in diameter in the vicinity of the
end of the core material; covering the outer circumferential surface with a wear resistant
coating layer; and forming the outer circumferantial surface to an cylindrical surface,
at least the end of the cylindrical surface being chamfered.
[0010] According to a still further aspect of the present invention, there is provided a
method of manufacturing a tappet in an internal combustion engine, the method comprising
the steps of contacting the outer circumferential surface of a cylindrical core material
with a cutting tool to give feed in an axial direction to form a helical groove on
the outer circumferential surface of the core material while the core material is
rotated on an axis; stopping the feed of the cutting tool when the helical groove
reaches in the vicinity of the end of the core material to form an annular groove
at the end of the helical groove; overing the outer circumferential surface of the
core material with wear resistant coating layer; and finishing the outer circumferential
surface to a cylindrical surface, at least the end of the cylindrical surface being
chamfered.
[0011] According to an additional aspect of the present invention, there is provided a method
of manufacturing a tappet in an internal combustion engine, the method comprising
the steps of contacting the outer circumferential surface of a core material with
a cutting tool to give it feed in an axial direction while the core material is rotated
on an axis; giving feed to the cutting tool toward the axis in the vicinity of the
end of said core material to form a helical groove which gradually becomes smaller
in diameter as it becomes closer to the end of the core material; stopping the feed
of the cutting tool when the helical groove reaches to a predetermined position closer
to the end of the core material to form an annular groove at then end of the helical
groove; covering the outer circumferential surface with a wear resistant coating layer;
and finishing the outer circumferential surface of the coating layer to a cylindrical
surface, at least said end of the cylindrical surface being chamfered.
[0012] The helical groove gradually becomes smaller in diameter toward the end in the vicinity
of the end of the core material, thereby preventing the helical groove from being
exposed over the coating layer even if the upper and lower ends of the coating layer
are chamfered.
[0013] The end of the helical groove is stopped before the end of the core material, and
is connected with the annular groove, thereby preventing removal even if the chamfered
portion is exposed owing to corrosion.
[0014] The tappet according to the present invention comprises the core material in which
the helical groove is formed on the outer circumferential surface, and the wear resistant
coating layer with which the outer circumferential surface is covered and the ends
are chamfered, thereby providing a light weight body and relatively small inertia
force, so that response and followability to reciprocal movement is improved. Furthermore;
owing to wear resistance in frictional portion, durability will increase.
[0015] The groove of the core material is completely covered with the coating layer other
than upper and lower ends, thereby avoiding thinner string portions as in a conventional
ones and removal thereof.
[0016] Instead of metal thermal spraying, it is suggested that the core material is immersed
in melted metal, or plating is applied, but metal thermal spraying is more convenient
and economical.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] The features and advantages of the invention will become more apparent from the following
description of embodiments with respect to appended drawings wherein:
Fig. 1 is a partially sectioned front view of the first embodiment of a tappet according
to the present invention;
Fig. 2 is a partially sectioned front view which shows a core material in which a
helical groove is formed on the outer circumferential surface;
Fig. 3 is a partially sectioned front view in which a coating layer is applied by
metal thermal spraying on the outer circumferential surface of the core material in
Fig. 2;
Fig. 4 is a partially sectioned front view of the first embodiment of a finished tappet
in which the outer circumferential surface is ground and the upper and lower ends
are chamfered to the one in Fig. 3;
Fig. 5 is an enlarged sectional view of the lower portion of the section in Fig. 4;
Fig. 6 is an enlarged sectional view of the lower portion in the second embodiment
of the present invention;
Fig. 7 is an enlarged sectional view of the lower portion in the third embodiment
of the present invention;
Fig. 8 is an enlarged sectional view of the lower portion of a conventional tappet;
and
Fig. 9 is perspective view which is seen from one end of the conventional tappet.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0018] A cylindrical raw material 1 of light metal such as Al as shown in Fig. 1 is rotated
on an axis , while a cutting tool contacts the outer circumferential surface 12. Feed
is axially given by the cutting tool to form a helical groove 3 on the outer circumferential
surface of the raw material 1. At the same time, adjacent to the raw material 1, additional
feed is given to the cutting tool toward the axis so that the helical groove 3 gradually
decreases in diameter toward the end of the raw material 1.
[0019] When the helical groove 3 reaches to a predetermined position which is close to the
end of the raw material 1, the feed of the cutting tool is stopped to form an annular
groove 3a at the end of the helical groove 3, thereby forming a core material 5.
[0020] Then, as shown in Fig. 3, Fe metal is thermally sprayed to all over the outer circumferential
surface of the core material 5 to form a wear resistant coating layer 7. Thereafter,
as shown in Fig. 4, the outer circumferential surface 8 is ground to form a circumference,
and the upper and lower ends are chamfered, thereby forming a tappet as shown in Fig.
5 in the first embodiment. Therefore, peaks 10 in the helical groove 3 of the material
5 are not exposed over the outer circumferential surface 8 of the coating layer 7.
[0021] Fig. 6 illustrates the second embodiment of a tappet according to the present invention.
In the second embodiment, in the vicinity of the end of the raw material 1, feeds
are given to the cutting tool in an axial direction and toward the axis, and the raw
material 1 is immediately ground to the end thereof without stopping the feeds at
near the end of the material 1, so that the helical groove 3 is formed all over the
outer circumferential surface 1, and similar way to the first embodiment is then made.
The peaks 10 in the helical groove 3 of the material 5 are not exposed over the outer
circumferential surface 8 of the coating layer 7. The same numerals are alotted to
the same members and parts in the first embodiment, and the details thereof are omitted.
[0022] Fig. 7 illustrates the third embodiment of a tappet according to the present invention.
In this embodiment, feed is given to the cutting tool only in an axial direction,
not toward the axis, so that the raw material is ground. When the cutting tool reaches
to a predetermined position in the vicinity of the end of the raw material, feed of
the cutting tool is stopped, and terminates at a position slightly spaced from the
end of the material 1. thereby forming a helical groove 3 having an annular groove
3a at the terminating end then a tappet is made by a way similar to the first embodiment.
[0023] The foregoings merely relate to embodiments of the present invention. Various changes
and modifications may be made by person skilled in the art without departing from
the scope of claims wherein:
1. A tappet in an internal combustion engine, the tappet comprising a core material having
a helical groove on an outer circumferential surface and a wear resistant coating
layer which covers the outer circumferential surface of the core material, an end
of the outer circumfential surface being chamfered, characterized in that:
in the vicinity of the end of the outer circumferential surface, said helical groove
gradually becomes smaller in diameter toward the end, thereby preventing peaks of
the helical groove from being exposed over an outer circumferential surface of said
coating layer.
2. A tappet in an internal combustion engine, the tappet comprising a core material having
a helical groove on an outer circumferential surface and a wear resistant coating
layer which covers the outer circumferential surface of the core material, an end
of the outer circumfential surface being chamfered, characterized in that:
an end of said helical groove is terminated at a position slightly spaced from the
end of the core, an annular groove being formed at the end of the helical groove,
thereby preventing peaks of the helical groove from being exposed over an outer circumferential
surface of said coating layer.
3. A tappet in an internal combustion engine, the tappet comprising a core material having
a helical groove on an outer circumferential surface and a wear resistant coating
layer which covers the outer circumferential surface of the core material, an end
of the outer circumfential surface being chamfered, characterized in that:
in the vicinity of the end of the outer circumferential surface, said helical groove
gradually becomes smaller in diameter toward the end, an end of said helical groove
is terminated at a position slightly spaced from the end of the core, an annular groove
being formed at the end of the helical groove, thereby preventing peaks of the helical
groove from being exposed over an outer circumferential surface of said coating layer.
4. A method of manufacturing a tappet in an internal combustion engine, the method comprising
the steps of:
forming a helical groove on an outer circumferential surface of a core material so
that the groove may become smaller in diameter in the vicinity of an end of the core
material;
covering the outer circumferential surface with a wear resistant coating layer; and
forming the outer circumferantial surface to a cylindrical surface, at least the end
of the cylindrical surface being chamfered.
5. A method of manufacturing a tappet in an internal combustion engine, the method comprising
the steps of:
contacting an outer circumferential surface of a cylindrical core material with a
cutting tool to give feed in an axial direction to form a helical groove on the outer
circumferential surface of the core material while the core material is rotated on
an axis;
stopping the feed of the cutting tool when the helical groove reaches in the vicinity
of an end of the core material to form an annular groove at the end of the helical
groove;
covering the outer circumferential surface of the core material with wear resistant
coating layer; and
finishing the outer circumferential surface to a cylindrical surface, at least the
end of the cylindrical surface being chamfered.
6. A method of manufacturing a tappet in an internal combustion engine, the method comprising
the steps of:
contacting an outer circumferential surface of a core material with a cutting tool
to give it feed in an axial direction while the core material is rotated on an axis;
giving feed to the cutting tool toward the axis in the vicinity of an end of said
core material to form a helical groove which gradually becomes smaller in diameter
as it becomes closer to the end of the core material;
stopping the feed of the cutting tool when the helical groove reaches to a predetermined
position closer to the end of the core material to form an annular groove at then
end of the helical groove;
covering the outer circumferential surface with a wear resistant coating layer; and
finishing an outer circumferential surface of the coating layer to a cylindrical surface,
at least said end of the cylindrical surface being chamfered.