(19) |
 |
|
(11) |
EP 0 809 737 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
16.06.1999 Bulletin 1999/24 |
(22) |
Date of filing: 22.02.1996 |
|
(86) |
International application number: |
|
PCT/GB9600/393 |
(87) |
International publication number: |
|
WO 9627/051 (06.09.1996 Gazette 1996/40) |
|
(54) |
ELECTROHYDRAULIC PROPORTIONAL CONTROL VALVE ASSEMBLIES
ELEKTROHYDRAULISCHE PROPORTIONALE STEUERVENTILVORRICHTUNG
ENSEMBLES DE VANNES ELECTROHYDRAULIQUES A REGULATION PAR ACTION PROPORTIONNELLE
|
(84) |
Designated Contracting States: |
|
BE DE DK FR IT NL SE |
(30) |
Priority: |
25.02.1995 GB 9503854
|
(43) |
Date of publication of application: |
|
03.12.1997 Bulletin 1997/49 |
(73) |
Proprietor: Ultronics Limited |
|
Cheltenham GL52 6RT (GB) |
|
(72) |
Inventors: |
|
- TURNER, Stephen, Brian
Gloucestershire GL11 5HE (GB)
- LAKIN, David, Franz
Gloucester GL3 2HE (GB)
|
(74) |
Representative: Higgins, Michael Roger |
|
A.R. Davies & Co.
27, Imperial Square Cheltenham
Glos. GL50 1RQ Cheltenham
Glos. GL50 1RQ (GB) |
(56) |
References cited: :
EP-A- 0 462 589 US-A- 5 305 681
|
WO-A-93/01417
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to electrohydraulic proportional control valve assemblies
for controlling fluid actuated devices.
[0002] It is known (e.g. from EP-A-0462 589) to utilise a proportional control valve assembly
for controlling a fluid actuated device, such as a control ram for a lifting arm of
an earth moving vehicle for example, in response to a demand signal supplied by an
operator actuated joystick. Such a control valve assembly typically incorporates a
main spool valve having a first actuating port for bidirectional fluid flow between
the spool valve and a first port of the fluid actuated device, a second actuating
port for bidirectional fluid flow between the spool valve and a second port of the
fluid actuated device, a pump port for input fluid flow to the spool valve from a
hydraulic pump, a tank port for output fluid flow from the spool valve to a hydraulic
tank, and a spool for controlling the direction and rate of fluid flow between the
first actuating port and the pump or tank port and the direction and rate of fluid
flow between the second actuating port and the pump or tank port.
[0003] This control valve assembly may also incorporate a pressure compensator in the form
of an auxiliary spool valve which is controlled so as to maintain a constant pressure
drop across the spool of the main spool valve. Such a control valve assembly enables
the fluid actuated device to be controlled independently of the load, so that, in
the case of a control ram for a lifting arm of an earth moving vehicle for example,
the arm is lifted or lowered at a substantially uniform rate regardless of the size
of the load lifted by the arm or of variation in loading during lifting due to the
structure of the arm itself. However such control valve assemblies are of complex
mechanical construction, and this can render the control valve assemblies costly and
difficult to manufacture. Furthermore such control valve assemblies are capable of
only limited control functions, and in particular are prone to malfunction in an over-running
load condition, that is when external forces acting on the fluid actuated device due
to gravity act in the same direction as the moving part of the fluid actuated device
is being moved under hydraulic control.
[0004] It is proposed in International Published Application No. WO 93/01417 to provide
such a control valve assembly with a change-over valve incorporating a position sensor
which determines which of the two actuating ports connected to the fluid actuated
device is at the higher pressure, and which supplies an electrical position signal
indicative of which port is at the higher pressure to a processor which also receives
an electrical pressure signal indicative of the higher pressure from a pressure sensor,
as well as a directional signal indicative of the direction in which the spool is
to be displaced from its neutral position by manual movement of an operator-actuated
lever. The processor incorporates a comparator which establishes whether the input
port as indicated by the directional signal is at the higher pressure, and provides
an output signal to a positioning device for controlling the output of the pump in
dependence on the result of this comparison and in accordance with the requirement
of the load. Although such an assembly incorporates special control measures responsive
to an over-running load condition, these measures operate only in response to actual
movement of the spool on operator actuation, so that there is still a risk of malfunction
in such an over-running load condition.
[0005] It is an object of the invention to provide a novel proportional control valve assembly
which can be produced in a straightforward manner and which provides a large number
of control functions.
[0006] According to the present invention there is provided an electrohydraulic proportional
control valve assembly as defined in the accompanying claims.
[0007] Such a control valve assembly utilises adjustment of the position of the two valve
members to control the flow rate and/or pressure at the ports of a fluid actuated
device, such as a hydraulic cylinder or hydraulic motor, in dependence on the sensed
valve member position, the sensed pressures in the ports and the sensed pump pressure
and in response to the operator actuated demand signal, produced by operator actuation
of a joystick for example. The valve members are continuously controlled by the servo
control means in response to a continually updated actuating signal adapted to drive
the valve members to positions corresponding to throughflow cross-sections appropriate
to the required flow and pressure conditions and the desired operating mode of the
fluid actuated device, and a large number of control functions can be provided by
appropriate programming of the control circuitry. For example, the flow rate and/or
pressure at the ports of the fluid actuated device may be controlled so that the device
is adjustable at a uniform rate which is independent of the load, that is so that
the rate of movement of the moving part of the device is not affected by variation
of the applied load or supply pressure, either in a passive load condition or in an
over-running load condition. Furthermore servo control of valve member position in
dependence on the feedback position signals ensures highly accurate valve member positioning,
without requiring either detailed analysis of valve characteristics or adjustment
to take account of wear.
[0008] The provision of two separate valve means having separately movable valve members
is advantageous as it enables differential opening and closing of the first and second
actuating ports to effect control of the fluid actuated device. Independent control
of the flow rate and/or pressure at the two ports of the fluid actuated device by
such valve means thus enables operation of the fluid actuated device at a higher level
of efficiency and safety than is possible in prior control arrangements in which efficiency
losses are incurred as a result of the need to displace the moving part of the device
against a back pressure. Furthermore, in the event of pressure overload, for example
due to movement of the moving part of the device being blocked by external overloading,
or where free floating of the load is required, one or both of the valve members may
be opened to tank in order to vent the two sides of the fluid actuated device separately
or simultaneously.
[0009] In order that the invention may be more fully understood, a preferred embodiment
of control valve assembly in accordance with the invention will now be described,
by way of example, with reference to the accompanying drawings, in which:
Figure 1 is a hydraulic circuit diagram of the assembly;
Figure 2 is a diagrammatic sectional view through a part of the assembly;
Figure 3 is a block diagram showing the electrical interconnections between various
parts of the assembly; and
Figure 4 is a logic diagram illustrating control functions of the assembly.
[0010] Referring to Figure 1 the illustrated electrohydraulic proportional control valve
assembly 1 comprises first and second spool valves 2 and 3 connected to first and
second actuating ports 4 and 5 for controlling fluid flow to opposite sides of a movable
piston 6 of a fluid actuated device 7 in the form of a hydraulic cylinder or motor.
The first and second spool valves 2 and 3 have spools 12 and 13 which are axially
movable by pilot fluid flows controlled by electrically operated pilot actuator valves
44 and 45 (described more fully below with reference to Figure 2) between end positions
in which the spool 12 or 13 places the corresponding actuating port 4 or 5 in communication
with either a pump port 15 or 16 connected to the output of a pump 17 or a tank port
18 or 19 connected to a tank 20. The fluid supplied to the pilot actuator valves 44
and 45 is regulated by a pilot pressure regulator 14.
[0011] The spool 12 or 13 or each spool valve 2 or 3 is movable to effect opening of the
spool valve 2 or 3 either to the pump port 15 or 16 or the tank port 18 or 19 over
a throughflow cross-section which may be varied proportionately between a minimum
opening value and a maximum opening value in dependence on the position of the spool
12 or 13. Furthermore both spools 12 and 13 are spring biased towards their neutral
positions (in which they are shown in Figure 1), and position sensors 23 and 24 are
provided for supplying electrical position signals indicative of the positions of
the spools 12 and 13. In addition a pressure relief valve 25 is provided for venting
the output of the pump 17 to the tank 20 in a manner which will be described in more
detail below. Four pressure sensors 26, 27, 28 and 29 are provided for supplying electrical
pressure signals P
A, P
B, P
S and P
T indicative of the fluid pressures in the first and second actuating ports 4 and 5,
the pump port 15 or 16 and the tank port 18 or 19.
[0012] As shown diagrammatically on the right hand side of Figure 1, the pilot pressure
regulator 14 may also serve to regulate pilot fluid supply to the pilot actuator valves
of a further pair of spool valves, identical to the spool valves 2 and 3, for controlling
supply of fluid to a further fluid actuated device 30. The two devices 7 and 30 may
be two rams for controlling different linkage axes of an earth moving vehicle for
example, and may be controlled by two valve slices in the assembly as described in
more detail below.
[0013] Figure 2 shows a section through a valve slice part incorporating one of the first
and second spool valves 2 and 3 and one of the associated pilot actuator valves 44
and 45, two such parts being provided in each valve slice. The pilot actuator valve
44 or 45 comprises a moving coil 35 fixed to a pilot spool 36 which is centred by
two springs 37 and 38, the coil 35 being displaceable in an annular air gap 39 within
a magnetic former 40 when a current is supplied to the coil 35 so as to provide magnetic
interaction between the magnetic field associated with the current flow and the magnetic
flux produced in the air gap 39 by the former 40. The pilot actuator valve 44 or 45
has two actuating ports 46 and 47 connected to the ends of the spool valve 2 or 3
by connecting conduits 48 and 49 respectively, as well as a tank port 70 connected
to the tank and two pump ports 71 and 72 connected to pump either directly or by way
of the pilot pressure regulator 14. The spool 12 or 13 of the spool valve 2 or 3 is
centred by two springs 73 and 74 and has an extension 75 at one end enabling a position
feedback signal dependant on the position of the spool 12 or 13 to be outputted by
the position sensor 23 or 24.
[0014] With the spool 36 of the pilot actuator valve 44 or 45 in the neutral position as
shown in Figure 2, only slight fluid leakage will take place through the pilot actuator
valve, and hence the spool 12 or 13 of the main spool valve 2 or 3 will be held in
its neutral position by the springs 73 and 74, as also shown in the figure. When a
position control current is supplied to the coil 35, a force acts on the spool 36
so as to move it in one or other direction (dependant on the sense of the current)
until an equilibrium position is reached in which the force is balanced by the forces
exerted by the springs 37 and 38. If the spool 36 moves to the right as shown in the
figure, this results in passages of a throughflow cross-section determined by the
magnitude of the current being opened between the pump port 71 and the actuating port
46 and between the tank port 70 and the actuating port 47, with the result that a
controlled displacement flow of pilot fluid is applied along the conduit 48 to the
left hand end of the spool 12 or 13 of the main spool valve 2 or 3, and at the same
time controlled venting of pilot fluid from the right hand end of the spool 12 or
13 takes place by way of the conduit 49 to tank. This causes the main spool 12 or
13 to be driven to the right as shown in the figure, with the speed of movement being
determined by the degree of opening of the pilot actuator valve 44 or 45, until the
position feedback signal outputted by the position sensor 23 or 24 indicates that
the spool has been driven to the required position at which time the current to the
coil 35 is cut off and the spool 36 of the pilot actuator valve 44 or 45 is returned
to its neutral position by the springs 37 and 38. This results in movement of the
main spool 12 or 13 being stopped so that the spool is held in the required position
to which it has been driven by virtue of the fluid pressures acting on the two ends
of the spool.
[0015] In practice the pilot actuator valve current is controlled in a complex way by the
control circuitry in order to achieve optimum dynamic and position control characteristics,
that is in order to rapidly drive the main spool 12 or 13 to the required position
and in order to accurately retain the spool in that position for as long as necessary.
This may in practice require energisation of the coil 35 by a small current under
servo control even when movement of the main spool 12 or 13 is not required, so as
to provide small fluid flows through the pilot actuator valve 44 or 45 to compensate
for fluid leakage so as to retain the main spool 12 or 13 in the position to which
it has been driven. However any current required to maintain the main spool in position
will be very low, and will not adversely affect the generally low current consumption
of the control circuitry which accurately monitors the position of the main spool
valve 12 or 13 by means of the position sensor 23 or 24 at all times and controls
the current to the coil 35 continuously so as to provide the required feedback control
of the main spool position.
[0016] Since the moving coil 35 and the spool 36 to which it is fixed are of light construction,
the coil 35 has low power consumption and the control circuitry requires only low
power, low cost components. Furthermore high speed movement of the spool 36 is possible
in response to the applied current under servo control, and rapid reversal of spool
movement can be effected by reversal of the current in the coil 35 to cause the spool
36 to move in the opposite direction. Thus not only can the supply of fluid from the
pump to the main spool 12 or 13, and corresponding venting of fluid from the main
spool 12 or 13 to tank, be controlled rapidly so as to provide for accurate dynamic
control of the main spool position in response to the position feedback signal, but
also the control of the piston 6 of the fluid actuated device 7 can be effected with
response times sufficient to enable highly advantageous control of the load in a manner
which has not previously been possible with known control arrangements. For example,
when the movement of the load is blocked, such as when the bucket of an excavator
meets an obstruction, an appropriate pressure relief signal triggered by sensing of
a pressure overload by one of the pressure sensors 26 and 27 can cause operation of
the appropriate pilot actuator valve 44 or 45 so as to rapidly open one of the main
spools 12 and 13 to tank, in order to reduce the pressure in the fluid actuated device
in such a manner as to avoid damage due to over pressure. Such pressure relief occurs
particularly rapidly due to the high speed dynamic response of the pilot actuator
valves 44 and 45. Other control features enabled by the high speed dynamic response
of the pilot actuator valves 44 and 45 under servo control will be discussed below.
[0017] Referring to Figure 3 the complete control valve assembly comprises, for example,
a bank of two valve slices 50 and 51 of the general form described, each of which
has a first actuating port 4 and a second actuating port 5 for connection to a respective
fluid pressure actuated device (not shown), and an end slice 52 connected to the valve
slices 50 and 51 and having a pump port 53 and a tank port 54. The end slice 52 serves
to control the supply pressure of hydraulic fluid from a fixed displacement pump (not
shown) connected to the pump port 53 in dependence on demand signals indicative of
the demand for fluid to be supplied to the valve slices 50 and 51, in order to ensure
that fluid is supplied only when required and in order to place the pump on standby
if there is no requirement for fluid supply to the valve slices 50 and 51. During
operator actuation the pressure relief valve 25 shown in Figure 1 is controlled in
dependence on the load pressures sensed by the pressure sensors 26 and 27 to control
the pressure of fluid supplied by the pump so that it exceeds the highest load pressure
sensed by a predetermined amount. When no pressure load is sensed, the pressure relief
valve 25 routes the fluid back to the tank at a nominal low pressure. Alternatively,
where a variable displacement pump is provided, the valve 25 may be configured to
pilot the displacement control of the pump in such a way as to ensure supply of fluid
in accordance with the requirements of the system. Although only two valve slices
50 and 51 are shown in Figure 3 for simplicity, it should be appreciated that a bank
of four to ten valve slices is more likely to be provided in a practical embodiment.
[0018] Furthermore a control computer 55 is electrically connected to the valve slices 50
and 51 and to a joystick 56 by a serial communications network, so as to monitor operator
actuation of the joystick 56, and so as to supply to the valve slices 50 and 51 pressure
(P) or flow (Q) demand signals, and pressure-flow (P-Q) select signals. In addition
the control computer 55 serves to supply initial set up data to the valve slices 50
and 51 on initial set up programming utilising a plug-in programmer 57, and also to
provide error monitoring of the valve slices 50 and 51. If required, provision may
be made for temporary connection to the valve slices 50 and 51 of a plug-in driver
58 for emergency operation of the valve slices 50 and 51. Also, if required, a health
monitor display 59 may be connected to the control unit 55 to indicate correct operation
of the valve slices 50 and 51.
[0019] The manner in which the control computer 55 is used to control the valve slices 50
and 51 in order to effect the required control of the fluid pressure actuated devices
will now be briefly described with reference to Figure 4, it being understood that
the control logic for carrying out the control functions described with reference
to Figure 4 is incorporated in the valve slices 50 and 51 themselves and not in the
control computer 55 which serves to provide overall system control. The control computer
55 supplies a pressure-flow (P-Q) select signal to each valve slice and a selection
is made by a selector in each valve slice in dependence on this signal as to whether
pressure control or flow control is to be effected.
[0020] Referring to Figure 4, it will be appreciated that the particular control mode in
which the fluid actuated device is to be controlled is determined by the form of the
select signal supplied by the control computer in dependence on the demand signal
supplied by operator actuation of the joystick and/or control mode selector buttons
or switches, as indicated by the control mode iteration loop 80 in the figure. If
the flow control mode is selected, a flow demand signal Q
DEM is supplied to a selector 81 which determines the required direction of fluid flow
to the fluid actuated device, that is whether the flow is to port A or port B. In
the event of zero flow being required, the control is effected so that both main spools
are held in their neutral positions. In the event of flow to port A being required,
a further selector 82 determines whether the pressure in the port A is greater than
or less than the pressure in the port B, that is whether the load is to be treated
as a passive load or an over running load. In the event of a passive load, the required
throughflow cross-section a of the spool valve for controlling the flow to the port
A is calculated at 83 by dividing the flow demand signal Q
DEM by the value √(P
S - P
A) and a constant of proportionality. A nominal downstream back pressure to be applied
at the port B is set at 84, and the required positions of the two spools are then
controlled at 85 by supplying control signals to the pilot actuator valve of the upstream
spool valve in order to set the required throughflow cross-section a and by supplying
control signals to the pilot actuator valve of the downstream spool valve so as to
set the downstream back pressure at a predetermined level.
[0021] In the event of an overrunning load the required throughflow cross-section a of the
spool valve for controlling the flow through the port B is calculated at 86 by dividing
the flow demand signal Q
DEM by the value √(P
B - P
T) and the constant of proportionality (where P
T is the sensed tank pressure or an assumed tank pressure where a tank sensor is not
provided), and control of the filling of the upstream side of the piston of the fluid
actuated device by way of the port A is set at 87, so that control of the required
positions of the two spools at 88 provides for controlled metering out of fluid from
the port B by appropriate setting of the throughflow cross-section a of the downstream
valve and controlled filling by way of the port A under control of the upstream valve.
In view of the ability of the pilot actuator valves to switch rapidly between supply
of fluid in one direction to the main spool valves and supply of fluid in the opposite
direction, such a control arrangement enables discontinuous switching from a passive
load condition to an overrunning load condition, as when a lifting arm of an earth
moving vehicle is swung by the fluid actuated device through an over centre position
so that the direction in which gravity acts on the load is in the same direction as
piston movement, rather than in the opposite direction as it is prior to the over
centre position being reached. The provision of a tank sensor enables more accurate
control in the event of an overrunning load, and avoids any control discontinuities.
[0022] If the selector 81 determines that the required direction of fluid flow is to the
port B of the fluid actuated device, then a similar series of control steps are carried
out to the steps already described except that the control in relation to the ports
A and B is reversed so that the calculations utilise the sensed pressure signal P
B in place of P
A and vice versa. In each case the spool positions are continuously monitored by the
position sensors, and the signals supplied to the pilot actuator valves are varied
as required in dependence on the position feedback signals from the position sensors.
[0023] In the event that pressure control is selected, the pressures applied at the two
ports A and B of the fluid actuated device are controlled in dependence on movement
of the joystick by the operator such that the joystick movement determines the rate
of change of pressure (magnitude and sense) applied to the load and, in the event
of movement of the joystick being stopped, no further pressure change is applied to
the load. Initially the pressure demand is calculated at 89 from the joystick input
signal. A selector 90 then determines whether the pressure demand requires the application
of pressure to the port A or the port B. If the pressure demand is zero both port
pressures are set to a nominal value. If the pressure demand requires application
of pressure to the port A, a selector 91 first determines whether or not oscillating
pressure is to be applied to the piston, for example in order to vibrate the load
when a compaction mode has been selected. Depending on the result of this selection
the required pressure at the port A is set to the demand pressure and the required
pressure at the port B is set to a nominal value at 92, and the required control signals
to the pilot actuator valves of the two spool valves are applied at 93 in order to
control the positions of the main spools incrementally in dependence on the position
feedback signals in order to set the required pressures in the ports A and B.
[0024] If the pressure demand requires application of pressure to the port B, a similar
sequence of control steps is effected except that the demand pressure is applied to
the port B and the pressure in the port A is set to a nominal value, that is a predetermined
pressure above the sensed or assumed tank pressure. In the event that the compaction
mode is selected, a sine wave varying cyclic demand pressure is added to the basic
demand pressure so that the load is vibrated by the resulting pressure control.
[0025] The pressure control mode can be utilised with advantage in various operating conditions.
For example, when lifting a load, the pressure control mode can be initiated so as
to provide continuous pressure counterbalancing of the load and so as to allow the
load to be manipulated manually with the application of only small pressures. Furthermore,
if the load is an excavating arm carrying a bucket for digging through the ground
for example, the applied pressure can be controlled so that, in the event of the bucket
hitting an obstruction such an underground utility, a predetermined pressure limit
will not be exceeded, and there is no danger of damage to the underground utility
by the application of excess pressure.
[0026] If a float mode is selected by the operator by actuation of a special switch, both
main spools are controlled at 94 so as to open both sides of the piston of the fluid
actuated device to tank so as to enable free floating movement of the piston and any
load coupled thereto.
[0027] Whilst the above described valve assembly utilizes first and second spool valves
2 and 3 for controlling fluid flow to and from the fluid actuated device, an alternative,
non-illustrated valve assembly in accordance with the invention utilizes a pair of
poppet valves in place of each such spool valve for controlling respectively the flow
of fluid to the device from the pump by way of the associated actuating port and the
flow of fluid from the device to the tank by way of the actuating port. In each case
the pair of poppet valves associated with each actuating port is controlled by the
pilot actuator valves to provide the required fluid flows in the various control modes.
Furthermore each of the pilot actuator valves may itself comprise a pair of poppet
valves for controlling the fluid flows to and from the main valve or valves in response
to current actuation of the moving coil.
1. An electrohydraulic proportional control valve assembly (1) for controlling a bidirectional
fluid actuated device (7) having first and second ports and a movable part (6) disposed
between the first and second ports to be acted on on opposite sides by fluid supplied
to the first port and by fluid supplied to the second port, the valve assembly having
a first actuating port (4) for bidirectional fluid flow between the valve assembly
and the first port of the fluid actuated device (7), a second actuating port (5) for
bidirectional fluid flow between the valve assembly and the second port of the fluid
actuated device (7), a pump port (15,16) for input fluid flow to the valve assembly
from a hydraulic pump (17), and a tank port (18,19) for output fluid flow from the
valve assembly to a hydraulic tank (20), the valve assembly comprising first valve
means (2) connected to the first actuating port (4), the pump port (15) and the tank
port (18) for controlling the direction and rate of fluid flow between the first actuating
port (4) and the pump port (15) and between the first actuating port (4) and the tank
port (18), and second valve means (3) connected to the second actuating port (5),
the pump port (16) and the tank port (19) for controlling the direction and rate of
fluid flow between the second actuating port (5) and the pump port (16) and between
the second actuating port (5) and the tank port (19), the first valve means (2) having
at least one first valve member (12) which is movable to vary the throughflow cross-section
for fluid flow between the first actuating port (4) and the pump or tank port (15
or 18), and the second valve means (3) having at least one second valve member (13)
which is movable, independently of movement of the first valve member(s) (12), to
vary the throughflow cross-section for fluid flow between the second actuating port
(5) and the pump or tank port (16 or 19), position sensing means (23,24) for supplying
electrical position signals indicative of the actual positions of the first and second
valve members (12 and 13), pressure sensing means (26, 27 and 28) for supplying electrical
pressure signals indicative of the fluid pressures in the first and second actuating
ports (4 and 5) and the pump port (15, 16), and servo control means for controlling
the positions of the first and second valve members (12 and 13) in dependence on the
electrical position and pressure signals and in response to an electrical demand signal
provided in response to operator actuation, in order to set the throughflow cross-sections
for fluid flow through the first and second valve means (2 and 3) between the first
actuating port (4) and the pump or tank port (15 or 18) and between the second actuating
port (5) and the pump or tank port (16 or 19) to effect the required control of the
movable part (6) of the fluid actuated device (7).
2. An assembly according to claim 1, wherein the first and second valve members (12 and
13) are spools which are axially displaceable to vary the throughflow cross-section
for fluid flow between each actuating port and the pump or tank port.
3. An assembly according to claim 1 or 2, wherein the servo control means includes electrically
operable pilot valve means (44, 45) for controlling the position of each of the valve
members (12, 13) by applying a controlled displacement flow of pilot fluid to one
part of the valve member, whilst at the same time applying controlled venting of pilot
fluid from another part of the valve member, sufficient to drive the valve member
to a required position in a first operating mode, and by subsequently discontinuing
said displacement flow of pilot fluid to the valve member and said venting of pilot
fluid so as to hold the valve member in said required position in a second operating
mode.
4. An assembly according to claim 3, wherein the pilot valve means comprises a first
pilot valve (44) for effecting bidirectional axial movement of the first valve member
(12), and a second pilot valve (45) for effecting bidirectional axial movement of
the second valve member (13) independently of movement of the first valve member (12).
5. An assembly according to claim 4, wherein each pilot valve comprises an actuating
coil (35) movable relative to a magnetic former (40) by the application of an electrical
actuating current to the coil, and a valve element (36) movable by the coil to simultaneously
control application of pilot fluid to said one part of the valve member and venting
of pilot fluid from said other part of the valve member.
6. An assembly according to any one of claims 3, 4 or 5, wherein a pilot pressure regulator
(14) is provided to regulate the pressure of fluid supplied to said pilot valve means
(44,45) to hold the last-named pressure substantially constant.
7. An assembly according to claim 1 or claim 2, wherein the servo control means includes
electrically operable pilot valve means (44,45) for controlling the position of each
of the valve members (12,13) and wherein a pilot pressure regulator (14) is provided
to regulate the pressure of fluid supplied to said pilot valve means (44,45) to hold
the last-named pressure substantially constant.
8. An assembly according to any preceding claim, wherein the servo control means is operable,
in a pressure control mode, to control the positions of the first and second valve
members (12 and 13) in response to an operator actuated electrical pressure demand
signal corresponding to a required load pressure, in order to apply controlled fluid
flow to one of the actuating ports (4 or 5) and controlled venting of fluid from the
other actuating port (5 or 4) to produce a pressure difference across the fluid actuated
device (7) corresponding to the required load pressure.
9. An assembly according to any preceding claim, wherein the servo control means is operable,
in a float mode, to control the positions of the first and second valve members (12
and 13) in response to an operator actuated electrical float demand signal, in order
to vent fluid from both actuating ports (4 and 5) so as to allow free floating movement
of a load coupled to the fluid actuated device (7).
10. An assembly according to any preceding claim, wherein the servo control means is operable,
in a compaction mode, to control the positions of the first and second valve members
(12 and 13) in response to an operator actuated electrical compaction demand signal,
in order to rapidly alternate the direction of fluid flow to the actuating ports (4
and 5) so as to vibrate a load coupled to the fluid actuated device (7).
11. An assembly according to any preceding claim, wherein the servo control means is operable,
in a pressure relief mode, to control the positions of the first and second valve
members (12 and 13) in response to an electrical pressure relief signal triggered
by sensing of a pressure overload in one of the actuating ports (4,5) by the pressure
sensing means (26,27), in order to provide controlled venting of fluid from said one
actuating port to relieve the pressure.
12. An assembly according to any preceding claim, wherein the pressure sensing means comprises
a first pressure sensor (26) for supplying a first electrical pressure signal indicative
of the fluid pressure in the first actuating port (4), a second pressure sensor (27)
for supplying a second electrical pressure signal indicative of the fluid pressure
in the second actuating port (5), a third pressure sensor (28) for supplying a third
electrical pressure signal indicative of the fluid pressure in the pump port (15,
16), and a fourth pressure sensor (29) for supplying a fourth electrical pressure
signal indicative of the fluid pressure in the tank port (18,19), and wherein the
servo control means is adapted to control the positions of the first and second valve
members (12,13) in dependence on the first, second, third and fourth electrical pressure
signals.
13. An assembly according to any preceding claim, wherein a control computer (55) is provided
for monitoring the operator actuated electrical demand signals and for providing overall
function control of the servo control means in dependence on the demand signals.
14. An assembly according to any preceding claim, which is of modular construction and
includes a bank of valve slices assembled together and adapted to control a plurality
of fluid pressure actuated devices.
1. Elektrohydraulische, proportionale Steuerventilanordnung (1) zum Steuern einer von
einem in zwei Richtungen strömenden Strömungsmittel betätigten Vorrichtung (7), mit
einer ersten und zweiten Öffnung sowie einem beweglichen Teil (6), das zwischen der
ersten und zweiten Öffnung so angeordnet ist, daß auf gegenüberliegende Seiten von
einem Strömungsmittel eingewirkt wird, das der ersten Öffnung zugeführt wird, sowie
einem Strömungsmittel. das der zweiten Öffnung zugeführt wird, wobei die Ventilanordnung
eine erste Betätigungsöffnung (4) für einen in zwei Richtungen erfolgenden Strömungsmittelstrom
zwischen der Ventilanordnung und der ersten Öffnung der strömungsmittelbetätigen Vorrichtung
(7), eine zweite Betätigungsöffnung (5) für einen in zwei Richtungen erfolgenden Strömungsmittelstrom
zwischen der Ventilanordnung und der zweiten Öffnung der strömungsmittelbetätigten
Vorrichtung (7), eine Pumpenöffnung (15, 16) für eine Strömungsmittelstromeingabe
zur Ventil anordnung von einer hydraulischen Pumpe (17) her und eine Tanköffnung (18,
19) für die Strömungsmittelausgabe von der Ventilanordnung her zu einem hydraulischen
Tank (20), wobei die Ventilanordnung erste Ventilmittel (2), die mit der ersten Betätigungsöffnung
(4), der Pumpenöffnung (15) und der Tanköffnung (18) verbunden sind, um Richtung und
Durchsatz eines Strömungsmittelstromes zwischen der ersten Betätigungsöffnung (4)
und der Pumpöffnung (15) zu steuern, sowie zwischen der ersten Betätigungsöffnung
(4) und der Tanköffnung (18) angeschlossen sind, sowie zweite Ventilmittel (3) aufweist,
die an die zweite Betätigungsöffnung (5), die Pumpenöffnung (16) und die Tanköffnung
(19) angeschlossen sind, um Richtung und Durchsatz des Strömungsmittelstromes zwischen
der zweiten Betätigungsöffnung (5) und der Pumpenöffnung (16) sowie zwischen der zweiten
Betätigungsöffnung (5) und der Tanköffnung (19) zu steuern, die ersten Ventilmittel
(2) mindestens ein erstes Ventilteil (12) aufweisen, das beweglich ist, um den durchströmten
Querschnitt für den Strömungsmittelstrom zwischen der ersten Betätigungsöffnung (4)
und der Pumpen- oder Tanköffnung (15 oder 18) zu ändern, und die zweiten Ventilmittel
(3) mindestens ein zweites Ventilteil (13) aufweisen, das unabhängig von der Bewegung
des ersten Ventilteils bzw. der ersten Ventilteile (12) beweglich ist, um den durchströmten
Querschnitt für den Strömungsmittelstrom zwischen der zweiten Betätigungsöffnung (5)
und der Pumpen- oder Tanköffnung (16 oder 19) zu ändern, Lage-Fühlmittel (23, 24),
um elektrische Lagesignale zu liefern, die eine Aussage über die tatsächlichen Lagen
des ersten und zweiten Ventilteils (12 und 13) liefern, Druckfühlmittel (26, 27 und
28) zum Zuführen elektrischer Drucksignale, die eine Aussage über die Strömungsmitteldrucke
in der ersten und zweiten Betätigungsöffnung (4 und 5) sowie der Pumpenöffnung (15,
16) liefern, und Servo-Steuermittel zum Steuern der Lagen des ersten und zweiten Ventilteils
(12 und 13) in Abhängigkeit von den elektrischen Lage- und Drucksignalen und auf ein
elektrisches Anforderungssignal hin, das auf dem Betätigung durch eine Bedienungsperson
hin vorgesehen ist, um die durchströmten Querschnitte für den Strömungsmittelstrom
durch die ersten und zweiten Ventilmittel (2 und 3) zwischen der ersten Betätigungsöffnung
(4) und der Pumpen- oder Tanköffnung (15 oder 18) sowie zwischen der zweiten Betätigungsöffnung
(5) und der Pumpen- oder Tanköffnung (16 oder 19) einzustellen, um die geforderte
Steuerung des beweglichen Teils (6) der strömungsmittelbetätigten Vorrichtung (7)
zu bewirken.
2. Anordnung nach Anspruch 1, worin das erste und zweite Ventilteil (12 und 13) Schieber
sind, die axial verlagerbar sind, um den durchströmten Querschnitt für die Strömungsmittelströmung
zwischen jeder Betätigungsöffnung und der Pumpen- oder Tanköffnung zu ändern.
3. Anordnung nach Anspruch 1 oder 2, worin die Servo-Steuermittel elektrisch betreibbare
Steuerventilmittel (44, 45) aufweisen, um die Lage eines jeden der Ventilteile (12,
13) durch Aufbringen einer gesteuerten Versetzungsströmung eines Steuerströmungsmittels
zu einem Teil des Ventilteiles hin zu steuern, während gleichzeitig Steuerströmungsmittel
von einem anderen Teil des Ventilteils gesteuert abgelassen wird, was ausreicht, um
das Ventilteil in einer ersten Betriebsart in eine geforderte Lage zu bewegen, und
durch nachfolgendes Unterbrechen des genannten Versetzungsstromes des Steuerströmungsmittels
zum Ventilteil hin und des Ablassens des Steuerströmungsmittels, um in einer zweiten
Betriebsart das Ventilteil in der geforderten Lage zu halten.
4. Anordnung nach Anspruch 3, worin die Steuerventilmittel ein erstes Steuerventil (44)
zum Bewirken der axialen Bewegung des ersten Ventilteils (12) in beiden Richtungen
sowie ein zweites Steuerventil (45) zum Bewirken der axialen Bewegung des zweiten
Ventilteils (13) in beiden Richtungen unabhängig von der Bewegung des ersten Ventilteils
(12) aufweisen.
5. Anordnung nach Anspruch 4, worin jedes Steuerventil eine Betätigungsspule (35), die
durch Anlegen eines elektrischen Betätigungsstroms an der Spule relativ zu einer magnetischen
Schablone (40) beweglich ist, und ein Ventilelement (36) aufweist, das durch die Spule
bewegt werden kann, um gleichzeitig das Aufbringen von Steuerströmungsmitteln zum
einen Teil des Ventilteils und das Ablassen von Steuerströmungsmitteln vom anderen
Teil des Ventilteils zu steuern.
6. Anordnung nach irgendeinem der Ansprüche 3, 4 oder 5, worin eine Steuerdruck-Reguliereinrichtung
(14) vorgesehen ist, um den Druck des Strömungsmittels einzuregulieren, das den genannten
Steuerventilmitteln (44, 45) zugeführt wird, um den letztgenannten Druck im wesentlichen
konstant zu halten.
7. Anordnung nach Anspruch 1 oder Anspruch 2, worin die Servo-Steuermittel elektrisch
betreibbare Steuerventilmittel (44, 45) umfassen. um die Lage eines jeden der Ventilteile
(12, 13) zu steuern, und worin eine Steuerdruck-Reguliereinheit (14) vorgesehen ist,
um den Druck des Strömungsmittels einzuregulieren, das den Steuerventilmitteln (44.
45) zugeführt wird, um den letztgenannten Druck im wesentlichen konstant zu halten.
8. Anordnung nach irgendeinem vorangehenden Anspruch, worin die Servo-Steuermittel in
einer Drucksteuer-Betriebsart betreibbar sind, um die Lagen des ersten und zweiten
Ventilteils (12 und 13) auf ein von einer Bedienungsperson betätigtes elektrisches
Druckanforderungssignal hin zu steuern, das einem geforderten Lastdruck entspricht,
um einen gesteuerten Strömungsmittelstrom an eine der Betätigungsöffnungen (4 oder
5) und das gesteuerte Ablassen von Strömungsmittel aus der anderen Betätigungsöffnung
(5 oder 4) zu veranlassen, um eine Druckdifferenz über die strömungsmittelbetätigte
Vorrichtung (7) hinweg zu erzeugen, die dem geforderten Lastdruck entspricht.
9. Anordnung nach irgendeinem vorangehenden Anspruch, worin die Servo-Steuermittel in
einer Schwebe-Betriebsart betreibbar sind,um die Lagen des ersten und zweiten Ventilteils
(12 und 13) auf ein von einer Bedienungsperson betätigtes, elektrisches Schwebe-Anforderungssignal
zu steuern, um Strömungsmittel aus beiden Betätigungsöffnungen (4 und 5) abzulassen,
um die freie Schwebebewegung einer Last zu ermöglichen, die mit der strömungsmittelbetätigten
Vorrichtung (7) gekoppelt ist.
10. Anordnung nach irgendeinem vorangehenden Anspruch, worin die Servo-Steuermittel in
einer Verdichtungs-Betriebsart zum Steuern der Lagen des ersten und zweiten Ventilteils
(12 und 13) auf ein von einer Bedienungsperson betätigtes, elektrisches Verdichtungs-Anforderungssignal
hin betreibbar sind, um rasch die Richtung des Strömungsmittelstromes zu den Betätigungsöffnungen
(4 und 5) zu ändern, um eine Last vibrieren zu lassen, die an die strömungsmittelbetätigte
Vorrichtung (7) angekoppelt ist.
11. Anordnung nach irgendeinem vorangehenden Anspruch, worin die Servo-Steuermittel in
einer Druckentlastungs-Betriebsart zum Steuern der Lagen des ersten und zweiten Ventilteils
(12 und 13) auf ein elektrisches Druckentlastungssignal hin betreibbar sind, das dadurch
ausgelöst wird, daß eine Druck-Überlast in einer der Betätigungsöffnungen (4, 5) von
den Druckfühlmitteln (26, 27) erfaßt wird, um für das gesteuerte Ablassen von Strömungsmittel
aus der einen Betätigungsöffnung zu sorgen, um den Druck zu entlasten.
12. Anordnung nach irgendeinem vorangehenden Anspruch, worin die Druckfühlmittel einen
ersten Druckfühler (26) zum Zuführen eines ersten elektrischen Drucksignals aufweisen,
das eine Aussage über den Strömungsmitteldruck in der ersten Betätigungsöffnung (4)
gibt, einen zweiten Druckfühler (27) zum Zuführen eines zweiten elektrischen Drucksignals,
das eine Aussage über den Strömungsmitteldruck in der zweiten Betätigungsöffnung (5)
gibt, einen dritten Druckfühler (28) zum Liefern eines dritten elektrischen Drucksignals,
das eine Aussage über den Strömungsmitteldruck in der Pumpöffnung (15, 16) gibt, und
einen vierten Druckfühler (29) zum Liefern eines vierten elektrischen Drucksignals,
das eine Aussage über den Strömungsmitteldruck in der Tanköffnung (18, 19) gibt, und
worin die Servo-Steuermittel dazu eingerichtet sind, die Lagen des ersten und zweiten
Ventilteils (12, 13) in Abhängigkeit vom ersten, zweiten, dritten und vierten elektrischen
Drucksignal zu steuern.
13. Anordnung nach irgendeinem vorangehenden Anspruch, worin ein Steuerrechner (55) vorgesehen
ist, um die durch eine Bedienungsperson betätigten, elektrischen Anforderungssignale
zu überwachen und um für eine gesamte Funktionssteuerung der Servo-Steuermittel in
Abhängigkeit von den Anforderungssignalen zu sorgen.
14. Anordnung nach irgendeinem vorangehenden Anspruch, die einen modularen Aufbau aufweist
und eine Reihenanordnung aus Ventileinheiten umfaßt, die zusammenmontiert sind und
dazu eingerichtet sind, eine Vielzahl von Strömungsmitteldruck betätigten Vorrichtungen
zu steuern.
1. Ensemble de vannes électrohydrauliques de commande par action proportionnelle (1)
permettant de commander un dispositif actionné par l'écoulement bidirectionnel d'un
fluide (7), comportant des premier et second passages et une partie mobile (6) disposée
entre les premier et second passages sur laquelle doivent agir, sur ses côtés opposés,
le fluide délivré au premier passage et le fluide délivré au second passage. l'ensemble
de vannes comportant un premier point d'accès de commande (4) prévu pour permettre
l'écoulement bidirectionnel du fluide entre l'ensemble de vannes et le premier passage
du dispositif actionné par l'écoulement de fluide (7), et un second point d'accès
de commande (5) prévu pour permettre l'écoulement bidirectionnel du fluide entre l'ensemble
de vannes et le second passage du dispositif actionné par l'écoulement de fluide (7),
un point d'accès (15. 16) à une pompe prévu pour permettre l'écoulement de fluide
entrant d'une pompe hydraulique (17) à l'ensemble de vannes, et un point d'accès (18,
19) à un réservoir prévu pour permettre l'écoulement de fluide sortant de l'ensemble
de vannes à un réservoir hydraulique (20). l'ensemble de vannes comprenant un premier
moyen formant soupape (2) relié au premier point d'accès de commande (4), au point
d'accès à la pompe (15) et au point d'accès au réservoir (18), de façon à commander
la direction et la vitesse de l'écoulement de fluide entre le premier point d'accès
de commande (4) et le point d'accès à la pompe (15), et entre le premier point d'accès
de commande (4) et le point d'accès au réservoir (18), et un second moyen formant
soupape (3) relié au second point d'accès de commande (5), au point d'accès à la pompe
(16) et au point d'accès au réservoir (19), de façon à commander la direction et la
vitesse de l'écoulement de fluide entre le second point d'accès de commande (5) et
le point d'accès à la pompe (16), et entre le second point d'accès de commande (5)
et le point d'accès au réservoir (19), le premier moyen formant soupape (2) comportant
au moins un premier organe de soupape (12) qui est mobile de façon à faire varier
la section transversale à travers laquelle s'écoule le fluide entre le premier point
d'accès de commande (4) et le point d'accès à la pompe ou au réservoir (15 ou 18),
et le second moyen formant soupape (3) comportant au moins un second organe de soupape
(13) qui est mobile, indépendamment du mouvement du ou des premier(s) organe(s) de
soupape (12), de façon à faire varier la section transversale à travers laquelle s'écoule
le fluide entre le second point d'accès de commande (5) et le point d'accès à la pompe
ou au réservoir (16 ou 19), des moyens de détection de position (23, 24) destinés
à délivrer des signaux électriques de position représentatifs des positions réelles
des premier et second organes de soupape (12 et 13), des moyens de détection de pression
(26, 27 et 28) destinés à délivrer des signaux électriques de pression représentatifs
des pressions de fluide au niveau des premier et second points d'accès de commande
(4 et 5), et au niveau du point d'accès à la pompe (15, 16), et un moyen formant servocommande
destiné à commander les positions des premier et second organes de soupape (12 et
13) en fonction des signaux électriques de position et de pression et en réponse à
un signal électrique de demande délivré en réponse à l'actionnement d'un opérateur,
en vue du réglage des sections transversales au travers desquelles s'écoule le fluide,
à travers les premier et second moyens formant soupapes (2 et 3) entre le premier
point d'accès de commande (4) et le point d'accès à la pompe ou au réservoir (15 ou
18), et entre le second point d'accès de commande (5) et le point d'accès à la pompe
ou au réservoir (16 ou 19), ce qui effectue la commande désirée de la partie mobile
(6) du dispositif actionné par l'écoulement de fluide (7).
2. Ensemble selon la revendication 1, dans lequel les premier et second organes de soupape
(12 et 13) sont des tiroirs qui sont déplaçables axialement de façon à faire varier
la section transversale à travers laquelle s'écoule le fluide entre chaque point d'accès
de commande et le point d'accès à la pompe ou au réservoir.
3. Ensemble selon la revendication 1 ou 2, dans lequel le moyen formant servocommande
comprend des moyens formant soupapes pilotes (44, 45) pouvant fonctionner électriquement,
destinés à commander la position de chacun des organes de soupape (12, 13) en appliquant
un écoulement de déplacement commandé de fluide pilote sur une partie de l'organe
de soupape, tout en appliquant en même temps une évacuation commandée de fluide pilote
d'une autre partie de l'organe de soupape, de façon suffisante pour entraîner l'organe
de soupape à une position désirée dans un premier mode de fonctionnement, et en interrompant
ultérieurement ledit écoulement de déplacement de fluide pilote vers ledit organe
de soupape et ladite évacuation de fluide pilote, de façon à maintenir ledit organe
de soupape dans ladite position désirée dans un second mode de fonctionnement.
4. Ensemble selon la revendication 3, dans lequel les moyens formant soupapes pilotes
comprennent une première soupape pilote (44) destinée à effectuer le déplacement axial
bidirectionnel du premier organe de soupape (12), et une seconde soupape pilote (45)
destinée à effectuer le déplacement axial bidirectionnel du second organe de soupape
(13) indépendamment du déplacement du premier organe de soupape (12).
5. Ensemble selon la revendication 4, dans lequel chaque soupape pilote comprend une
bobine de commande (35) mobile par rapport à un manchon magnétique (40) par l'intermédiaire
de l'application d'un courant de commande électrique sur la bobine, et un élément
de soupape (36). mobile sous l'action de la bobine, destiné à commander simultanément
l'application de fluide pilote sur ladite une partie de l'organe de soupape et l'évacuation
de fluide pilote de ladite autre partie de l'organe de soupape.
6. Ensemble selon l'une quelconque des revendications 3, 4 ou 5, dans lequel on dispose
d'un régulateur de pression pilote (14) pour régler la pression du fluide délivré
auxdits moyens formant soupapes pilotes (44, 45), de façon à maintenir la pression
dernièrement citée sensiblement constante.
7. Ensemble selon la revendication 1 ou la revendication 2, dans lequel le moyen formant
servocommande comprend des moyens formant soupapes pilotes pouvant fonctionner électriquement
(44, 45) destinés à commander la position de chacun des organes de soupape (12, 13),
et dans lequel on dispose d'un régulateur de pression pilote (14) pour régler la pression
du fluide délivré auxdits moyens formant soupapes pilotes (44, 45), de façon à maintenir
la pression dernièrement citée sensiblement constante.
8. Ensemble selon l'une quelconque des revendications précédentes, dans lequel le moyen
formant servocommande peut fonctionner, dans un mode de commande de pression, de façon
à commander les positions des premier et second organes de soupape (12 et 13) en réponse
à un signal de demande électrique de pression lié à l'actionnement d'un opérateur
correspondant à une pression de charge désirée, afin d'appliquer un écoulement de
fluide commandé au niveau d'un des points d'accès de commande (4 ou 5) et une évacuation
de fluide commandée de l'autre point d'accès de commande (5 ou 4), de façon à produire
une différence de pression à travers le dispositif actionné par l'écoulement de fluide
(7) correspondant à la pression de charge désirée.
9. Ensemble selon l'une quelconque des revendications précédentes, dans lequel le moyen
formant servocommande peut fonctionner, dans un mode de flottaison, de façon à commander
les positions des premier et second organes de soupape (12 et 13) en réponse à un
signal de demande électrique de flottaison lié à l'actionnement d'un opérateur, afin
d'évacuer le fluide des deux points d'accès de commande (4 et 5), de façon à permettre
un mouvement de flottaison libre d'une charge couplée au dispositif actionné par l'écoulement
de fluide (7).
10. Ensemble selon l'une quelconque des revendications précédentes, dans lequel le moyen
formant servocommande peut fonctionner. dans un mode de compression, de façon à commander
les positions des premier et second organes de soupape (12 et 13) en réponse à un
signal de demande électrique de compression lié à l'actionnement d'un opérateur, afin
d'alterner rapidement la direction de l'écoulement de fluide en direction des points
d'accès de commande (4 et 5), de façon à faire vibrer une charge couplée au dispositif
actionné par l'écoulement de fluide (7).
11. Ensemble selon l'une quelconque des revendications précédentes, dans lequel le moyen
formant servocommande peut fonctionner, dans un mode de délestage de pression, de
façon à commander les positions des premier et second organes de soupape (12 et 13)
en réponse à un signal électrique de délestage de pression déclenché par la détection
d'une surcharge de pression au niveau de l'un des points d'accès de commande (4, 5)
par les moyens de détection de pression (26, 27), afin d'assurer une évacuation commandée
du fluide dudit point d'accès de commande, de façon à délester la pression.
12. Ensemble selon l'une quelconque des revendications précédentes, dans lequel les moyens
de détection de pression comprennent un premier capteur de pression (26) destiné à
délivrer un premier signal électrique de pression représentatif de la pression de
fluide au niveau du premier point d'accès de commande (4), un second capteur de pression
(27) destiné à délivrer un second signal électrique de pression représentatif de la
pression de fluide au niveau du second point d'accès de commande (5), un troisième
capteur de pression (28) destiné à délivrer un troisième signal électrique de pression
représentatif de la pression de fluide au niveau du point d'accès à la pompe (15,
16), et un quatrième capteur de pression (29) destiné à délivrer un quatrième signal
électrique de pression représentatif de la pression de fluide au niveau du point d'accès
au réservoir (18, 19), et dans lequel le moyen formant servocommande est conçu pour
commander les positions des premier et second organes de soupape (12, 13) en fonction
des premier, second, troisième et quatrième signaux électriques de pression.
13. Ensemble selon l'une quelconque des revendications précédentes, dans lequel on dispose
d'un ordinateur de commande (55) pour surveiller les signaux de demande électriques
liés à l'actionnement d'un opérateur et pour effectuer la commande du fonctionnement
global du moyen formant servocommande en fonction des signaux de demande.
14. Ensemble selon l'une quelconque des revendications précédentes, qui a une construction
modulaire et comprend une rangée de blocs soupapes assemblés les uns aux autres et
conçus pour commander une pluralité de dispositifs actionnés par une pression de fluide.