Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 822 563 A2 (11)

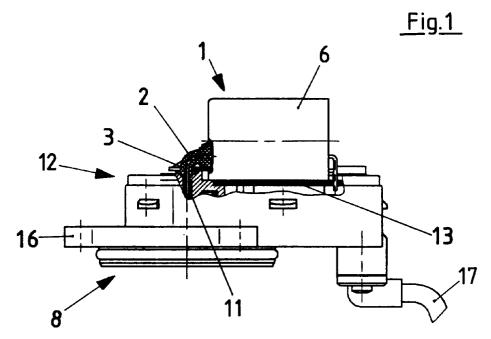
EUROPÄISCHE PATENTANMELDUNG (12)

(43) Veröffentlichungstag: 04.02.1998 Patentblatt 1998/06 (51) Int. Cl.⁶: **H01F 38/10**, H01F 27/02

(21) Anmeldenummer: 97111241.2

(22) Anmeldetag: 04.07.1997

(84) Benannte Vertragsstaaten: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE**


(30) Priorität: 03.08.1996 DE 19631491

(71) Anmelder: Hella KG Hueck & Co. 59552 Lippstadt (DE)

(72) Erfinder: Michels, Dieter 59590 Geseke (DE)

(54)Zündgerät für eine Gasentladungslampe in einem Kraftfahrzeug

Beschrieben wird ein Zündgerät für eine Gasentladunglampe in einem Kraftfahrzeug. Bei diesem Zündgerät ist die die hohe Zündspannung führende Sekundäranschlußleitung des Zündtransformators mittels einer Silikontülle isoliert, welche einen kegelförmig ausgebildeten Endabschnitt aufweist, der in eine kegelförmige Ausnehmung eines Geräteträgers eingesetzt ist. Dieses Isoliermittel ist gegenüber einem Vergießen der Sekundäranschlußleitung insbesondere kostengünstiger und funktionssicherer.

10

25

Beschreibung

Die Erfindung betrifft ein Zündgerät für eine Gasentladungslampe in einem Kraftfahrzeug, das einen Zündtransformator beinhaltet, welcher eine isolierte 5 Sekundäranschlußleitung besitzt, die mit einer Gasentladungslampe oder der Fassung für eine Gasentladungslampe elektrisch verbunden ist.

Gasentladungslampen, die als Scheinwerferlampen in Kraftfahrzeugen immer häufiger zur Anwendung kommen, benötigen neben einer hohen Betriebsspannung, die durch ein Steuergerät zur Verfügung gestellt wird, auch noch eine sehr hohe Zündspannung, die durch ein Zündgerät erzeugt wird.

Steuergerät und Zündgerät können dabei entweder schaltungstechnisch eine Einheit oder auch zwei getrennt voneinander angeordnete Komponenten ausbilden, wobei man in jedem Fall anstrebt, das Zündgerät möglichst nahe der Gasentladungslampe anzuordnen, da die Isolierung der die Zündimpuse führenden Sekundäranschlußleitung des Zündtransformators, zum Beispiel gegenüber den anderen Schaltelementen des Zündgerätes, aufgrund der sehr hohen Spannungen von 20 - 30 Kilovolt, nicht unproblematisch ist.

Die deutsche Patentschritt DE 42 31 538 C2 zeigt einen Gehäusekörper einer Kraftfahrzeugscheinwerfereinheit, bei der die gesamte Ansteuerschaltung in einer Gehäusekammer in Gießharz eingegossen ist. Eine solche Ausführung ist sehr aufwendig und bezüglich der Isoliereigenschaften ebenfalls nicht unproblematisch.

Eine Ausführungsform eines von der Anmelderin in Serie hergestellten Zündgerätes, welches seit in Kraftfahrzeuge eingebaut wird, ist in der Figur 2 dargestellt. Bei diesem Zündgerät ist die spannungsführende Sekundäranschlußleitung zwischen dem Transformatorgehäuse und dem Geräteträger, welcher eine Leitungsdurchführung zum Lampenträgergehäuse besitzt, mit einem Heißkleber vergossen.

Voraussetzung für ausreichende isolierende Eigenschaften eines solchen Vergusses ist, daß der Vergußbereich frei von Luftblasen ist. Hierbei ergibt sich die zusätzliche Schwierigkeit, daß das Vergußmittel seine Form während des Erkaltens verändert.

Zündgeräte, bei denen der Vergußbereich nach dem Erkalten nicht ausreichend spannungsfest ist, müssen somit auf aufwendige und teure Weise nachbearbeitet oder als Ausschuß ausgesondert werden, da bei unzureichender Isolierung durch Funkenschlag mit einem baldigen Totalausfall des Zündgerätes zu rechnen ist.

Der Erfindung liegt die Aufgabe zugrunde, ein Zündgerät zu schaffen, bei dem die Isolierung der Sekundäranschlußleitung des Zündtransformators auf eine kostengünstigere und zuverlässigere Weise erfolgt. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Sekundäranschlußleitung von einer flexiblen isolierenden Tülle umgeben ist, deren erster Endabschnitt im Inneren des Transformatorgehäuses

angeordnet ist und deren zweiter Endabschnitt eine kegelförmige Anformung ausbildet, welche in die kegelförmige Ausnehmung eines Geräteträgers eingesetzt ist

Durch die Verwendung einer flexiblen isolierenden Tülle, die über die Sekundäranschlußleitung des Zündtransformators geschoben ist, kann auf ein Vergießen der Sekundäranschlußleitung verzichtet werden, wodurch die zuvor beschriebenen Nachteile vermieden werden

Da die Tülle eine luftdichte Verbindung zwischen dem Zündtransformator und dem Geräteträger ermöglicht und auch innerhalb ihrer Anschlußdurchführung keine Lufteinschlüsse aufweist, reicht eine, verglichen mit den Abmessungen eines Vergußblockes, relativ dünnwandige Ummantelung der Sekundäranschlußleitung mittels eines geeigneten Isoliermaterials aus. Zur Herstellung der Tülle hat sich dabei aufgrund einer Reihe besonders positiver Eigenschaften, wie hoher Spannungsfestigkeit, Flexibilität, gute Temperaturbeständigkeit, die Verwendung eines Silikonmaterials bewährt.

Eine luftdichte Leitungsdurchführung der Sekundäranschlußleitung vom Zündtransformator zum Geräteträger wird auf besonders einfache Weise auch dadurch erzielt, daß der zweite Endabschnitt der Tülle einstückig eine kegelförmige Anformung aufweist, die in eine gleichfalls kegelförmige Ausnehmung im Geräteträger eingesetzt ist. Dabei ist besonders vorteilhaft, daß hierdurch die Verbindung zwischen der Tülle und dem Geräteträger auch montagetechnisch besonders einfach ausführbar ist.

Ebenfalls besonders vorteilhaft ist, daß die Montagevereinfachung auch einen Kostenvorteil mit sich bringt. Für die erfindungsgemäße Ausgestaltung des Zündgerätes wird zwar eine zusätzliche Tülle benötigt, die mit dem Zündtransformator verbunden ist; gegenüber einem Zündgerät, nach dem in der Figur 2 dargestellten Stand der Technik, werden aber sowohl die Kosten für den Montageschritt des Vergießens als auch die Kosten für das Vergußmaterial eingespart. Ein weiterer wesentlicher Kostenvorteil wird dadurch erreicht, daß das erfindungsgemäß ausgestaltete Zündgerät zudem funktionssicherer und daher mit einer geringeren Ausschußrate herstellbar ist.

Weitere vorteilhaftere Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Zündgerätes gehen aus den Unteransprüchen hervor.

So ist es besonders vorteilhaft, wenn der erste Endabschnitt der Tülle einen Kragen aufweist, der die Öffnung für die Sekundäranschlußleitung im Transformatorgehäuse hintergreift. Durch diesen Kragen wird ein sicherer Sitz der Tülle im Transformatorgehäuse erzielt und zudem die Abdichtung gegen Lufteintritt verbessert. Durchaus vorteilhaft ist es auch, wenn der als Kragen ausgebildete Endabschnitt der Tülle innerhalb des Transformatorgehäuses vergossen wird.

50

20

35

Eine besonders einfache Verbindung zwischen der kegelförmigen Anformung der Tülle und der kegelförmigen Ausnehmung im Geräteträger kann durch einfaches Aufdrücken erfolgen, wobei vorteilhafterweise bereits aufgrund der Formgebung von Anformung und Ausnehmung eine luftdichte Verbindung derselben gesichert ist, ohne daß weitere unterstützende Maßnahmen (z.B. Verkleben) erforderlich wären.

Vorteilhafterweise können hierzu zwei an das Transformatorgehäuse angeformte Stege vorgesehen werden, wobei die Tülle durch einen Zwischenraum zwischen den Stegen hindurchgeführt ist, und die Stege die kegelförmige Anformung in die kegelförmige Ausnehmung drückt.

Um eine montagetechnisch besonders einfache Verbindung der Sekundäranschlußleitung zum Beispiel mit einer Lampenfassung im Lampenträgergehäuse zu schaffen, kann auf der Gegenseite der Wandung des Geräteträgers, welche die kegelförmige Ausnehmung aufweist, ein Schneidklemmverbinder vorgesehen werden, der den durch die Ausnehmung hindurchgeführten Draht der Sekundäranschlußleitung aufnimmt, festsetzt und kontaktiert.

Zudem ist es vorteilhaft, wenn der Geräteträger die Grundplatte sowohl für das Zündgerätegehäuse wie auch für das Lampenträgergehäuse ausbildet. Die übrigen zum Zündgerät gehörenden Bauelemente werden somit ebenfalls in der Nähe des Zündtransformators angeordnet, was insbesondere auch durch die erfindungsgemäß erzielte gute Isolierung der Sekundäranschlußleitung unkritisch ist.

Im folgenden soll ein Ausführungsbeispiel eines erfindungsgemäßen Zündgerätes anhand der Zeichnung dargestellt und näher erläutert werden.

Es zeigen

Figur 1 eine erfindungsgemäß ausgestaltetes Zündgerät,

Figur 2 ein Zündgerät nach dem Stand der Technik,

Figur 3 die Tülle und den mit der Tülle zu verbindenden Abschnitt des Geräteträgers,

Figur 4 das Transformatorgehäuse,

Figur 5 eine Draufsicht auf das in der Figur 1 dargestellte Zündgerät.

In der Zeichnung sind jeweils gleiche oder gleichwirkende Teile mit jeweils gleichen Bezugszeichen bezeichnet.

In der Figur 1 ist ein erfindungsgemäß aufgebautes Zündgerät dargestellt. Ein Geräteträger (16) bildet hierin die Grundplatte für das Zündgerätegehäuse (12) und das Lampenträgergehäuse (8) aus. Die das Zündgerätegehäuse (12) und das Lampenträgergehäuse (8) abschließenden Gehäuseteile sind hier, wie auch in den

Figuren 2 und 5 nicht dargestellt.

Das Zündgerät ist über eine Verbindungsleitung (17) mit einem nicht dargestellten Steuergerät verbunden, welches die Lampenbetriebsspannung zur Verfügung stellt. Das Zündgerät selbst dient zur Erzeugung der sehr hohen Zündspannung für die im Lampenträgergehäuse angeordnete, nicht dargestellte Gasentladungslampe.

Das Zündgerät besteht aus einer mit dem Geräteträger (16) verbundenen Leiterplatte (13), auf der verschiedene Bauelemente angeordnet sind. Zur besseren Übersicht ist von diesen Bauteilen hier lediglich der Zündtransformator (1) dargestellt.

Die sehr hohe Zündspannung wird über die Sekundäranschlußleitung (2) vom Zündtransformator (1) über eine Durchführung im Geräteträger (16) zu einem Schneidklemmverbinder (11) im Lampenträgergehäuse (8) geführt, wo der Schneidklemmverbinder (11) zum Beispiel mit der Fassung einer Gasentladungslampe kontaktiert ist.

Um ein Überschlagen der Zündspannung auf andere Bauteile des Zündgerätes wirkungsvoll zu verhindern, ist die Sekundäranschlußleitung (2) mittels einer speziell ausgebildeten Tülle (3) isoliert, welche vom Inneren des Transformatorgehäuses (6) ausgeht und bis zur Oberfläche des Geräteträgers (16) reicht.

Zum Vergleich ist in der Figur 2 der Aufbau eines Zündgerätes nach dem Stand der Technik dargestellt. Bei diesem Zündgerät wird die Sekundäranschlußleitung (2) nicht über eine isolierende Tülle geführt, sondern zusammen mit einer Anformung (15) am Transformatorgehäuse (6), zum Beispiel mittels einer Heißklebermasse, vergossen.

Problematisch hierbei ist aber, daß sich die Form des Vergußes (14) beim Aushärten verändert, und daß sich insbesondere im Inneren Luftblasen bilden können, was die Spannungsfestigkeit des Vergusses so stark beeinträchtigen kann, daß das Zündgerät unbrauchbar wird. Die Fehler- bzw. Ausschußrate eines solchen Gerätes ist dadurch relativ hoch, was die Herstellung natürlich stark verteuert.

Wie dieses Problem durch die Verwendung einer Tülle beim erfindungsgemäßen Zündgerät gelöst wird verdeutlicht die Figur 3.

Die Figur 3 zeigt die Tülle (3), welche im Wesentlichen einen dicht an der Sekundäranschlußleitung anliegenden Isolierschlauch ausbildet. Zur Herstellung der Tülle (3) wird vorzugsweise ein flexibles, hochspannungsfestes und temperaturbeständiges Silikonmaterial verwendet.

Die Tülle (3) besitzt an einem ersten Endabschnitt einen Kragen (4), welcher im montierten Zustand an der Innenwandung des Transformatorgehäuses anliegt und im Inneren des Transformatorgehäuses vergossen ist.

Der zweite Endabschnitt der Tülle (3) ist als kegelförmige Anformung (5) ausgebildet, welche in eine gleichfalls kegelförmige Ausnehmung (7) in dem Geräteträger (16) (dargestellt ist hier ein Ausschnitt des

10

15

25

35

Geräteträgers) eingesetzt wird. Durch die beiderseitige kegelförmige Ausbildung sitzt die Anformung (5) luftdicht in der Ausnehmung (7).

Da das Innere der elastischen Tülle (3) eng am Draht der Sekundäranschlußleitung (2) anliegt, erhält 5 man so eine praktisch luftdichte und luftfreie Zuleitung der Sekundäranschlußleitung vom Transformatorgehäuse bis zum Geräteträger, wodurch das relativ geringe Materialvolumen der Tülle (3) zur sicheren Isolierung der sehr hohen Zündspannung ausreicht.

Der Geräteträger (16) besitzt am Boden der kegelförmigen Ausnehmung (7) eine Öffnung, die als Durchführung (18) des Drahtes der Sekundäranschlußleitung zum Lampenträgergehäuse (8) dient. Der Draht wird im Lampenträgergehäuse (8) durch einen Schneidklemmverbinder (11) gesichert und kontaktiert. Die Ausnehmung (7) dient dabei aufgrund ihrer Kegelform zudem als Einführhilfe.

Wie die Verbindung der kegelförmigen Anformung (5) mit der kegelförmigen Ausnehmung (7) montagetechnisch besonders vorteilhaft realisiert werden kann, soll im folgenden anhand der Figuren 4 und 5 erläutert werden.

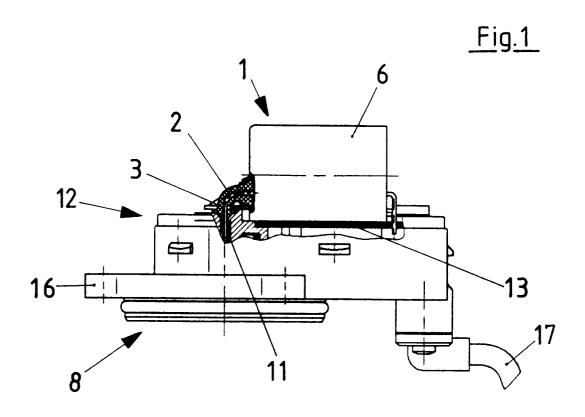
Figur 4 zeigt die Außenansicht des Transformatorgehäuses (6). Unter der Öffnung (19), aus der beim fertigmontiertem Zündtransformator die Sekundäranschlußleitung herausgeführt ist, sind an das Transformatorgehäuse (6) zwei Stege (9) angeformt, die zwischen sich einen Zwischenraum (10) ausbilden, dessen Breite etwa dem Durchmesser der Tülle in ihrem mittleren Bereich entspricht.

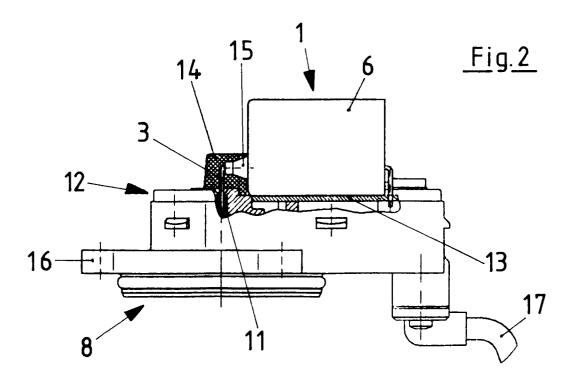
Wie die Figur 5 zeigt, ist beim montiertem Zündgerät die Tülle (3) zwischen den Stegen (9) hindurchgeführt, so daß sich die kegelförmige Anformung (5) unterhalb der Stege (9) befindet. Das Tranformatorgehäuse (6) ist über zwei Laschen (20) direkt mit der Oberfläche des Geräteträgers (16) verbunden. Die Stege (9) des Transformatorgehäuses (6) drücken dabei auf die Krempe der kegelförmigen Anformung (5), wodurch diese fest in die kegelförmige Ausnehmung des Geräteträgers (16) gedrückt und dort festgesetzt wird. Weitergehende Befestigungsmaßnahmen wie zum Beispiel ein Verkleben der kegelförmigen Anformung sind dabei vorteilhafterweise nicht erforderlich.

Bezugszeichenliste

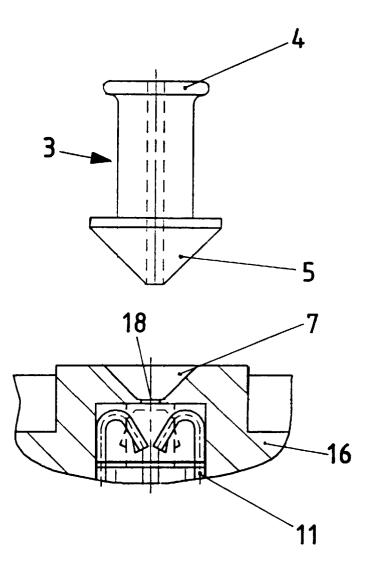
- 1 Zündtransformator
- 2 Sekundäranschlußleitung
- 3
- 4 Kragen (erster Endabschnitt der Tülle)
- 5 kegelförmige Anformung (zweiter Endabschnitt der Tülle)
- 6 Transformatorgehäuse
- 7 kegelförmige Ausnehmung
- 8 Lampenträgergehäuse
- 9 Stege (am Transformatorgehäuse)
- 10 Zwischenraum (zwischen den Stegen)

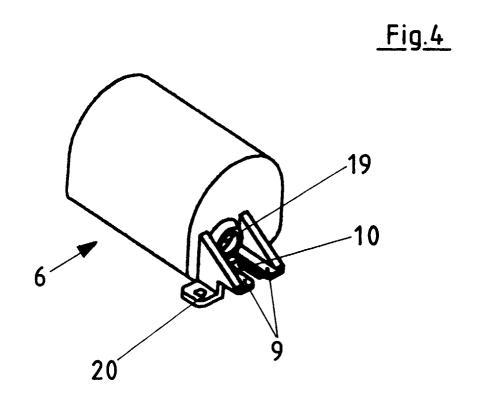
- Schneidklemmverbinder 11
- 12 Zündgerätegehäuse
- 13 Leiterplatte
- 14 Verauß
- 15 Anformung (am Transformatorgehäuse)
- 16 Geräteträger
- 17 Verbindungsleitung
- 18 Durchführung
- 19 Öffnung
- 20 Laschen

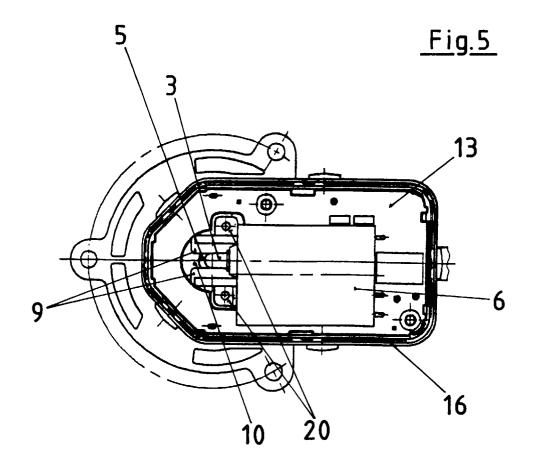

Patentansprüche


- Zündgerät für eine Gasentladungslampe in einem Kraftfahrzeug, das einen Zündtransformator (1) beinhaltet, welcher eine isolierte Sekundäranschlußleitung (2) besitzt, die mit einer Gasentladungslampe oder der Fassung für Gasentladungslampe elektrisch verbunden ist, dadurch gekennzeichnet, daß die Sekundäranschlußleitung (2) von einer flexiblen isolierenden Tülle (3) umgeben ist, deren erster Endabschnitt (4) im Inneren des Transformatorgehäuses (6) angeordnet ist, und deren zweiter Endabschnitt eine kegelförmige Anformung (5) ausbildet, welche in die kegelförmige Ausnehmung (7) eines Geräteträgers (16) eingesetzt ist.
- Zündgerät nach Anspruch 1, dadurch gekennzeichnet, daß der erste Endabschnitt der Tülle (3) einen Kragen (4) ausbildet, der die Tülle (3) im Inneren des Transformatorgehäuses (6) sichert.
- Zündgerät nach Anspruch 1, dadurch gekennzeichnet, daß die kegelförmige Anformung (5) des zweiten Endabschnitts der Tülle (3) in die kegelförmige Ausnehmung (7) des Geräteträgers (16) gedrückt wird.
- 40 Zündgerät nach Anspruch 3, dadurch gekennzeichnet, daß das Transformatorgehäuse (6) Stege (9) aufweist, daß die Tülle (3) durch einen Zwischenraum (10) zwischen den Stegen (9) hindurchgeführt ist, und daß die Stege (9) die kegelförmige 45 Anformung (5) in die kegelförmige Ausnehmung (7) des Geräteträgers (16) drücken.
 - Zündgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Tülle (3) aus einem Silikonmaterial besteht.
 - Zündgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Sekundäranschlußleitung (2) in einem Lampenträgergehäuse (8) durch einen Schneidklemmverbinder (11) gehalten wird.
 - 7. Zündgerät nach Anspruch 1, dadurch gekennzeichnet, daß der Geräteträger (16) die Grundplatte

50


55


sowohl für das Zündgerätegehäuse (12) als auch für das Lampenträgergehäuse (8) ausbildet.



<u>Fig. 3</u>

