Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 0 819 899 A2**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:21.01.1998 Patentblatt 1998/04

(21) Anmeldenummer: 97107830.8

(22) Anmeldetag: 13.05.1997

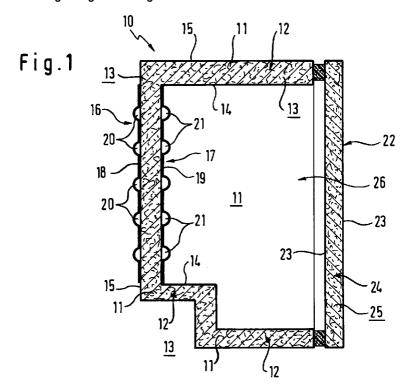
(51) Int. Cl.⁶: **F25D 23/06**

(84) Benannte Vertragsstaaten: **DE ES FR GB IT SE**

(30) Priorität: 24.05.1996 DE 19621054

(71) Anmelder:

Bosch-Siemens Hausgeräte GmbH
81669 München (DE)


(72) Erfinder:

- Wenning, Udo, Dr.Dipl.-Phys. 89537 Giengen (DE)
- Wacker, Wolfram, Dr.Dipl.-Chem. 89568 Hermaringen (DE)
- Eberhardt, Hans-Frieder, Dipl.-Phys. 89542 Herbrechtingen (DE)
- Hirath, Jürgen, Dipl.-Ing. 89537 Giengen (DE)
- Nowara, Ekkehard 26736 Pewsum (DE)

(54) Wärmeisolierendes Gehäuse

(57) Bei einem wärmeisolierendem Gehäuse (10,30) für ein wenigstens einen Verflüssiger (16,41) und einen Verdampfer (17,40) aufweisendes Kältegerät, dessen Gehäusewände (11,31) im Abstand voneinander angeordnete Hüllwände umfassen, welche einen Zwischenraum (12,32) umschließen, in welchem der Luftdruck gegenüber dem Umgebungsdruck abgesenkt

ist, ist zumindest auf eine der Hüllwände (14,15;34,35) eine zur Führung von Kältemittel dienende Kanal oder Rohrleitungsanordnung (20,21;36,37) aufgebracht, deren Verlauf und Fassungsvermögen der einem der Wärmetauscher (16,17;40,41) entspricht.

EP 0 819 899 A2

25

Beschreibung

Die Erfindung betrifft ein wärmeisolierendes Gehäuse für ein wenigstens zwei Wärmetauscher, wie einen Verflüssiger und einen Verdampfer aufweisendes 5 Kältegerät, dessen Gehäusewände im Abstand voneinander angeordnete Hüllwände umfassen, welche einen Zwischenraum umschließen, in welchem der Luftdruck gegenüber dem Umgebungsdruck abgesenkt ist.

Auf dem Gebiet der Kältegeräte ist es bekannt, zur Wärmeisolierung an deren Gehäuse neben den üblicherweise zum Einsatz kommenden aufgeschäumten Wärmeisolationsmaterialien Vakuum-Isolationstechnik zu verwenden. Hierbei sind die Gehäusewandungen aus zu einander beabstandeten Hüllwänden gebildet, welche einen mit Füllstoff verfüllten und anschließend evakuierten Zwischenraum gasundurchlässig umschließen. Bei dieser Technik ist man darauf bedacht, die Anzahl der an den Hüllwänden vorzunehmenden Bearbeitungsvorgänge, z.B. in Form von Durchführungen für Rohrleitungen oder Halterungen oder dergleichen möglichst gering zu halten, um die Wahrscheinlichkeit möglicher, die Wärmeisolation deutlich herabsetzender Leckagen zu minimieren. Dennoch ist es bei Kältegeräten derzeit unvermeidbar, an seinen beiden Hüllwänden Halterungen zur Befestigung der Verdampferplatine einerseits und der Verflüssigeranordnung andererseits vorzusehen.

Der Erfindung liegt die Aufgabe zugrunde, für wärmeisolierende Wandungen gemäß dem Oberbegriff des Anspruches 1 Maßnahmen vorzuschlagen, aufgrund welcher die Nachteile des Standes der Technik vemieden sind und zugleich der Gebrauchsnutzen eines Kältegerätes gesteigert ist.

Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß zumindest eine der Hüllwände mit einer zur Führung von Kältemittel dienenden Kanal- oder Rohrleitungsanordnung versehen ist, deren Verlauf und Fassungsvermögen der einem der Wärmetauscher entspricht.

Durch die erfindungsgemäße Lösung ergibt sich für den Kühlraum des Kältegerätes durch das unmittelbare Aufbringen der Kanal- oder Rohrleitungsanordnung ein raumsparender Aufbau, welcher sich in einer Erhöhung seiner Lagerkapazität niederschlägt. Zudem wird durch die Anwendung der erfindungsgemäßen Lösung auf die äußere Hüllwand der Gehäusewände der zum Aufstel-Ien des Kältegerätes notwendige Platzbedarf reduziert. Darüberhinaus ergibt sich durch das Aufbringen der Kanal- oder Rohrleitungsanordnung in wärmeleitendem Kontakt mit aus gut wärmeleitendem Material gefertigten Hüllwände infolge der Wärmeübertragung von der Kanal- oder Rohrleitungsanordnung auf die jeweilige Hüllwand eine deutliche Vergrößerung der Wärmetauschfläche wodurch sich der Wirkungsgrad des Kältegerätes deutlich erhöht. Die Wärmeübertragung von der Kanal- oder Rohrleitungsanordnung auf die Hüllwand läßt sich auch noch dadurch verstärken, daß die

Kanal- oder Rohrleitungsanordnung aus gut wärmeleitendem Material, wie beispielsweise Metall gefertigt ist.

Besonders zweckmäßig ist ein wärmeisolierendes Gehäuse ausgebildet, wenn nach einer bevorzugten Ausführungsform des Gegenstandes der Erfindung vorgesehen ist, daß die Kanal- oder Rohrleitungsanordnung an beiden der einander gegenüberliegenden Hüllwände einer Gehäusewand aufgebracht sind.

Besonders günstig auf die gerätespezifischen Daten, wie Stauraumkapazität und Aufstellplatzbedarf wirkt sich die Anwendung der erfindungsgemäßen Lösung aus, wenn nach einer weiteren vorteilhaften Ausgestaltung des Gegenstandes der Erfindung vorgesehen ist, daß die Kanal- oder Rohrleitungsanordnung bezüglich der Oberfläche der jeweiligen Hüllwand zurückversetzt angeordnet ist.

Entsprechend einer nächsten bevorzugten Ausführungsform des Gegenstandes der Erfindung ist vorgesehen, daß die Kanal- oder Rohrleitungsanordnung eine Leitungswandung aufweist, deren Kontur zumindest zu einem Teil durch die Wandoberfläche der Hüllwand gebildet ist.

Durch eine solche Lösung ergibt sich für den Saugrohranschluß eines als Verdampfer ausgebildeten Wärmetauschers die Möglichkeit, diesen innerhalb des durch die Hüllwände umschlossenen, evakuierten Zwischenraum vorzusehen, so daß ein zur Durchführung des Saugrohranschlusses dienender, beide Hüllwände durchdringender Durchbruch entfällt und somit eine mögliche, die Wärmeisolationswirkung der Gehäusewandung herabsetzende Wärmebrücke verhindert ist. Außerdem ergibt sich aufgrund dieser Lösungsmerkmale bei aus gut wärmeleitendem Material, wie beispielsweise aus Metall gefertigten Hüllwänden eine besonders günstige Wärmeübertragung des in der Kanal- oder Rohrleitung zirkulierenden Kältemittels auf die Hüllwand. Darüberhinaus lassen sich, basierend auf diesen Lösungsmerkmalen, auf fertigungstechnisch besonders einfache Weise mit Wärmetauschflächen versehene, vorgefertigte modulare Baueinheiten in Form von einzelnen Gehäusewänden als auch in Form von kompletten Kältegerätegehäusen herstellen.

Nach einer weiteren bevorzugten Ausführungsform des Gegenstandes der Erfindung ist vorgesehen, daß die Kanal- oder Rohrleitungsanordnung mit dem überwiegenden Teil der Kontur ihrer Leitungswandung in eine auf der ebenflächig ausgebildeten Hüllwand kältemitteldicht festgesetzten Platine eingeformt ist.

Hierdurch sind auf fertigungstechnisch einfache Weise Kanal- oder Rohrleitungsverläufe unterschiedlichen Kältemittel-Fassungsvermögens herstellbar, welche mit den für unterschiedliche Einsatzzwecke vorgesehenen wärmeisolierenden Gehäusen oder Gehäusewänden kombinierbar sind, wodurch sich eine beträchtliche Vielfalt von eine unterschiedliche Kälteleistung aufweisenden Kältegeräten ergibt.

Gemäß einer alternativen Ausführungsform des Gegenstandes der Erfindung kann vorgesehen sein, daß die Kanal- oder Rohrleitungsanordnung mit einem überwiegenden Teil der Kontur ihrer Leitungswandung in zumindest eine der einander gegenüberliegenden Hüllwände einer Gehäusewand eingeformt und von einer weitestgehend ebenflächig ausgebildeten Platine kältemitteldicht abgedeckt ist.

Hierbei ergibt sich ein besonders platzsparender Aufbau für eine Gehäusewand bzw. ein wärmeisolierendes Gehäuse, wodurch sich unter Beibehaltung der an sich auf dem Gebiet der Kältegeräte üblichen Außenabmessungen eine nicht unwesentliche Vergrößerung ihres Kühlraumes erreichen läßt. Ferner ergibt sich bei aus gut wärmeleitenden Material gefertigten Hüllwänden ein besonders wärmegünstiger Übergang des in der Kanal- oder Rohrleitungsanordnung zirkulierenden Kältemittels auf die Hüllwand.

Fertigungtechnisch besonders einfach und kostengünstig herstellbar ist der in die Platine oder die Hüllwand eingebrachte Wandkonturenabschnitt der Kanaloder Rohleitungsanordnung, wenn nach einer nächsten vorteilhaften Ausgestaltung des Gegenstandes der Erfindung vorgesehen ist, daß die Einformung in die Platine oder die Hüllwand zur Ausbildung des Wandkonturenabschnitts der Kanal- oder Rohrleitung hinterschnittsfrei erzeugt ist.

Besonders günstig läßt sich die Einformung in der Platine oder der Hüllwand für große Stückzahlen, wie sie beispielsweise auf dem Gebiet für Kältegeräte vorkommen, erzeugen, wenn nach einer letzten bevorzugten Ausführungsform des Gegenstandes der Erfindung vorgesehen ist, daß die Einformung in die Platine oder die Hüllwand durch spanlose Formgebung erzeugt ist.

Die Erfindung ist in der nachfolgenden Beschreibung anhand von zwei in der beigefügten Zeichnung vereinfacht dargestellten Ausführungsbeispielen erläutert.

Es zeigen:

Fig. 1 in einem ersten Ausführungsbeispiel schematisch ein Gehäuse eines Haushalt-Kältegerätes mit an dessen Rückwand angeordneten Wärmetauschern, deren Kältemittelkanäle mit einem überwiegenden Teil ihres Querschnitts in eine auf der Oberfläche der Gehäuserückwand festgesetzten Platine eingeformt sind, in Schnittdarstellung von der Seite und

Fig. 2 in einem zweiten Ausführungsbeispiel ein dem in Fig. 2 gezeigten Gehäuse ähnliches Gehäuse eines Haushalts-Kältegeräts, jedoch mit Wärmetauschern, deren Kältemittelkanäle mit einem überwiegenden Teil ihres Querschnitts in die Gehäuserückwand eingeformt sind, in Schnittdarstellung von der Seite.

In Fig. 1 ist ein zur Verwendung bei einem nicht

näher beschriebenen Haushalt-Kältegerät, wie beispielsweise einem Kühl- oder Gefrierschrank geeignetes wärmeisolierendes Gehäuse 10 gezeigt, dessen Gehäusewandungen 11 einen Zwischenraum 12 aufweisen. Dieser ist mit einem Wärmeisolierstoff 13, wie z.B. Glasfasermaterial, offenzelligen Schäumen auf der Basis von Polyurethan, Polyisocyanurat, Polystyrol oder anderen offenzelligen organischen Polymerschäumen, Aerogelen oder anderen anorganisch porösen Materialien verfüllt und weist einen gegenüber der Außenatmosphäre des wärmeisolierenden Gehäuses abgesenkten, sich zwischen den Werten 0,001 mbar und 100 mbar bewegenden Luftdruck auf. Der Zwischenraum 12 ist von einer als Innenverkleidung dienenden inneren Hüllwand 14 und einer dazu beabstandeten äußeren Hüllwand 15 umgrenzt, welche an ihren freien Enden vakuumdicht miteinander verbunden sind und welche aus Edelstahlblech-Platinen oder aus korrosionsgeschützten Stahlblechplatinen gefertigt sind, welche entsprechend den Abmessungen der Gehäusewände 11 abgewinkelt sind. Von diesen weist die als Rückwand dienende Gehäusewand 11 an den ihr entsprechenden Abschnitten der Hüllwände 14 und 15, auf deren vom Zwischenraum 12 abgewandten Außenseite, einen Wärmetauscher 16 bzw. 17 auf. Von diesen dient der mit 16 bezeichnete Wärmetauscher als Verflüssiger, während der Wärmetauscher 17 als Verdampfer ausgebildet ist. Beide Wärmetauscher 16 und 17 sind durch die vom Zwischenraum 12 abgewandte Wandoberfläche der Hüllwände 14 und 15 im Bereich der Rückwand und einer jeweils darauf durch Schweißen kältemitteldicht festgesetzten, plastisch verformbaren Platine 18 bzw. 19 aus Edelstahl oder korrosionsgeschütztem Stahlblech gebildet. In die Platinen 18 und 19 ist der Verlauf einer zur Führung von Kältemittel dienenden Kältemittel-Kanalanordnung 20 bzw. 21 spanlos eingeformt, von denen die in die Platine 18 eingebrachte Kältemittel-Kanalanordnung 20 zur Bildung des Wärmetauschers 16 und die Platine 19 eingebrachte Kältemittel-Kanalanordnung 21 zur Ausbildung des Wärmetauschers 17 dient. Die Kältemittel-Kanalanordnung 20 und 21 beider Wärmetauscher 16 und 17 weist einen im wesentlichen kreissegmentartigen Kanalquerschnitt auf, dessen Querschnittsfläche im überwiegenden Maße durch die Einformung in den Platinen 18 bzw. 19 bestimmt ist, wobei die Sehne des Kreissegmentes durch den entsprechenden Abschnitt der Wandoberfläche der Hüllwände 14 und 15 erzeugt ist.

Gegenüber der mit den Wärmetauschern 16 und 17 versehenen Rückwand des wärmeisolierenden Gehäuses 10 ist am Rand seiner Öffnung eine wärmeisolierende Tür 22 angeschlagen. Diese weist wie das Gehäuse 10 einen von einer Hüllwandung 23 umschlossenen Zwischenraum 24 auf, welcher mit einem auch beim Zwischenraum 12 des Gehäuses 10 zur Anwendung kommenden Wärmeisolierstoff 25 verfüllt ist und welcher nach dem Verfüllvorgang auf einen

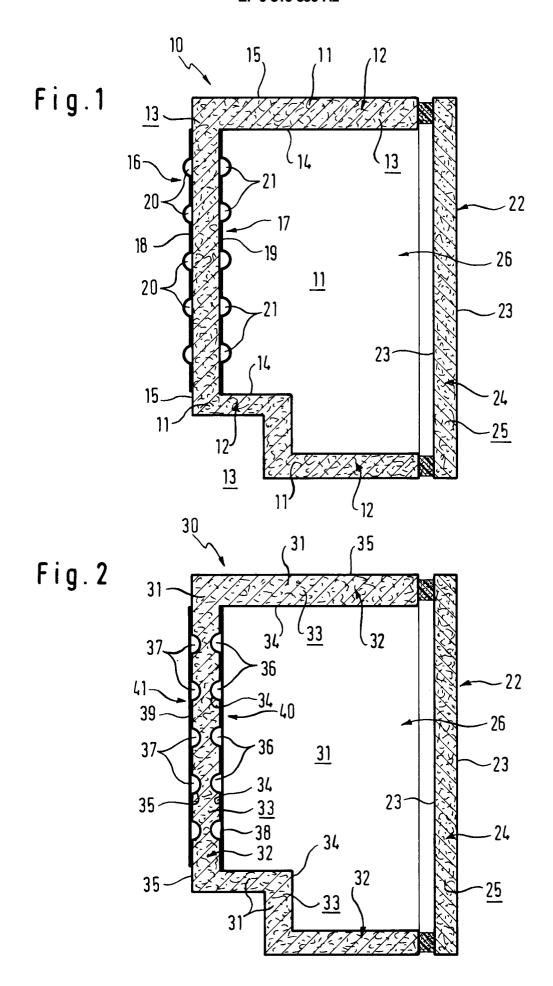
10

25

wie im Zwischenraum 12 herrschenden Luftdruck evakuiert ist. Die Tür 22 liegt im geschlossenen Zustand über eine an ihrem Rand umlaufend angeordnete balgartige Magnetdichtung 26 am Rand der Zugangsöffnung zum Gehäuse 10 an und umschließt zusammen 5 mit dessen Gehäusewandungen 11 einen im Gehäuse 10 angeordneten Kühlraum 26.

Gemäß Fig. 2 ist eine alternative Ausführungsform eines zum Einsatz für ein Haushalts-Kältegeräte geeignetes wärmeisolierendes Gehäuse 30 gezeigt, bei welchem identisch zum wärmeisolierenden Gehäuse 10 ausgeführte Teile mit gleichen Bezugsziffern gekennzeichnet sind. Das wärmeisolierende Gehäuse 30 weist wie das wärmeisolierende Gehäuse 10 einstückig miteinander verbundene Gehäusewände 31 auf , welche mit einem von weiter unten genauer erläuterten Mantelflächen umschlossenen Zwischenraum 32 ausgestattet sind. Dieser ist mit einem Wärmeisolierstoff 33 verfüllt und hinsichtlich seines Luftdruckes auf Werte abgesenkt ist, wie sie in der Beschreibung zum ersten Ausführungsbeispiel genannt sind. Als den Zwischenraum 32 umgebende Mantelflächen dienen im vorliegenden Fall eine innere Hüllwand 34 und eine dazu beabstandete äußere Hüllwand 35, welche aus einem annähernd der Druckdifferenz zwischen dem Zwischenraum 32 und dessen Außenatmosphäre entsprechend diffusionsdichtem, platinenartigen Werkstoff gebildet sind. welcher entsprechend den Abmessungen der Gehäusewände 31 geformt ist. Von diesen ist die als Rückwand des Gehäuses 30 dienende Gehäusewand 31 mit an den ihr zugeordneten Abschnitt der Hüllwände 34 und 35 mit je einem spanlos eingeformten Kanal 36 bzw. 37 ausgestattet, welche sich beide mit ihrem Kanalbett in den Zwischenraum 32 erstrecken und welche mäanderartig über die Fläche der Rückwand angeordnet sind. Die Kanäle 36 und 37 sind an ihrer vom Zwischenraum 32 abgewandten Seite randoffen ausgebildet und jeweils von einer auf der Hüllwand 34 bzw. 35 kältemitteldicht festgesetzten Platine 38 bzw. 39 abgeschlossen, wodurch jeweils ein Wärmetauscher 40 bzw. 41 gebildet ist, dessen zur Führung von Kältemittel dienende Kanal- oder Rohrleitungsanordnung durch den Kanal 36 bzw. 37 erzeugt ist. Von den Wärmetauschern 40 bzw. 41 dient der dem Kühlraum 26 zugewandte Wärmetauscher 40 als Verdampfer und der diesem gegenüberliegende Wärmetauscher 41 als Verflüssiger.

Abweichend von den beiden Ausführungsbeispielen ist es auch denkbar, das wärmeisolierende Gehäuse 10 bzw. 30 aus einzelnen wärmeisolierend aufgebauten Panels aufzubauen, von welchen das als Rückwand dienende Panel mit Wärmetauscher 16 und 17 oder Wärmetauscher 40 und 41 versehen ist. Ferner wäre es auch möglich, die mit den erfindungsgemäßen Wärmetauschern ausgestatteten Panel als einstückiges Rückwandmodul in Kältegeräte einzusetzen, deren Wärmeisolation ansonsten auf aufgeschäumten Polyurethanschäumen basiert.


Patentansprüche

- Wärmeisolierendes Gehäuse für ein wenigstens zwei Wärmetauscher, wie einem Verflüssiger und einem Verdampfer aufweisendes Kältegerät, dessen Gehäusewände im Abstand voneinander angeordnete Hüllwände umfassen, welche einen Zwischenraum umschließen, in welchem der Luftdruck gegenüber dem Umgebungsdruck abgesenkt ist, dadurch gekennzeichnet, daß zumindest eine der Hüllwände (14, 15; 34, 35) mit einer zur Führung von Kältemittel dienenden Kanal- oder Rohrleitungsanordnung (20, 21; 36, 37) versehen ist, deren Verlauf und Fassungsvermögen einem der Wärmetauscher (16, 17; 40, 41) entspricht.
- Wärmeisolierendes Gehäuse nach Anspruch 1, dadurch gekennzeichnet, daß die Kanal- oder Rohrleitungsanordnung (20, 21; 36, 37) an beiden der einander gegenüberliegenden Hüllwände (14, 15; 34, 35) einer Gehäusewand (11) aufgebracht ist
- 3. Wärmeisolierendes Gehäuse nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kanaloder Rohrleitungsanordnung (20, 21; 36, 37) bezüglich der Oberfläche der jeweiligen Hüllwand (14, 15; 34, 35) zurückversetzt angeordnet ist.
- 4. Wärmeisolierendes Gehäuse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Kanal- oder Rohrleitungsanordnung (20, 21; 36, 37) eine Leitungswandung aufweist, deren Kontur zumindest einem Teil durch die Wandoberfläche der Hüllwand (14, 15; 34, 35) gebildet ist.
- 5. Wärmeisolierendes Gehäuse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Kanal- oder Rohrleitungsanordnung (20, 21) mit einem überwiegenden Teil der Kontur ihrer Leitungswandung in eine auf der ebenflächig ausgebildeten Hüllwand (14, 15) kältemitteldicht festgesetzten Platine (18, 19) eingeformt ist.
- 6. Wärmeisolierendes Gehäuse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Kanal- oder Rohrleitungsanordnung (36, 37) zu einem überwiegenden Teil der Kontur ihrer Leitungswandung in zumindest eine der einander gegenüberliegenden Hüllwände (34, 35) einer Gehäusewand (11) eingeformt und von einer dort festgesetzten, weitestgehend ebenflächig ausgebildeten Platine (38, 39) kältemitteldicht abgedeckt ist.
- 7. Wärmeisolierendes Gehäuse nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß das die Einformung der Ausbildung des Wand-

45

konturenabschnitts der Kanal- oder Rohrleitung (20, 21; 36, 37) in die Platine (18, 19; 38, 39) oder die Hüllwand (14, 15; 34, 35) hinterschnittsfrei erzeugt ist.

8. Wärmeisolierendes Gehäuse nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Einformung zur Ausbildung der Kanal- oder Rohrleitungsanordnung (20, 21; 36, 37) in die Platine (18, 19; 38, 39) oder die Hüllwand (14, 15; 34, 10 35) durch spanlose Formgebung erzeugt ist.

