

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 807 185 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
 Corrections, see page(s) 3, 4, 10, 14

(48) Corrigendum issued on:
11.12.2002 Bulletin 2002/50

(45) Date of publication and mention
 of the grant of the patent:
12.06.2002 Bulletin 2002/24

(21) Application number: **96902922.2**

(22) Date of filing: **24.01.1996**

(51) Int Cl.7: **C12P 19/44, C07H 15/04,**
C07H 15/06, A61K 31/702,
A61K 31/70, C12N 1/20,
C12R 1/46, A61K 38/46
// (C12N1/20, C12R1:46),
(C12P19/44, C12R1:46),
(A61K31/702, 38:00),
(A61K31/702, 38:46)

(86) International application number:
PCT/EP96/00309

(87) International publication number:
WO 96/023896 (08.08.1996 Gazette 1996/36)

(54) **ANTITUMOR PREPARATIONS CONTAINING A LIPOTEICHOIC ACID FROM STEPTOCOCCUS**
 ANTITUMORPRÄPARATE, DIE EINE LIPOTEICHONSÄURE AUS STREPTOCOCCUS
 ENTHALTEN
 PREPARATIONS ANTITUMORALES CONTENANT UN ACIDE LIPOTEICHOIQUE TIRE DE
 STREPTOCOCCUS

<p>(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE</p> <p>(30) Priority: 30.01.1995 EP 95101208</p> <p>(43) Date of publication of application: 19.11.1997 Bulletin 1997/47</p> <p>(73) Proprietor: Lunamed AG 4103 Bottmingen (CH)</p> <p>(72) Inventors: <ul style="list-style-type: none"> • TRUOG, Peter CH-4056 Basel (CH) • RÖTHLISBERGER, Peter CH-8037 Zürich (CH) </p> <p>(74) Representative: Arnold, Winfried et al Brügglistrasse 9 4104 Oberwil (CH)</p> <p>(56) References cited: EP-A- 0 135 820 WO-A-94/20115 US-A- 3 729 461</p>	<ul style="list-style-type: none"> • PATENT ABSTRACTS OF JAPAN vol. 11, no. 136 (C-419), 30 April 1987 & JP,A,61 275217 (YAKULT HONSHA CO LTD), 5 December 1986, • BIOCHIM. BIOPHYS. ACTA (BBACAO);74; VOL.348 (3); PP.370-87, UNIV. NIJMEGEN;DEP. BIOCHEM.; NIJMEGEN; NETH., XP002004768 VEERKAMP J H ET AL: "Biochemical changes in Bifidobacterium bifidum var. nnsylvanicus after cell wall inhibition. VII. Structure of the phosphogalactolipids***" • BR J CANCER 51 (5). 1985. 739-742. CODEN: BJCAAI ISSN: 0007-0920, XP002004769 YAMAMOTO A ET AL: "THE USE OF LIPOTEICHOIC-ACID FROM STREPTOCOCCUS-PYGENES TO INDUCE A SERUM FACTOR CAUSING TUMOR NECROSIS." cited in the application • INFECT IMMUN 43 (2). 1984. 670-677. CODEN: INFIBR ISSN: 0019-9567, XP002004770 GOLDSCHMIDT J C JR ET AL: "TEICHOIC ACIDS OF STREPTOCOCCUS-AGALACTIAE CHEMISTRY CYTO TOXICITY AND EFFECT ON BACTERIAL ADHERENCE TO HUMAN CELLS IN TISSUE CULTURE."
---	--

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- EUR. J. CLIN. MICROBIOL. (EJCMDM);82; VOL. 1 (6); PP.375-80, HADASSAH UNIV. HOSP.;DEP. CLIN. MICROBIOL.; JERUSALEM; ISRAEL (IL), XP002004771 MICHEL J ET AL: "Effects of subminimal inhibitory concentrations of loramphenicol***, erythromycin and penicillin on group A streptococci***"
- CHEMICAL ABSTRACTS, vol. 095, no. 1, 6 July 1981 Columbus, Ohio, US; abstract no. 007709, MOROZOVA N G ET AL: "1,2-Di-O-palmitoyl-3-O-[6-O-(1,2-di-O-palmitoyl-sn-glycero-3-O-phosphoryl)-.alpha.-D-glucopyranosyl]-sn-glycerin" XP002004773 & SU,-,787 414 (MOSCOW INSTITUTE OF FINE CHEMICAL TECHNOLOGY;USSR) 15 December 1980
- PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 91 (5). 1994. 1863-1867. ISSN: 0027-8424, XP002004772 DUNNE D W ET AL: "The type I macrophage scavenger receptor binds to Gram-positive bacteria and recognizes lipoteichoic acid."

DescriptionField of the Invention

5 [0001] The invention concerns a new lipoteichoic acid (in the following LTA-T), a pharmaceutical composition comprising it, optionally together with a monokine and/or hyaluronidase, a method of treating cancer comprising administration of an antitumor effective amount thereof, a method of producing the new compound and the new pharmaceutical composition, two degradation products of the new LTA-T and their use, and the new *Streptococcus* strain from which the new compound can be isolated.

Background of the Invention

10 [0002] Lipoteichoic acids (LTAs) are a group of amphipathic substances found in the cell wall of grain-positive bacteria extending from the outer cell membrane through the cell wall to the surface. The main group of LTAs consists of a hydrophilic poly(glycerophosphate) backbone and a hydrophobic glycolipid moiety. The hydrophilic backbone may be substituted with alanine, hexoses and hexosamines. The glycolipids described so far were mainly dihexosylglycerols and some trihexosylglycerols. Lipoteichoic acids show genus and species variation in the degree of polymerization of the hydrophilic chain, in the nature and degree of glycosidic substitution, in the extent of D-alanyl ester substitution, and in the structure of the lipid moiety (A. J. Wicken et al., *Science*, 187, 1161 - 1167, (1975), and *Microbiology*, 360 - 365, (1977); Fischer W., *Physiology of lipoteichoic acids in bacteria*. *Adv. Microb. Physiol.*, 29(233); 233-302 (1988), Fischer W., Mannsfeld T., Hagen G., *On the basic structure of poly(glycerophosphate) lipoteichoic acids*, *Biochem. Cell Biol.*, 68 (1): 33-43, (1990).

15 [0003] LTAs have been reported as having antitumor activity (EP 135 820; USP 4,678,773; A. Yamamoto et. al. 1985, *Br. J. Cancer*, 51, 739 - 742; and H. Usami et. al., *Br. J. Cancer*, 1988, 57, 70 - 73).

20 [0004] LTAs were isolated from e. g. *Lactobacillus helveticus* (NCIB 8025), *Lactobacillus fermenti* (NCTC 6991), *Streptococcus faecalis*, 39, *Streptococcus lactis* (ATCC 9936), *Streptococcus mutans*, AHT (A. J. Wicken et al. 1975), and *Streptococcus pyogenes* SV strain (ATCC 21059) (EP 135 820, USP 4,678,773, H. Usami et. al. 1985).

25 [0005] A glycerophosphogalactofuranosylglycerol has been described by J. H. Veerkamp and F. W. van Schalk, (1974), *Biochim et Biophys. Acta*, 348, pages 370-387. The isolation from *Bifidobacterium bifidum* var. *pennsylvanicus*, however did not result in pure compounds. An amount of 10 to 20 % of the corresponding galactopyranosyl compounds was still present. The structure of the major compounds from this bacterium, was later proposed by Werner Fischer, *Eur. J. Biochem*, 165, 639-646 (1987). It is a galactofuran (8-15 units) linked via glucon (6-9 units) to D-galactopyranosyldiacylglycerol.

30 [0006] K. K.Brown disclose in WO 94/20115 the use of hyaluronic acid for the treatment of cancer whereby also lipoteichoic acids may be used in combination therewith.

35 [0007] A streptococcal acid glycoprotein (SAGP) with antitumor activity was isolated by M. Kanaoka et. al., *Jp. J. Cancer Res. (Gann)*, 78, 1409 - 1414, (1987) from the low virulent strain *Streptococcus pyogenes* Su ATCC 21060. OK-432, a cell preparation from said strain, has found clinically use as an antitumor agent. However, in the meantime it was withdrawn from the market.

40 [0008] The LTAs described up to now carried more than one monosaccharide in the glyceroglycolipid anchor. Different glycolipid structures have been described by Fischer et al. 1988 and 1990.

45 [0009] An LTA with a monohexosyldiacylglyceroglycolipid as lipid anchor has not been described so far.

Object of the Invention

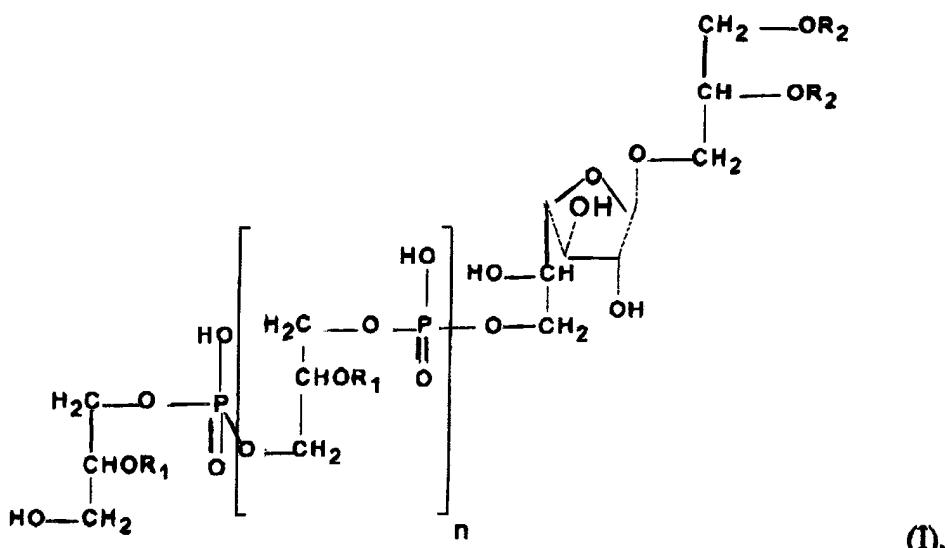
50 [0010] It is an object of the invention to provide a purified new LTA with a strong antitumor activity.

55 [0011] It is a further object to provide pharmaceutical preparations comprising this new LTA, optionally in combination with a monokine and/or hyaluronidase.

[0012] It is a further object to provide a method of producing a pharmaceutical preparation for treating cancer comprising administration of an antitumor effective amount of the new LTA to a patient optionally in combination with a monokine and/or hyaluronidase.

[0013] It is a further object to provide a method of producing the new LTA and the new pharmaceutical preparation.

[0014] It is a further object to provide two degradation products of the new LTA and their use.


[0015] It is a further object to provide a new *Streptococcus* strain from which the new LTA can be isolated and a method for its proliferation.

Detailed Description of the Invention

[0016] The invention concerns a new purified lipoteichoic acid (LTA-T) isolatable from the new Streptococcus sp strain DSM 8747 containing a beta-galactofuranosyl(1-3)glycerol-di-ester.

[0017] A first new LTA found is designated as LTA-T. It consists of a defined compound as it is shown in Formula I, with a microheterogeneity of chain length and fatty acid composition as it is given in the table on page 4. This microheterogeneity is a typical feature of lipid macroamphiphiles [Fischer W. (1993), Molecular analysis of lipid macroamphiphiles by hydrophobic interaction chromatography, exemplified with lipoteichoic acids, Anal. Biochem., 208, 49-56]. The exact composition of the naturally occurring LTA-T cannot easily be determined. It depends on the conditions of cultivation of the microorganisms.

[0018] More particularly the invention provides a lipoteichoic acid LTA-T of the Formula I

wherein R₁ is hydrogen or D-alanyl with a molar ratio to phosphorous of 0.27 to 0.35, and R₂ are the residues of saturated or unsaturated fatty acids with 12, 14, 16 or 18 carbon atoms and the mean value for n is 9, and salts thereof.

[0019] LTA-T is a new type of lipoteichoic acid in that it contains a monohexosylglycolipid moiety. Such monohexosylglycolipid moiety has not been found yet in other organisms as a part of lipoteichoic acids. This lipid anchor, as shown in Formula II below, is a beta-galactofuranosyl (1-3) glycerol-di-R₂-ester wherein R₂ are different rests of fatty acids esterified to the two adjacent hydroxy groups in the glycerol moiety.

[0020] The fatty acid rests R₂ are derived from straight-chain saturated or mono-unsaturated carboxylic acids having 12, 14, 16, or 18 carbon atoms and include the saturated lauric (C-12), myristic (C-14), palmitic (C-16) and stearic (C-18) acid, and corresponding mono-unsaturated carboxylic acids with one double bond in 7, 9, 11 or 13 position, respectively. The distribution is heterogenous and reflects the distribution in whole membrane lipids. Following approximative percentages have been found for R₂ for a typical cultivation:

45	C-12, saturated	ca. 6.0%;
	C-14, saturated	ca. 17.0%;
	C-14, mono-unsaturated (position unknown)	ca. 3.7%;
	C-16, saturated	ca. 33.0%
50	C-16, mono-unsaturated probably in 7-position	ca. 3.8%;
	C-16 mono-unsaturated in cis-9-position	ca. 11.3%;
	C-16, mono-unsaturated in cis-11-position	ca. 2.4%;
	C-18, saturated	ca. 10.0%
55	C-18, mono-unsaturated probably in 9-position	ca. 3.2%
	C-18, mono-unsaturated in 11-position (cis)	ca. 8.5%
	C-18, mono-unsaturated probably in 13-position	ca. 1.1%.

[0021] The hydrophilic backbone consists of a poly(glycerophosphate) with a mean of 10 glycerophosphate units. The hydroxygroups at position 2 of the glycerol moieties are free or esterified by D-alanine. The molar ratio of substitution to phosphorous is 0.27-0.35, corresponding to 2.7 to 3.5 D-alanine groups per molecule LTA-T. The D-alanine content depends on the cultivation conditions.

[0022] The free hydroxy groups at the phosphorous atoms are acidic. At pH 4.7 in sodium acetate buffer and in physiological saline the cation is a sodium ion. LTA-T may form salts with other positively charged ions, in particular physiologically acceptable salts, such as alkali metal or alkaline earth metal salts, also heavy metal salts, such as zinc or iron salts, or primary, secondary, tertiary or quaternary ammonium salts (acid addition salts). Such other salts are e. g. potassium, calcium, ammonium, mono-, di-, tri- or tetra-lower alkyl-, e. g. methyl- or ethyl-, or methyl-ethyl, propyl- or butylammonium salts. Non-physiologically acceptable salts, such as heavy metall salts, e. g. copper salts, may be used for isolation and purification of LTA-T. A preferred salt is the sodium salt, when the LTA is purified as described.

[0023] For therapeutic use the amount of the positively charged ions in the pharmaceutical composition is to be adjusted to result in a physiologically acceptable pH, in particular around pH 7 or 7.2.

[0024] The invention concerns a method for the preparation of a lipoteichoic acid LTA-T, characterized in isolating it from *Streptococcus* sp (DSM 8747) and purifying it by conventional methods.

[0025] Isolation and purification of LTA-T can be achieved in analogy to Fischer W., Koch H. U., Haas R. (1983), Improved preparation of lipoteichoic acids, Eur. J. Biochem., 133: 523-530, or any other method. For example, bacteria cells (DSM 8747) are suspended in distilled water or preferably a buffer, e. g. citrate buffer of pH 3.0, and disrupted, e. g. by means of a homogeniser and glass beads, preferably under cooling. The suspension of the broken cells is adjusted to about pH 4.7, e. g. with sodium bicarbonate. The aqueous suspension is extracted with phenol at moderately elevated temperature, e. g. up to about 68° C. The water phase is separated and several times dialysed, e. g. against sodium acetate buffer of pH 4.7, with a diaphragma having a molecular weight cut off of 10 - 12 kD. The remaining clear solution is concentrated in an ultrafiltration device with a PM 10 membrane and insoluble material, such as polysaccharides, removed by centrifugation.

[0026] The crude extract is further freed from undesired material, such as proteins, nucleic acids and polysaccharides, e. g. by hydrophobic interaction chromatography (HIC), e. g. by loading in a solution of propanol/sodiumacetate pH 4.7 on an octyl-Sepharose column. The LTA-T is eluted, e.g with a linear gradient of propanol in sodium acetate pH 4.7. The effluents are monitored by a colorimetric determination of organic phosphorus according to Schnitger H., Papenberg K., Ganae E., Czok R., Bücher T., Adam H. (1959), Chromatographie phosphathaltiger Metabolite eines menschlichen Leberpunktats, Biochem. Zentralblatt, 332; 167187. LTA-T is eluted at a propanol concentration of about 30-38%. The LTA-T containing fractions are dialysed against a buffer, e. g. sodiumacetate pH 4.7, and concentrated by ultrafiltration with a PM 10 membrane or completely dried in vacuum. The purified LTA-T or the concentrated solution thereof is stored at -20°C.

[0027] The bacteria cells (DSM 8747) are obtained by culturing in a conventional manner in a complex medium, e. g. Todd Hewitt broth or Tryptic Soy broth, at 37° C and a pH of about 7.2 under stirring and without aeration. At the end of the logarithmic growth phase the cells are harvested, e. g. by centrifugation, suspended in a convenient buffer, e. g. a citrate buffer of pH 3, in which they can be stored at low temperature, e. g. at -20° C for further use.

[0028] The invention concerns further a pharmaceutical preparation comprising a lipoteichoic acid LTA-T or a physiologically acceptable salt thereof, optionally in combination with a monokine and/or hyaluronidase.

[0029] Monokines are for example interferons, such as of the alpha group, e. g. interferon alpha 2b, or interferon gamma, cytokines, are for example inter-leukins, e. g. interleukin-1-alpha, -1-beta, -1-RA, -2, -3, -4, -5, -6 -7 or -8, tumornekrose-factors, e. g. TNF-alpha or -beta, or TGF-beta-1, -beta-2, -beta-3, -beta-5 and -alpha.

[0030] Hyaluronidase is any commercially available one, e.g. Permease®.

[0031] The pharmaceutical preparations are of conventional manner.

[0032] The LTA-T or the pharmaceutical combinations of the present invention are administered orally or parenterally to achieve the therapeutic effect in any of the usual pharmaceutical forms. These include solid and liquid unit oral dosage forms such as tablets, capsules, powders, suspensions, solutions and syrups, transdermal plasters, inhalable formulations, and the like, including sustained release preparations, and fluid injectable forms, such as sterile solutions and suspensions. The term dosage form as used in this specification and the claims refer to physically discrete units to be administered in single or multiple dosage to humans or warmblooded animals, each unit containing a predetermined quantity of active material in association with the required diluent, carrier or vehicle. The quantity of active material is that calculated to produce the desired therapeutic effect upon administration of one or more of such units.

[0033] Powders are prepared by comminuting the compound to a suitably fine size and mixing with a similarly comminuted diluent pharmaceutical carrier, such as an edible carbohydrate material as for example, starch. Sweetening, flavoring, preservative, dispersing and coloring agents can also be added. Powders are advantageously applied by inhaling and are for this purpose filled into inhalers. Such inhalers for dry powders are known in the art.

[0034] Capsules are made by preparing a powder as described above and filling formed gelatin sheaths. A lubricant, such as talc, magnesium stearate and calcium stearate can be added to the powder mixture as an adjuvant before the

filling operation. A glidant such as colloidal silica may be added to improve flow properties. A disintegrating or solubilizing agent may be added to improve the availability of the medicament when the capsule is ingested.

[0035] Tablets are made by preparing a powder mixture, granulating or slugging, adding a lubricant and disintegrant and pressing into the desired form. A powder mixture is prepared by mixing the compound, suitably comminuted, with a diluent or base such as starch, sucrose, kaolin, dicalcium phosphate and the like. The powder mixture can be granulated by wetting with a binder such as syrup, starch paste, acacia mucilage or solutions of cellulosic or polymeric materials and forcing through a screen. As an alternative to granulating, the powder mixture can be run through the tablet machine and the resulting imperfectly formed slugs broken into granules. The granules can be lubricated to prevent sticking to the tablet forming dies by means of the addition of stearic acid, a stearate salt, talc or mineral oil.

5 The lubricated mixture is then pressed into tablets. The medicaments can also be combined with free flowing inert carriers and compressed into tablets directly without going through the granulating or slugging steps. A protective coating consisting of a sealing coat of shellac, a coating of sugar or polymeric material and polish coating of wax can be provided. The coating can be resistant in the stomach and the active ingredients to be released in the intestine. Dyestuffs can be added to these coatings to distinguish different unit dosages.

10

[0036] Oral fluids such as syrups and elixirs can be prepared in unit dosage form so that a given quantity, e.g. a teaspoonful, contains a predetermined amount of the compound. Syrups can be prepared by dissolving the active compound in a suitably flavored aqueous sucrose solution, while elixirs are prepared through the use of a non-toxic alcoholic, e.g. ethanolic, vehicle. Suspensions and emulsions can be formulated by dispersing the medicament in a non-toxic vehicle.

15 [0037] For parenteral administration, fluid unit dosage forms can be prepared by suspending or dissolving a measured amount of the active material in a non-toxic liquid vehicle suitable for injection such as an aqueous, alcoholic, e.g. ethanolic, or oleaginous medium. Such fluid dosage unit forms may contain solubilizers, such as a polyethyleneglycol, stabilizers, and buffers, such as a citric acid/sodium citrate buffer, to provide the desired osmotic pressure. Alternatively a measured amount of the active material is placed in a vial and the vial and its contents are sterilized and sealed. An accompanying vial or vehicle can be provided for mixing prior to administration. Solutions can also be specifically prepared for inhalation and applied by means of an inhaler. Inhalers for fluids are known in the art.

20 [0038] For transdermal application powders or syrups may be manufactured into suitable transdermal plasters. Such plasters are known in the art.

[0039] If combinations of LTA-T with a monokine and/or hyaluronidase are envisaged such combinations may be 25 used separately and simultaneously or consecutively, or otherwise formulated together in one pharmaceutical preparation according to the methods described above.

[0040] The invention concerns further a method of producing a pharmaceutical preparation comprising LTA-T or a physiologically acceptable salt thereof and optionally a monokine and/or hyaluronidase by a conventional method.

30 [0041] The invention concerns further a method of producing a pharmaceutical preparation for treating cancer comprising administration of an antitumor effective amount of a lipoteichoic acid LTA-T or a physiologically acceptable salt thereof and optionally a monokine and/or hyaluronidase to a patient suffering from cancer, a tumor or a malignant cell thereof.

35 [0042] The following biological effects, determined according to Bhakdi S., Klonisch T., Nuber P., Fischer W., Stimulation of monokine production by lipoteichoic acids, Infect. Immun., 59(12): 4614-4620, (1991), and Keller R., Fischer W., Keist R., Bassetti S., Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids, Infect. Immun., 60(9): 3664-3672, (1992), respectively, were found 8 hours after induction of monocytes with LTA-T;

Table 1

45 Amount of LTA-T used for Induction, ug	Amount of monocytes found 8 h after induction, ng ml ⁻¹
0.50	TNF: 25
1.50	TNF: 60
0.25	IL-6: 27
2.00	IL-6: 30
1.00	IL-1b: 35
4.00	IL-1b: 35

55 [0043] The values for induction with the known LTAs of *S. pyogenes* and *S. lactia* as obtained in the same set of experiments were 2-4 times less than these data.

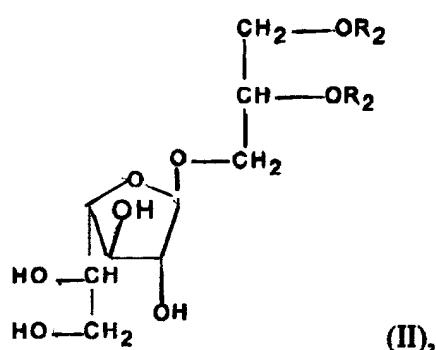
[0044] The new LTA-T is preferably administered subcutaneously, intravenously or intraperitoneally in dosage unit form of a pharmaceutical preparation comprising LTA-T or a physiologically acceptable salt thereof in an amount of from 0.1 to 20 micromol/ml and one or more pharmaceutical carriers. An antitumor effective amount of LTA-T is e. g. of from about 0.001 to about 20 mg, e. g. from 1 to 20 mg/kg, preferably of from 0.01 to 2 mg/kg, which is administered to a patient of normal weight once or preferably several times during the entire period of treatment, as need may be. The amount and mode of administration depend on the type and severity of the disease, the weight and general condition of the patient and is to be left to the judgement of the physician. The new LTA-T may be applied prophylactically in the amounts given hereinbefore.

[0045] If hyaluronidase is used it is applied in amounts of between about 500 and about 5000, preferably about 1000 U USP, and preferably subcutaneously.

[0046] If a monokine is used it is applied in amounts of between about 0.1×10^6 and about 20×10^6 , preferably about 6×5 mio units, and preferably subcutaneously.

[0047] Eight patients suffering from various Kinds of tumors/cancer were treated subcutaneously with a solution having a concentration of 1 micromol/ml LTA-T in physiological saline in single or repeated administration. Most of the patients obtained also subcutaneously hyaluronidase and one obtained also an interferon-alpha. The results are compiled in Example 7, Table 2.

[0048] The invention concerns further the new *Streptococcus* sp strain DSM 8747 from which the new LTA-T can be isolated.


[0049] The new bacteria strain was isolated from an erysipelas of a female patient with a malignant breast carcinoma in complete remission. The strain is a new species within the genus *streptococcus*. It was designated as *Streptococcus* sp. PT and deposited under the Budapest Treaty at the Deutsche Sammlung für Mikroorganismen, Braunschweig, Germany, under the deposition number DSM 8747 on November 25, 1993.

[0050] The strain can be cultured and stored under conventional conditions as described hereinbefore.

[0051] The invention concerns further the new degradation products of LTA-T and the methods of their preparation by conventional means, e. g. by alkaline or hydrogen fluoride (HF) hydrolysis.

[0052] Such new degradation product is for example the deacylated dLTA-T of the Formula I, wherein R¹ and R² are both hydrogen. This compound is obtained by splitting off the fatty acid and the D-alanyl groups by conventional methods, e. g. by treatment of LTA-T with a base, e. g. 0.1 M aqueous NaOH at 37° C for about one hour. The formed dLTA-T is separated and purified according to the method of Folch J, Lees M., Sloan-Stanley, G. M. S. (1957), A simple method for the isolation and purification of total lipids from animal tissues, *J. Biol. Chem.* 226, 497 - 509, by partition between the two phase system chloroform: methanol:water (1:0.9:0.9).

[0053] Another new degradation product is beta-galactofuranosyl(1-3)glycerol-di-R₂-ester of the Formula II

wherein R₂ is the rest of a saturated or unsaturated fatty acid with 12, 14, 16 or 18 carbon atoms, a single compound falling under Formula II, and salts thereof.

[0054] A compound of the Formula II is produced from a compound of the Formula I by splitting the bond between the 6-hydroxy group of the galactofuranosyl group and the phosphoric acid moiety, e. g. by treatment of LTA-T with 48 % hydrogen fluoride at 2° C for about 36 hours.

[0055] A compound of the formula II, wherein R₂ is hydrogen (deacylated lipid anchor) is produced from a compound of the formula I, e. g. by treatment with 0.2 M NaOH for 12 hours at 100° C, and subsequent cleavage of phosphomonoesters by phosphomonoesterase.

[0056] The degradation products are useful as analytical tools for the identification and characterisation of LTA-T and as starting materials for the preparation of new LTAs with defined groups R², for example by esterification of dLTA-T with specific fatty acids, and for the preparation of new LTA with a defined hydrophilic group esterified to the 6-hydroxy

group of the galactofuranosyl moiety.

[0057] The following examples describe the invention in more detail. They should however not be construed as a limitation thereof.

5 **Example 1: Bacterial strain and cultivation**

[0058] The gram-positive bacterium *Streptococcus* sp. PT, deposited at the Deutsche Sammlung für Mikroorganismen unter No. DSM 8747, was isolated from a erysipelas of a human patient with a malignant breast carcinoma. It belongs to the group of *streptococci*. 16 S RNA sequencing revealed that this strain cannot be classified in the known 10 groups of *streptococci*. It was designated *Streptococcus* sp. PT and has the following growth characteristics:

Morphology: chain forming cocci with 5-40 units, depending on shear forces

Growth optima: pH_{opt}: pH 7.2; T_{opt}: 37°C; microaerophilic growth

15 [0059] The bacteria are cultivated in Todd Hewitt broth (Difco, USA) to the end of the logarithmic growth phase. Cultivation conditions are:

working Volume V _R	500 l
Temperature	37°C
pH	7.2±0.1
Aeration rate	none - 0.05 vvm
Stirring speed	500 rpm

25 [0060] The culture broth is cooled and the cells harvested immediately by centrifugation. The cells (400g wet weight per litre) are suspended in 0.1M citrate buffer pH 3.0 and stored at -20°C for further use.

Example 2: Isolation and Purification of lipoteichoic acid LTA-T

30 [0061] When not mentioned otherwise all steps are accomplished at 4°C.

[0062] A suspension (250 ml) of bacteria cells DSM 8747 in 0.1 M citrate buffer pH 3.0 (400g wet weight per litre, obtained as described in Example 1) is mixed with an equal volume of glass beads (Braun Melsungen, Ø 0.17-0.18 mm) and agitated under cooling in a Braun disintegrator fitted with a CO₂ cooling device for 6 min. The suspension of broken cells is decanted through a glass filter G1 and the remaining glass beads are washed with 0.1 M of sodium acetate pH 4.7. The combined filtrate and washing fluid is adjusted to pH 4.7 with 1 M NaHCO₃. The crude suspension is extracted in an equal volume of 80:20 (v/v) phenol/water at 68°C for 1 hour. After cooling, the water phase is separated by centrifugation at 3000 rpm (1800g) for 30 minutes. The upper water phase is collected and an equal volume of 0.1 M sodiumacetate buffer pH 4.7 is added to the remaining phenol phase and extracted, centrifuged and collected as described before. If the water phase is cloudy, it is extracted again with phenol at room temperature (1/8 (v/v) of the water volume) for 30 min and centrifuged as before.

[0063] The combined water phases are extensively dialysed against 0.05 M sodiumacetate pH 4.7 (four 5 litre changes for at least 24h) in a Medicell® tubing with a molecular weight cut off (MWCO) of 10-12 kD.

[0064] The clear solution is concentrated in an Amicon® Ultrafiltration device with a PM 10 membrane (MWCO 10 kDa) and insoluble material (e.g. polysaccharides) is separated by centrifugation.

[0065] The crude extract solution is freed from proteins, nucleic acids and polysaccharides by hydrophobic interaction chromatography (HIC). For that purpose the crude LTA preparation is loaded in 15% propanol in 0.1 M sodiumacetate pH 4.7 on an octyl-Sepharose (Pharmacia LKB Sweden) column, previously equilibrated with the same buffer-propanol solution. After separation of nucleic acids, proteins and polysaccharides, the LTA-T is eluted with a linear gradient of 15-55% (v/v) propanol in 0.1 M sodiumacetate pH 4.7. Each effluent is monitored by a colorimetric determination of organic phosphorus according to Schnitger, ibid. The LTA is eluted at a propanol concentration of about 33%. The LTA containing fractions are collected and dialysed against 0.05 M sodiumacetate pH 4.7 and concentrated down to about 5 micromol phosphorus content/ml by ultrafiltration in an Amicon® Ultrafiltration device with a PM 10 membrane (MWCO 10 kDa). The concentrated solution of LTA-T is stored at -20°C.

[0066] This clear solution of LTA-T is free of contaminant proteins (shown by HPLC of amino acids after acid hydrolysis), nucleic acids (exact Gro/P ratio) and carbohydrates (no contaminant sugars after acid hydrolysis). It can be evaporated to dryness to give a powder which is difficult to solubilize again in water for reason of micell formation. It can be solubilized in a mixture of water and an organic solvent, e. g. ethanol, or a solubilizer, e. g. polyethyleneglycol.

[0067] The LTA-T can be characterised by its unique lipidanchor after hydrolysis with hydrogen fluoride, as described

in Example 3.

Example 3: Structural Characterisation

5 [0068] The purified LTA is submitted to HF hydrolysis (48 % HF, 36 h, 2°C) and the hydrophilic part (products of the backbone) and the hydrophobic part (lipid anchor) separated by Folch partition [Folch J., Lees M., Sloane-Stanley G. H. S. (1957), A simple method for the isolation and purification of total lipids from animal tissues, *J. Biol. Chem.*, 226: 497-509] in chloroform:methanol:water (1:0.9:0.9).

10 [0069] The two parts are analysed separately. The core of the lipid anchor is analysed after deacylation as partially methylated alditol acetate by GLC-MS analysis. The typical fragmentation pattern of 1,2-dimethyl-3-acetyl-glycerol and 2,3,5,6-terra-0-methyl-1,4-di-0-acetyl-galactitol can be observed. The hydrophilic products are analysed by GLC (gas liquid chromatography) before and after HCl hydrolysis or alkaline dealylation. Thereby no sugars are detected.

15 [0070] For molecular composition the LTA is hydrolysed with 2M HCl for 2,5 hours at 100 °C and afterwards treated with phosphonomonoesterase in order to remove phosphonomonoesters. Phosphorus, glycerol, galactose and alanine are obtained in a ratio of 1:1.05:0.11:0.27 indicating the proposed structure given by Formula I. [According to the methods described in Fischer W. (1988), Physiology of lipoteichoic acids in bacteria, *Adv. Microb. Physiol.*, 29 (233): 233-302].

20 [0071] NMR analysis of the deacylated compound of LTA-T (dLTA-T) allows a definite structural characterisation. The NMR spectrum is shown in Figure 1. The identification of the peaks are listed in the following Table 2:

Table 2

C-atom	dLTA		ppm		ppm
beta-G1	108.24	Gro Al	63.45	X1	67.14
G2	81.83	A2	71.16	X2	70.40
G3	77.61	A3	69.50	X3	67.00
G4	83.82	D1	67.37		
G5	70.50	D2	71.62		
G6	67.27	D3	63.04		

[0072] Summing up, the characteristics of this LTA for distinction of other LTAS are the following:

35 - beta-Galf-(1-3)diacylglycerol as lipid anchor
 - non-glycosylated, linear, unbranched GroP-chain
 - mean chain length of 10 GroP units
 40 - lipid pattern

Example 4: Preparation of Deacyl-LTA-T (dLTA-T)

45 [0073] LTA-T is submitted to mild alkaline hydrolysis (0.1M NaOH, 1 h, 37°C). The solution is adjusted to pH 3 with HCl and the fatty acids are extracted four times with petroleumether: chloroform (4:1). The water solution is neutralized with NaOH and extensively dialysed against water in a tubing with a cut off of 2 kD. The product in the retentate is LTA-T without alanine esters and without fatty acids and is called dLTA-T.

50 Example 5: Preparation of beta-Galactofuranosyl(1-3)glycerol-di-R₂-ester

[0074] The lipidanchor beta-galactofuranosyl(1-3)glycerol-di-R₂-ester of the Formula II can be isolated as it is outlined in Example 3 after HF hydrolysis.

55 [0075] Since galactofuranosyl-beta-1-3-glycerol is also found as a part of the membrane lipids, it can be isolated from whole lipid preparations.

[0076] The lipids are isolated by the method of Bligh-Dyer [Bligh E. G., Dyer W. J. (1959, A rapid method of total lipid extraction and purification, *Can J. Biochem Physiol*, 37: 9111-9117] and the crude lipid extract is first fractionated

on an anion exchange column (DEAE Cellulose) and further purified on silicagel. Elution is made with different mixtures of chloroform:acetone. Final purification is made by preparative TLC on silicagel plates [Kates M. (1986) Techniques in lipidology. In: Laboratory techniques in biochemistry and molecular biology. Work T.S., Work E. (eds.), North-Holland publishing company, Amsterdam].

5

Example 6: Pharmaceutical Formulation

[0077] The purified LTA-T in 0.05M sodiumacetate pH 4.7 is dialysed extensively against physiological NaCl solution (0.9%) and the volume is adjusted to 1 µmol LTA-T (based on the phosphorus content) with physiological saline. After filtration of the solution through a filter membrane (Millipore 0.22µm), 1 ml aliquots of the filtrate are placed in sterilized vials under sterile conditions. These vials contain 1 micromol/ml LTA-T phosphorus and are used subcutaneously for therapeutical purposes.

10

Example 7: Results of Clinical Treatments

15

[0078] Eight patients suffering from various kinds of tumors/cancer were treated subcutaneously with a solution having a concentration of 1 micromol/ml LTA-T in physiological saline in single or repeated administration. Most of the patients obtained also subcutaneously hyaluronidase and one obtained also an interferon-alpha. The results are compiled in Table 3:

20

Table 3

Patient	Type of Tumor	Treatment	Result
M.F., *1952	Malignant fibrous Histiocytoma. Removed surgically 3/91. Local recurrence 5/92. Incomplete excision 11/92.	LTA-T s.c. at the site of the tumor. Total dose 8 micromol phosphate ¹⁾ : 1-2/93	CR (>10 months)
H.R., *1909	Cancer of the Prostate, diagnosed 6/92	7/92: LTA-T, 1 micromol P in combination with Hyaluronidase ²⁾ 1000 NFU s.c. 9/93: LTA-T, 2 micromol P in combination with Hyaluronidase 1000 NFU s.c.	PR (PSA: 6/92: 108 mcg/l, 9/92: 63 mcg/l)
L.B., *1943	Colon carcinoma pT3 pN2 G2, Resection 1/90	LTA-T 3/90: 8 micromol P in combination with Hyaluronidase 1000 NFU s.c. 3/91: 8 micromol P in combination with Hyaluronidase 1000 NFU s.c., 12/91: 8 micromol P in combination with Hyaluronidase 1000 NFU s.c., 11/92: 3 micromol P in combination with Hyaluronidase 1000 NFU s.c., 9/93: 3 micromol P in combination with Hyaluronidase 1000 NFU s.c.	CR (>47 months)
L.K., *1916	Colon carcinoma pT4 pN2 G2-3, Resection 4/93	LTA-T 5/93: 6 micromol P in combination with Hyaluronidase 1000 NFU s.c.	CR (>6 months)

1) the dosage is calculated on the amount of phosphate of the LTA-T preparation

2) the hyaluronidase was obtained from CILAG as Permease®

Table 3 (continued)

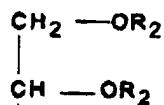
Patient	Type of Tumor	Treatment	Result
5 M.R., *1941	Breast carcinoma 3/90: Lumpectomy 6/92: Recurrence in regional Lymphnodes and Lung	LTA-T 10/93: 3 micromol P in combination with Hyaluronidase 1000 NFU and Interferon alpha 2b ³⁾ , 5 mio U, 6 times s.c.	PR
10 F.M., *1913	Lung carcinoma 2/91: Adenocarcinoma right upper lobe	LTA-T 9/92: 2 micromol P in combination with Hyaluronidase 1000 NFU s.c.	PR (>14 months)
15 A.L., *1922	Inflammatory breast carcinoma with bone metastasis 2/92	LTA-T 7/92: 9 micromol P in combination with Hyaluronidase 1000 NFU s.c.	Primary tumor: CR 14 months Bone metastasis: PD (died 9/93)
20 C.H., *1921	Breast carcinoma with lung and mediastinal metastasis	LTA-T 7/92: 2 micromol P in combination with Hyaluronidase 1000 NFU s.c.	PR of mediastinal mass

3) the interferon-alpha 2b was obtained from ESSEX CHEMIE as Intron H®

Abbreviations: CR: complete remission; PR: partial remission; *: birth year; PSA: prostate specific antigen; U USP: units United States Pharmacopoe; P: phosphate content;

Deposit of Microorganism:

30 [0079] The microorganism PT designated as *Streptococcus* sp PT, used in this invention was deposited under the Budapest Treaty on November 25, 1993, under the number DSM 8747 at the DSM-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH, Mascheroder Weg 1b, D-38124 Braunschweig.


Claims

1. A purified lipoteichoic acid (LTA-T) isolatable from the *Streptococcus* sp PT strain DSM 8747 containing a beta-galactofuranosyl(1-3)glycerol-di-ester moiety.
2. A lipoteichoic acid LTA-T according to claim 1 of the Formula I

45

50

55

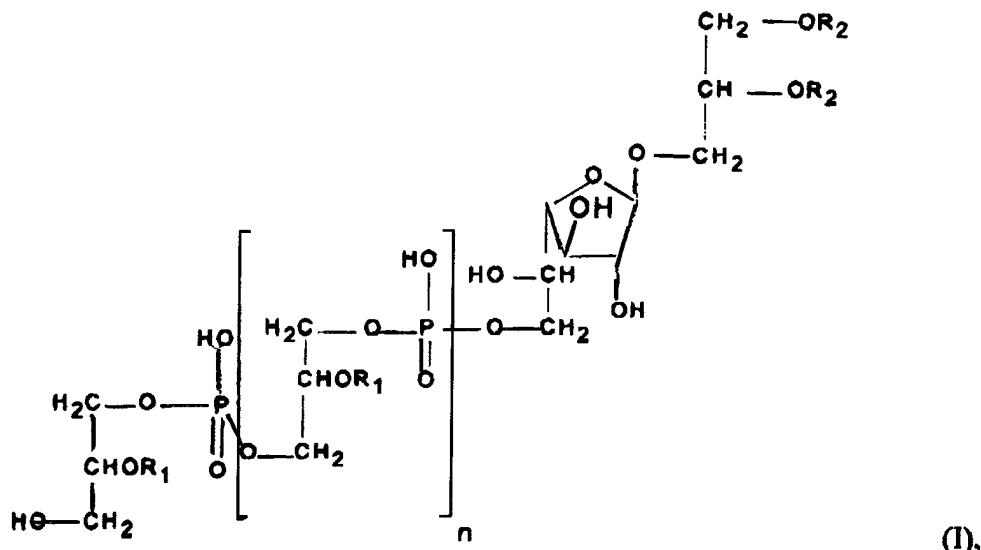
5

10

15

20

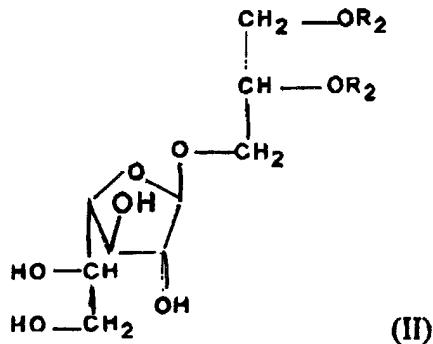
30


35

40

45

50


55

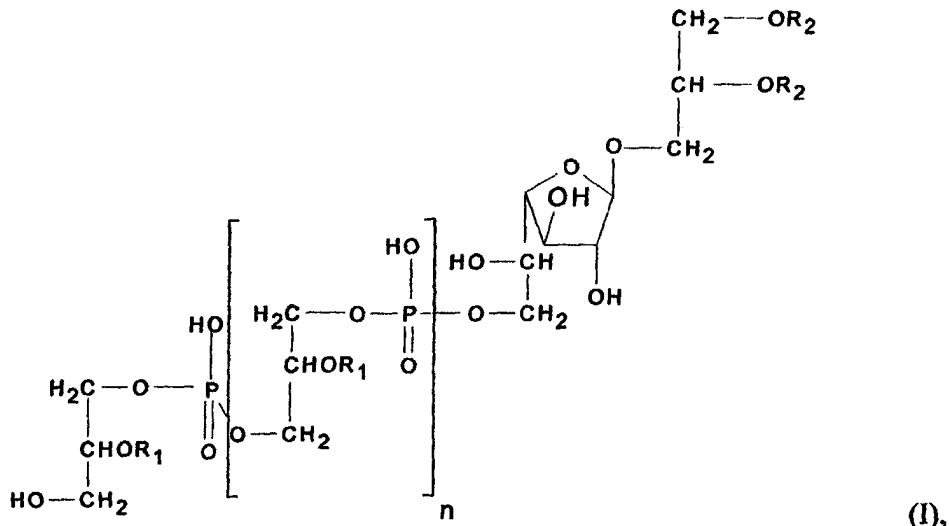
wherein R₁ is hydrogen or D-alanyl with a molar ratio to phosphorus of 0.27 to 0.35, and R₂ are the residues of saturated or unsaturated fatty acids with 12, 14, 16 or 18 carbon atoms and the mean value for n is 9, and salts thereof.

- 25 3. A lipoteichoic acid according to claim 1, being present in form of a physiologically acceptable salt, such as derived from positively charged ions, such as alkali metal or alkaline earth metal ions, or positively charged primary, secondary, tertiary or quaternary ammonium ions, e. g. sodium, potassium, calcium, zinc, ammonium, mono-, di-, tri- or tetra-lower alkyl-, e. g. methyl- or ethyl-, or methyl-ethyl-, proyl- or butyl-ammonium ions, in particular sodium ions.
- 30 4. A method for the preparation of a lipoteichoic acid LTA-T according to claim 1, **characterized in** isolating it from *Streptococcus* sp (DSM 8747).
- 35 5. A pharmaceutical preparation comprising a lipoteichoic acid LTA-T according to claim 1 or a physiologically acceptable salt therof in dosage unit form.
6. A pharmaceutical preparation according to claim 5 in combination with an alpha-interferon.
7. A pharmaceutical preparation according to claim 5 in combination with hyaluronidase.
- 40 8. A pharmaceutical preparation according to claim 5 in combination with interferon-alpha and hyaluronidase.
9. A method of producing a pharmaceutical preparation comprising a lipoteichoic acid according to claim 1 by mixing the LTA-T with a pharmaceutical carrier.
- 45 10. A method of producing a pharmaceutical preparation for treating cancer comprising administration of an antitumor effective amount of a lipoteichoic acid LTA-T or a physiologically acceptable salt therof according to claim 1 to a patient suffering from a tumor or a malignant cell thereof.
- 50 11. The *Streptococcus* sp PT strain DSM 8747.
12. Method for the proliferation of *Streptococcus* sp PT DSM 8747 **characterised in** growing said bacteria strain under proliferating conditions.
- 55 13. A deacylated dLTA-T of the Formula I according to claim 2, wherein R¹ and R² are both hydrogen, n has the given meaning, or a salt thereof.
14. A beta-galactofuranosyl(1-3)glycerol-di-R₂-ester of the Formula II

5

10

15 wherein R₂ is the rest of a saturated or unsaturated fatty acid with 12, 14, 16 or 18 carbon atoms, a single compound thereof, and salts thereof.


Patentansprüche

20

1. Eine gereinigte Lipoteichonsäure(LTA-T), die aus dem *Streptococcus sp* PT Stamm DSM 8747 isolierbar ist und eine beta-Galactofuranosyl(1-3)glycerol-di-esterstruktur enthält.
2. Eine Lipoteichonsäure(LTA-T) gemäss Anspruch 1 der Formul I

25

30

45

worin R₁ Wasserstoff oder D-Alanyl ist mit einem molaren Verhältnis zu Phosphor von 0.27 to 0.35, und R₂ die Reste von gesättigten oder ungesättigten Fettsäuren mit 12, 14, 16 or 18 Kohlenstoffatomen sind und der Mittelwert für n 9 ist, und Salze davon.

50

3. Eine Lipoteichonsäure gemäss Anspruch 1, in Form eines physiologisch annehmbaren Salzes, wie abgeleitet von positiv geladenen Ionen, wie Alkalimetall- oder Erdalkaliemetallionen, oder positiv geladenen primären, secundären, tertiären oder quaternären Ammonium-Ionen, beispielsweise Natrium-, Kalium-, Kalzium-, Zink-, Ammonium-, Mono-, Di-, Tri- oder Tetra-niederkalkyl-, beispielsweise Methyl- oder Ethyl-, oder Methyl-ethyl-, Propyl- oder Butyl-ammonium-Ionen, insbesondere von Natrium-Ionen.
4. Eine Methode zur Herstellung einer Lipoteichonsäure LTA-T gemäss Anspruch 1, dadurch gekennzeichnet, dass sie aus *Streptococcus sp* (DSM 8747) isoliert wird.

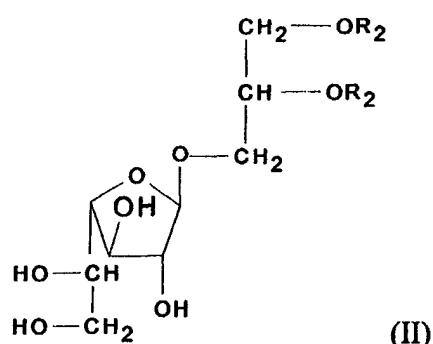
5. Eine pharmazeutische Darreichungsform umfassend eine Lipoteichonsäure LTA-T gemäss Anspruch 1 oder ein physiologisch annehmbares Salz davon in Form einer Einheitsdosis.

6. Eine pharmazeutische Darreichungsform gemäss Anspruch 5 in Kombination mit einem alpha-Interferon.

7. Eine pharmazeutische Darreichungsform gemäss Anspruch 5 in Kombination mit Hyaluronidase.

8. Eine pharmazeutische Darreichungsform gemäss Anspruch 5 in Kombination mit einem alpha-Interferon und Hyaluronidase.

10. Eine Methode zur Herstellung einer pharmazeutischen Darreichungsform umfassend eine Lipoteichonsäure gemäss Anspruch 1 durch Mischen der LTA-T mit einem pharmazeutischen Träger.


15. Eine Methode zur Herstellung einer pharmazeutischen Darreichungsform zur Behandlung von Krebs umfassend Verabreichung einer antitumor wirksamen Menge einer Lipoteichonsäure LTA-T oder eines physiologisch annehmbaren Salzes davon gemäss Anspruch 1 an einen Patienten, der unter einem Tumor oder einer krankhaften Zelle davon leidet.

20. 11. Der *Streptococcus* sp PT Stamm DSM 8747.

25. 12. Methode zur Vermehrung von *Streptococcus* sp PT DSM 8747, dadurch characterisiert, dass man den genannten Bakterienstamm unter vermehrenden Bedingungen wachsen lässt.

13. Eine deacylierte dLTA-T der Formel I gemäss Anspruch 2, worin R¹ und R² beide Wasserstoff sind, n die angegebene Bedeutung hat, oder ein Salz davon.

14. Ein beta-Galactofuranosyl(1-3)glycerol-di-R₂-ester der Formel II

worin R₂ der Rest einer gesättigten oder ungesättigten Fettsäuren mit 12, 14, 16 or 18 Kohlenstoffatomen ist, eine Einzelverbindung davon, und Salze davon.

Revendications

1. Acide lipotéichoïque purifié (désigné par LTA-T), isolable à partir de la souche *Streptococcus* sp PT (DSM 8747), qui contient un fragment diester de bétagalactofuranosyl(1-3)glycérol.
2. Acide lipotéichoïque LTA-T selon la revendication 1, de formule I

5

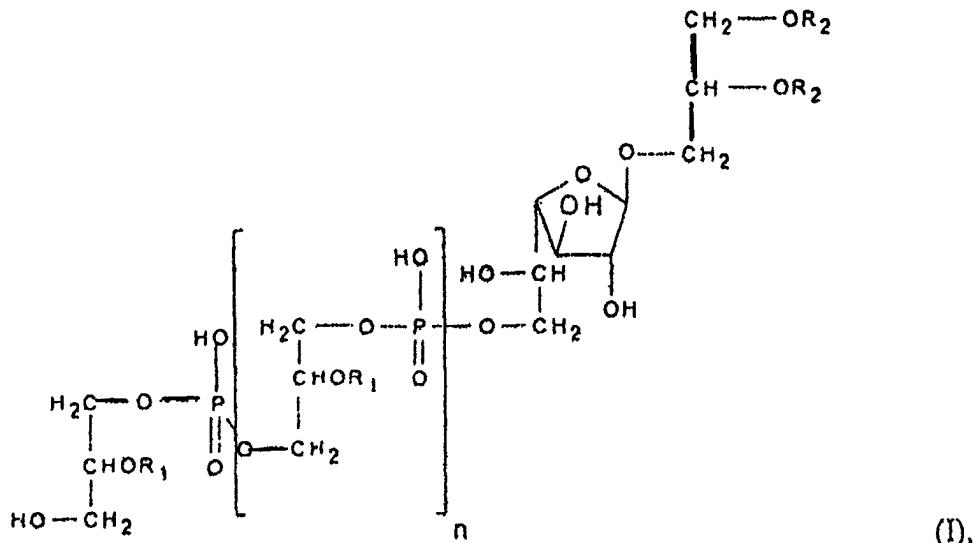
10

15

20

25

30


35

40

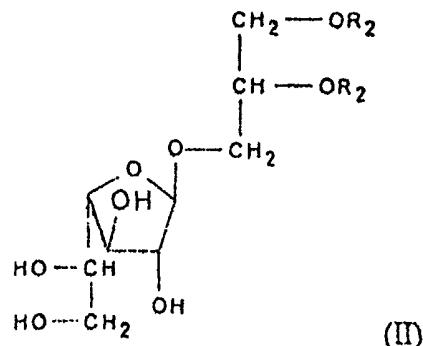
45

50

55

dans laquelle R1 représente un atome d'hydrogène ou un groupe D-alanyle, le rapport molaire des groupes D-alanyle au phosphore étant de 0,27 à 0,35, les groupes R2 représentent les restes d'acides gras saturés ou insaturés, ayant 12, 14, 16 ou 18 atomes de carbone, et la valeur moyenne de n est égale à 9, et les sels de cet acide lipotéichoïque.

3. Acide lipotéichoïque selon la revendication 1 qui est présent sous la forme d'un sel physiologiquement acceptable, tel qu'un sel avec des ions positivement chargés, comme les ions des métaux alcalins ou des métaux alcalino-terreux ou les ions ammonium primaires, secondaires, tertiaires ou quaternaires, positivement chargés, par exemple les ions sodium, potassium, calcium, zinc, ammonium, et mono-, di-, tri- ou tétra(alkyl inférieur)ammonium, par exemple les ions méthyl-, éthyl-, méthyl-éthyl-, propyl- ou butyl-ammonium, et en particulier les ions sodium.
4. Procédé de préparation d'un acide lipotéichoïque LTA-T selon la revendication 1, **caractérisé en ce que** l'on isole cet acide à partir de *Streptococcus* sp (DSM 8747).
5. Préparation pharmaceutique comprenant un acide lipotéichoïque LTA-T selon la revendication 1 ou un sel physiologiquement acceptable de cet acide, sous la forme d'une dose unitaire.
6. Préparation pharmaceutique selon la revendication 5, en combinaison avec un alpha-interféron.
7. Préparation pharmaceutique selon la revendication 5, en combinaison avec de la hyaluronidase.
8. Préparation pharmaceutique selon la revendication 5, en combinaison avec de l'alpha-interféron et de la hyaluronidase.
9. Procédé de production d'une préparation pharmaceutique comprenant un acide lipotéichoïque selon la revendication 1, par mélange du LTA-T avec un support pharmaceutique.
10. Procédé de production d'une préparation pharmaceutique destinée au traitement du cancer comprenant l'administration à un patient souffrant d'une tumeur ou de cellules malignes, d'une quantité efficace du point de vue de l'effet antitumoral, d'un acide lipotéichoïque LTA-T selon la revendication 1 ou d'un sel physiologiquement acceptable de cet acide.
11. La souche *Streptococcus* sp PT DSM 8747.
12. Procédé de prolifération de *Streptococcus* sp PT DSM 8747, **caractérisé en ce que** l'on fait croître ladite souche bactérienne dans des conditions de prolifération.


13. dLTA-T déacylé répondant à la formule I selon la revendication 2, dans laquelle R1 et R2 représentent tous deux des atomes d'hydrogène et n a la signification indiquée, ou un sel de ce composé.

14. di-R2-ester de béta-galactofuranosyl(1-3)glycérol de formule II

5

10

15

20 dans laquelle R2 représente le reste d'un acide gras saturé ou insaturé, ayant 12, 14, 16 ou 18 atomes de carbone, composé unique répondant à cette formule, et sels de ces composés.

25

30

35

40

45

50

55

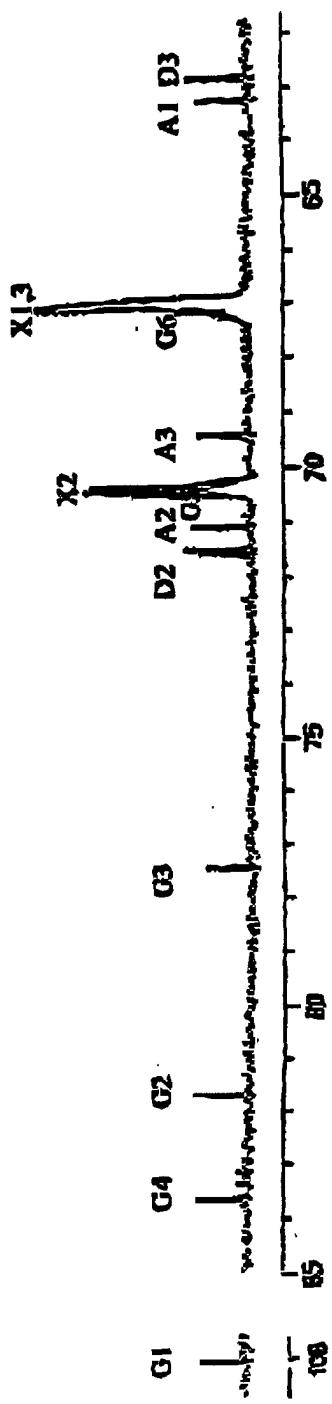
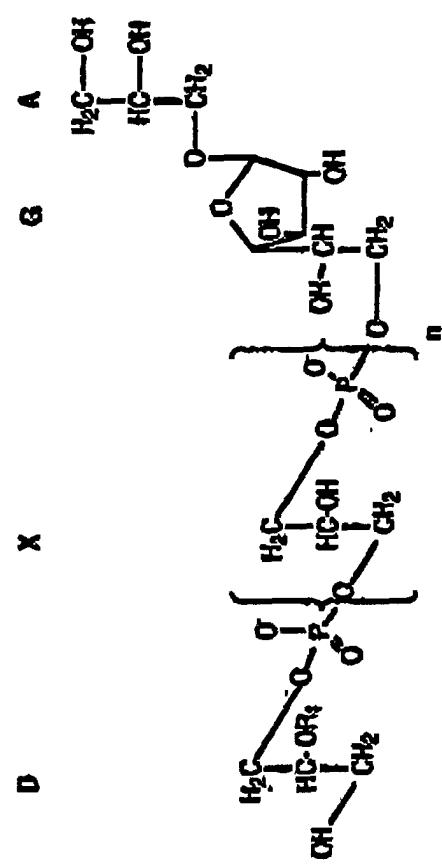



Figure 1