Technical Field
[0001] The present invention relates to bleach-containing compositions suitable for use
as pretreater and to a pretreatment process whereby fabric safety and/or color safety
is improved. The liquid compositions of the invention are also very stable, and the
preferred bleaching compositions herein are acidic.
Background of the Invention
[0002] Bleaching compositions have been extensively described in laundry applications as
laundry detergents, laundry additives or even laundry pretreaters.
[0003] Indeed, it is known to use such bleach-containing compositions in laundry pretreatment
applications to boost the removal of encrusted stains/soils and "problem" stains,
such as grease, coffee, tea, grass, mud/clay-containing soils, which are otherwise
particularly difficult to remove by typical machine washing. However, a drawback associated
with such bleach-containing compositions is that said compositions may damage fabrics,
resulting in dye damage and/or loss of tensile strength of the fabric fibers, especially
when used in pretreatment applications under stressed conditions, e.g. when applied
directly onto the fabric and left to act onto said fabric for prolonged periods of
time before washing said fabrics, especially when the fabric to be treated is contains
metal ions such as copper, iron, manganese, or chromium. Without being limited by
theory, it is believed that peroxygen bleach can be responsible for the dye and fabric
damage associated with these bleaching compositions. It is furthered believed that
these metal ions on the surface of the fabrics, especially on cellulosic fabrics,
catalyze the decomposition of peroxygen beaches like hydrogen peroxide. Thus, the
decomposition of the peroxygen bleach can result in fabric and/or dye damage.
[0004] When said compositions are applied directly to fabrics, the different components
in said compositions diffuse or migrate, possibly at different rates, through the
fabric fibers. This is also true for the peroxygen bleach component of bleaching compositions
designed for the pretreatment of fabrics.
[0005] Now a solution to the damage resulting from pretreating fabrics with bleaching compositions
comprising peroxygen bleach is provided by adding a certain fabric protection agent
which acts to reduce fabric and/or dye damage. This fabric protection agent, aminotri(methylene
phosphonic acid) - hereinafter ATMP - has been found to considerably reduce the damage
associated with the treatment of fabrics with peroxygen bleach-containing compositions,
especially those fabrics which are contaminated with metal ions.
[0006] Accordingly, the present invention solves the long-standing need for an effective,
bleaching composition suitable for use as a pretreater which does not promote damage
to fabrics. Moreover, the compositions of the present invention provide excellent
performance when used in other applications apart from laundry pretreater application,
such as in other laundry applications, as a laundry detergent or laundry additive,
or even in hard surface cleaning applications or in carpet cleaning applications.
[0007] In the preferred compositions of the invention, which are liquid compositions, ATMP
further provides the benefit of exceptional chemical stability for the peroxygen bleach.
Background Art
[0008] Peroxygen bleach-containing compositions have been extensively described in the art.
For example EP-629,691A discloses emulsions of nonionic surfactants comprising a silicone
compound, and as optional ingredients, hydrogen peroxide, or a water soluble source
thereof. EP-629,690A discloses emulsions of nonionic surfactants comprising a terephthalate-based
polymer, and as optional ingredients, hydrogen peroxide, or a water soluble source
thereof. EP-209,228B discloses compositions comprising a peroxide source like hydrogen
peroxide. EP-209,228B discloses that the hydrogen peroxide-containing compositions
may be used as pre-spotters. See also U.S. Pat. No. 4,891,147, issued Jan. 2, 1990,
and U.S. Pat. No. 5,019,289, issued May 28, 1991. Compositions comprising ATMP in
a laundry context have been disclosed in EP 517 605, DD 280 783 and DD 280 784, however
the compositions herein do not comprise a peroxygen bleach.
Summary of the Invention
[0009] The present invention encompasses a composition comprising a peroxygen bleach, such
as hydrogen peroxide or a source thereof, and ATMP. Preferred compositions are liquid
aqueous compositions which have a pH of from greater than 0 to about 6 and a viscosity
of 1 cps or greater, preferably from about 50 to about 2000 cps, at 20°C when measured
with a Brookfield viscometer at 50 rpm with a spindle no. 3.
[0010] The present invention further encompasses a process of pretreating soiled fabrics
with a liquid, aqueous composition comprising a peroxygen bleach and ATMP, preferably
in its neat form, onto the fabric and allowing said composition to remain in contact
with said fabric, preferably without leaving said composition to dry on the fabric,
before said fabric is washed.
[0011] By "pretreat soiled fabrics" it is to be understood that the aqueous composition
is applied in its neat form onto the soiled fabric and left to act onto said fabric
before said fabric is washed. Alternatively, the aqueous composition may be applied
to the fabric substrate along with enough water to wet the fabric.
[0012] All percentages, ratios, and proportions herein are by weight of total liquid composition,
unless otherwise specified. All documents cited are incorporated herein by reference.
Detailed Description of the Invention
[0013] The present invention encompasses a composition comprising a peroxygen bleach, and
ATMP. ATMP has been found to considerably reduce the damage associated with the treatment
of fabrics with peroxygen bleach-containing compositions, especially those fabrics
which contain metal ions, such as copper, iron, chromium, and manganese.
Fabric Protection Agent
[0014] As the fabric protection agent, the compositions herein comprise ATMP, i.e. the compound
of formula :

[0015] Preferably, the compositions herein will comprise from about 0.005% to about 5.0%,
more preferably from about 0.01% to about 1.0%, by weight of the total bleaching composition
of ATMP.
[0016] The preferred compositions according to the present invention are aqueous liquid
cleaning compositions. Said aqueous compositions should be formulated in the acidic
pH, preferably at a pH of from greater than 0 to about 6 and more preferably at a
pH of from 3 to 5. Formulating the compositions of the present invention in the acidic
pH range contributes to the stability of said compositions. The pH of the compositions
of the present invention can be adjusted by using organic or inorganic acids or bases.
[0017] Tensile strength test method - By "fabric damage" herein is meant the degree of tensile strength loss of a fabric.
The tensile strength loss of fabrics can be determined by the following: Krefeld cotton
ribbons (dimension 12.5 x 5 cm
2) having a copper(2+) concentration of 30 ppm per gram of cotton are treated with
2 ml of the test composition according to Example I. The test composition is left
in contact with the ribbons for 24 hours. The ribbons are then rinsed with water,
and the tensile strength loss measured with an INSTRON, model no. 4411. Damage on
the cotton ribbons is evaluated by stretching said ribbons until they break. The force
necessary to break the ribbons, i.e. the Ultimate Tensile Stress, is measured while
the ribbons are wet with a INSTRON, model 4411. The lower the force needed to break
the cotton ribbons, the more serious is the damage caused on the fabrics. A good confidence
(standard deviation=2-4 Kg) in the results is obtained using five replicates for each
test.
[0018] Peroxygen Bleach - An essential element of the compositions of the present invention is peroxygen
bleach. A preferred peroxygen bleach herein is hydrogen peroxide or a water soluble
source thereof or mixtures thereof. Hydrogen peroxide is most preferred. Indeed, the
presence of peroxygen bleach, preferably hydrogen peroxide, provides strong cleaning
benefits which are particularly noticeable in laundry applications. As used herein,
a hydrogen peroxide source refers to any compound which produces hydrogen peroxide
when said compound is in contact with water.
[0019] Suitable water-soluble sources of hydrogen peroxide for use herein include sodium
carbonate peroxyhydrate or equivalent percarbonate salts, persilicate, perborates,
e.g., sodium perborate (any hydrate but preferably the mono- or tetra-hydrate), sodium
pyrophosphate peroxyhydrate, urea peroxyhydrate, sodium peroxide, and mixtures thereof.
Alternative peroxygen sources include persulfates such as monopersulfate, peroxyacids
such as diperoxydodecandioic acid (DPDA), magnesium perphthalatic acid, perbenzoic
and alkylperbenzoic acids, and mixtures thereof.
[0020] An "effective amount" of a peroxygen bleach is any amount capable of measurably improving
soil/stain removal from the soiled fabric substrate compared to a peroxygen bleach-free
composition when the soiled substrate is washed by the consumer in the presence of
alkali. Typically, the compositions of the present invention comprise from 0.5% to
20% by weight of the total composition of said peroxygen bleach, preferably from 1%
to 15% and most preferably from 2% to 6%.
[0021] Optional Bleach Activators - The peroxygen-containing compositions herein may optionally, but preferably, further
comprise a bleach activator. By bleach activator, it is meant herein a compound which
reacts with hydrogen peroxide to form a peracid. The peracid thus formed constitutes
the activated bleach. Particularly preferred is acetyl triethyl citrate. Said bleach
activators, if present, will typically comprise from about 0.5% to about 20%, preferably
from 2% to 10%, most preferably from 3% to 7%, by weight of the total composition.
[0022] Bleach activators suitable herein are any known activators typified by NOBS (nonanoyl
oxybenzenesulfonate), TAED (tetraacetylethylenediamine), or ATC (acetyl triethyl citrate).
Numerous other bleach activators are known. See for example activators referenced
in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
See also U.S. 4,634,551 for other typical conventional bleach activators. Also known
are amido-derived bleach activators of the formulae: R
1N(R
5)C(O)R
2C(O)L or R
1C(O)N(R
5)R
2C(O)L wherein R
1 is an alkyl group containing from about 6 to about 12 carbon atoms, R
2 is an alkylene containing from 1 to about 6 carbon atoms, R
5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms,
and L is any suitable leaving group. Further illustration of bleach activators of
the above formulae include (6-oct-anamidocaproyl)-oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate,
(6-decanamidocaproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S.
Patent 4,634,551. Another class of bleach activators comprises the benzoxazin-type
activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990.
Still another class of bleach activators includes acyl lactam activators such as substituted
and unsubstituted benzoyl caprolactam, t-butyl-benzoylcaprolactam, n-octanoyl caprolactam,
3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl
caprolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam,
nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam, t-butyl-benzoylvalerolactam
and mixtures thereof.
[0023] Preferred bleach activators useful herein include those selected from the group consisting
of acetyl triethyl citrate, n-octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam,
nonanoyl caprolactam, decanoyl caprolactam, n-octanoyl valerolactam, 3,5,5-trimethylhexanoyl
valerolactam, nonanoyl valerolactam, decanoyl valerolactam, nitrobenzoyl caprolactam,
nitrobenzoyl valerolactam, and mixtures thereof. Particularly preferred are the bleach
activators which are liquid or oil at room temperature. Examples of liquid bleach
activators are acetyl triethyl citrate, n-octanoyl caprolactam, 3,5,5-trimethylhexanoyl
caprolactam, nonanoyl caprolactam, decanoyl caprolactam, and mixtures thereof. The
present compositions can optionally comprise aryl benzoates, such as phenyl benzoate.
[0024] Pretreatment Process - Although preferred application of the compositions described herein is laundry
pretreatment, the compositions according to the present invention may also be used
as a laundry detergent or as a laundry detergent booster and as a household cleaner
in the bathroom or in the kitchen, for the cleaning of dishes or carpets.
[0025] Said liquid composition may remain in contact with the fabric, typically for a period
of 1 minute to 24 hours, preferably 1 minute to 1 hour, and more preferably 5 minutes
to 30 minutes, or so as to avoid drying of the liquid composition on the fabric. Optionally,
when the fabric is soiled with encrusted stains/soils which otherwise would be relatively
difficult to remove, the liquid compositions according to the present invention may
be rubbed and/or brushed, for example, by means of a sponge or a brush or simply by
rubbing two pieces of fabric each against the other.
[0026] By "washing" it is to be understood herein to simply rinse the fabrics with water,
or the fabrics may be washed with conventional compositions comprising at least one
surface active agent, this by the means of a washing machine or simply by hand.
[0027] By "in its neat form" it is to be understood that the liquid compositions described
herein are applied onto the fabrics to be pre-treated without undergoing any dilution,
i.e. they are applied as described herein.
[0028] Other Conventional Ingredients for Cleaning Compositions - The bleaching compositions herein typically will also comprise other optional conventional
ingredients to improve or modify performance. Typical, non-limiting examples of such
ingredients are disclosed hereinafter for the convenience of the formulator.
[0029] Organic Stabilizers - The compositions herein may also optionally contain organic stabilizers for improving
the chemical stability of the composition, provided that such materials are compatible
or suitably formulated. Organic stabilizers can be selected from the following group:
monophenols such as 2,6-di-
tert-butylphenol or 2,6-di-
tert-butyl-4-methylphenol; diphenols such as 2,2'-methylenebis(4-methyl-6-
tert-butylphenol) or 4,4'-methylenebis(2,6-di-
tert-butylphenol); polyphenols such as 1,3,5-trimethyl-2,4,6-tris(3',5'-di-
tert-butyl-4-hydroxybenzyl)benzene; hydroquinones such as 2,5-di-
tert-amylhydroquinone or
tert-butylhydroquinone; aromatic amines such as
N-phenyl-
N'-(1,3-dimethylbutyl)-
p-phenylenediamine or
N-phenyl-α-napthylamine; dihydroquinolines such as 2,2,4-trimethyl-1,2-dihydro-quinoline;
ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example,
U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137), and mixtures
thereof.
[0030] Organic stabilizers are typically used in the present compositions at levels from
0.01% to 5.0%, more preferably from 0.05% to 0.5%.
[0031] The peroxygen bleach-containing compositions according to the present invention may
further comprise from 0.5% to 5%, preferably from 2% to 4% by weight of the total
composition of an alcohol according to the formula HO - CR'R'' - OH, wherein R' and
R'' are independently H or a C2-C10 hydrocarbon chain and/or cycle. Preferred alcohol
according to that formula is propanediol.
[0032] Inorganic Stabilizers - Examples on inorganic stabilizers include sodium stannate and various alkali metal
phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and
sodium orthophosphate.
[0033] Detersive Surfactants --Surfactants are useful herein for their usual cleaning power and may be included
in preferred embodiments of the instant compositions at the usual detergent-useful
levels. Generally, surfactants will comprise from about 0.1% to about 50%, preferably
from about 1% to about 30%, more preferably from about 5% to about 25%, by weight
of the bleaching compositions herein.
[0034] Nonlimiting examples of surfactants useful herein include the conventional C
11-C
18 alkylbenzene sulfonates ("LAS") and primary, branched-chain and random C
10-C
20 alkyl sulfates ("AS"); the C
10-C
18 secondary alkyl sulfates of the formula CH
3(CH
2)
x(CHOSO
3-M
+)CH
3 and CH
3(CH
2)
y(CHOSO
3-M
+)CH
2CH
3 where x and (y + 1) are integers of at least about 7, preferably at least about 9,
and M is a water-solubilizing cation, especially sodium; unsaturated sulfates such
as oleyl sulfate; the C
10-C
18 alkyl alkoxy sulfates ("AE
xS") especially those wherein x is from 1 to about 7; C
10-C
18 alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates); the C
10-C
18 glycerol ethers; the C
10-C
18 alkyl polyglycosides and their corresponding sulfated polyglycosides; and C
12-C
18 alpha-sulfonated fatty acid esters. Detersive surfactants may be mixed in varying
proportions for improved surfactancy as is well-known in the art. Also optionally
included in the compositions are conventional nonionic and amphoteric surfactants
such as the C
12-C
18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates
and C
6-C
12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxylate/propoxylates),
C
12-C
18 betaines and sulfobetaines ("sultaines"), C
10-C
18 amine oxides, and the like, can also be included in the cleaning compositions, The
C
10-C
18 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include
the C
12-C
18 N-methylglucamides. See WO 9,206,154. Other sugar-derived surfactants include the
N-alkoxy polyhydroxy fatty acid amides, such as C
10-C
18 N-(3-methoxypropyl) glucamide. The N-propyl through N-hexyl C
12-C
18 glucamides can be used for low sudsing. C
10-C
20 conventional soaps may also be employed. If high sudsing is desired, the branched-chain
C
10-C
16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful.
[0035] Builders - Detergent builders can optionally be included in the compositions herein to assist
in controlling mineral hardness. Inorganic as well as organic builders can be used.
Builders are typically used in fabric laundering compositions to assist in the removal
of particulate soils.
[0036] The level of builder can vary widely depending upon the end use of the composition
and its desired physical form. When present, the compositions will typically comprise
at least about 0.1% builder.
[0037] Organic detergent builders suitable for the purposes of the present invention include,
but are not restricted to, a wide variety of polycarboxylate compounds. As used herein,
"polycarboxylate" refers to compounds having a plurality of carboxylate groups, preferably
at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition
in acid form, but can also be added in the form of a neutralized salt or "overbased".
When utilized in salt form, alkali metals, such as sodium, potassium, and lithium,
or alkanolammonium salts are preferred.
[0038] Included among the polycarboxylate builders are a variety of categories of useful
materials. One important category of polycarboxylate builders encompasses the ether
polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287,
issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18,
1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al,
on May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly
alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163;
4,158,635; 4,120,874 and 4,102,903.
[0039] Other useful detergency builders include the ether hydroxypolycarboxylates, copolymers
of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2,4,6-trisulfonic
acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted
ammonium salts of polyacetic acids such as nitrilotriacetic acid, as well as polycarboxylates
such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene
1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
[0040] Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium
salt), are polycarboxylate builders of particular importance due to their availability
from renewable resources and their biodegradability. Oxydisuccinates are also especially
useful in such compositions and combinations.
[0041] Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates
and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January
28, 1986. Useful succinic acid builders include the C
5-C
20 alkyl and alkenyl succinic acids and salts thereof. Specific examples of succinate
builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate
(preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred
builders of this group, and are described in European Patent Application 86200690.5/0,200,263,
published November 5, 1986.
[0042] Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield
et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7,
1967. See also U.S. Patent 3,723,322.
[0043] Fatty acids, e.g., C
12-C
18 monocarboxylic acids, can also be incorporated into the compositions alone, or in
combination with the aforesaid builders, especially citrate and/or the succinate builders,
to provide additional builder activity. Such use of fatty acids will generally result
in a diminution of sudsing in laundry compositions, which may need to be be taken
into account by the formulator.
[0044] Where phosphorus-based builders can be used, and especially in hand-laundering operations,
the various alkali metal phosphates such as the well-known sodium tripolyphosphates,
sodium pyrophosphate and sodium orthophosphate can be used. Phosphonate builders such
as ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example,
U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137) can also be
used though such materials are more commonly used in a low-level mode as chelants
or stabilizers.
[0045] Inorganic or P-containing detergent builders include, but are not limited to, the
alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by
the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates,
phytic acid, silicates carbonates (including bicarbonates and sesquicarbonates), sulfates,
and aluminosilicates.
[0046] Chelating Agents in addition to ATMP - The compositions herein may also optionally contain a transition-metal selective
sequestrants or "chelating agents", e.g., iron and/or copper and/or manganese cheating
agents, provided that such materials are compatible or suitably formulated. Chelating
agents suitable for use herein can be selected from the group consisting of aminocarboxylates,
phosphonates (especially the aminophosphonates), polyfunctionally-substituted aromatic
chelating agents, and mixtures thereof. Without intending to be bound by theory, it
is believed that the benefit of these materials is due in part to their exceptional
ability to remove iron, copper and manganese ions from washing solutions by formation
of soluble chelates; other benefits include inorganic film prevention or scale inhibition.
Commercial chelating agents for use herein include the DEQUEST® series, and chelants
from Monsanto, DuPont, and Nalco, Inc.
[0047] Aminocarboxylates useful as optional chelating agents are further illustrated by
ethylenediaminetetracetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates,
ethylenediamine tetraproprionates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates,
and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts thereof.
In general, chelant mixtures may be used for a combination of functions, such as multiple
transition-metal control, long-term product stabilization, and/or control of precipitated
transition metal oxides and/or hydroxides.
[0048] Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions
herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al. Preferred
compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy-3,5-disulfobenzene.
[0049] A highly preferred biodegradable chelator for use herein is ethylenediamine disuccinate
("EDDS"), especially (but not limited to) the [S,S] isomer as described in U.S. Patent
4,704,233, November 3, 1987, to Hartman and Perkins. The trisodium salt is preferred
though other forms such as magnesium salts, may also be useful.
[0050] Another preferred chelator for use herein is of the formula:

wherein R
1, R
2, R
3, and R
4 are independently selected from the group consisting of -H, alkyl, alkoxy, aryl,
aryloxy, -Cl, -Br, -NO
2, -C(O)R', and - SO
2R''; wherein R' is selected from the group consisting of -H, -OH, alkyl, alkoxy, aryl,
and aryloxy; R'' is selected from the group consisting of alkyl, alkoxy, aryl, and
aryloxy; and R
5, R
6, R
7, and R
8 are independently selected from the group consisting of -H and alkyl.
[0051] Aminophosphonates are also suitable for use as chelating agents in the compositions
of the invention when at least low levels of total phosphorus are permitted in detergent
compositions, and include the ethylenediaminetetrakis (methylenephosphonates) and
the diethylenetriaminepentakis (methylenephosphonates). Preferably, these aminophosphonates
do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
[0052] If utilized, cheating agents or transition-metal-selective sequestrants will preferably
comprise from about 0.001% to about 10%, more preferably from about 0.05% to about
1% by weight of the compositions herein.
[0053] Polymeric Soil Release Agent - Any polymeric soil release agent known to those skilled in the art can optionally
be employed in the compositions and processes of this invention. Polymeric soil release
agents are characterized by having both hydrophilic segments, to hydrophilize the
surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments,
to deposit upon hydrophobic fibers and remain adhered thereto through completion of
washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments.
This can enable stains occurring subsequent to treatment with the soil release agent
to be more easily cleaned in later washing procedures.
[0054] The polymeric soil release agents useful herein especially include those soil release
agents having: (a) one or more nonionic hydrophile components consisting essentially
of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or
(ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of
from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene
unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii)
a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene
units wherein said mixture contains a sufficient amount of oxyethylene units such
that the hydrophile component has hydrophilicity great enough to increase the hydrophilicity
of conventional polyester synthetic fiber surfaces upon deposit of the soil release
agent on such surface, said hydrophile segments preferably comprising at least about
25% oxyethylene units and more preferably, especially for such components having about
20 to 30 oxypropylene units, at least about 50% oxyethylene units; or (b) one or more
hydrophobe components comprising (i) C
3 oxyalkylene terephthalate segments, wherein, if said hydrophobe components also comprise
oxyethylene terephthalate, the ratio of oxyethylene terephthalate:C
3 oxyalkylene terephthalate units is about 2:1 or lower, (ii) C
4-C
6 alkylene or oxy C
4-C
6 alkylene segments, or mixtures therein, (iii) poly (vinyl ester) segments, preferably
polyvinyl acetate), having a degree of polymerization of at least 2, or (iv) C
1-C
4 alkyl ether or C
4 hydroxyalkyl ether substituents, or mixtures therein, wherein said substituents are
present in the form of C
1-C
4 alkyl ether or C
4 hydroxyalkyl ether cellulose derivatives, or mixtures therein, and such cellulose
derivatives are amphiphilic, whereby they have a sufficient level of C
1-C
4 alkyl ether and/or C
4 hydroxyalkyl ether units to deposit upon conventional polyester synthetic fiber surfaces
and retain a sufficient level of hydroxyls, once adhered to such conventional synthetic
fiber surface, to increase fiber surface hydrophilicity, or a combination of (a) and
(b).
[0055] Typically, the polyoxyethylene segments of (a)(i) will have a degree of polymerization
of from about1 to about 200, although higher levels can be used, preferably from 3
to about 150, more preferably from 6 to about 100. Suitable oxy C
4-C
6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric
soil release agents such as MO
3S(CH
2)
nOCH
2CH
2O-, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580,
issued January 26, 1988 to Gosselink.
[0056] Polymeric soil release agents useful in the present invention also include cellulosic
derivatives such as hydroxyether cellulosic polymers, copolymeric blocks of ethylene
terephthalate or propylene terephthalate with polyethylene oxide or polypropylene
oxide terephthalate, and the like. Such agents are commercially available and include
hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents
for use herein also include those selected from the group consisting of C
1-C
4 alkyl and C
4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol,
et al.
[0057] Soil release agents characterized by poly(vinyl ester) hydrophobe segments include
graft copolymers of poly(vinyl ester), e.g., C
1-C
6 vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones,
such as polyethylene oxide backbones. See European Patent Application 0 219 048, published
April 22, 1987 by Kud, et al. Commercially available soil release agents of this kind
include the SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (West
Germany).
[0058] One type of preferred soil release agent is a copolymer having random blocks of ethylene
terephthalate and polyethylene oxide (PEO) terephthalate. The molecular weight of
this polymeric soil release agent is in the range of from about 25,000 to about 55,000.
See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to
Basadur issued July 8, 1975.
[0059] Another preferred polymeric soil release agent is a polyester with repeat units of
ethylene terephthalate units contains 10-15% by weight of ethylene terephthalate units
together with 90-80% by weight of polyoxyethylene terephthalate units, derived from
a polyoxyethylene glycol of average molecular weight 300-5,000. Examples of this polymer
include the commercially available material ZELCON 5126 (from Dupont) and MILEASE
T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
[0060] Another preferred polymeric soil release agent is a sulfonated product of a substantially
linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and
oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone.
These soil release agents are described fully in U.S. Patent 4,968,451, issued November
6, 1990 to J.J. Scheibel and E.P. Gosselink. Other suitable polymeric soil release
agents include the terephthalate polyesters of U.S. Patent 4,711,730, issued December
8, 1987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S. Patent
4,721,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric
compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
[0061] Preferred polymeric soil release agents also include the soil release agents of U.S.
Patent 4,877,896, issued October 31, 1989 to Maldonado et al, which discloses anionic,
especially sulfoaroyl, end-capped terephthalate esters.
[0062] Still another preferred soil release agent is an oligomer with repeat units of terephthaloyl
units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy-1,2-propylene units. The
repeat units form the backbone of the oligomer and are preferably terminated with
modified isethionate end-caps. A particularly preferred soil release agent of this
type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy
and oxy-1,2-propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two
endcap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate. Said soil release agent
also comprises from about 0.5% to about 20%, by weight of the oligomer, of a crystalline-reducing
stabilizer, preferably selected from the group consisting of xylene sulfonate, cumene
sulfonate, toluene sulfonate, and mixtures thereof. See U.S. Pat. No. 5,415,807, issued
May 16, 1995, to Gosselink et al.
[0063] If utilized, soil release agents will generally comprise from about 0.01% to about
10.0%, by weight, of the detergent compositions herein, typically from about 0.1%
to about 5%, preferably from about 0.2% to about 3.0%.
[0064] Other Ingredients - Detersive ingredients or adjuncts optionally included in the instant compositions
can include one or more materials for assisting or enhancing cleaning performance,
treatment of the substrate to be cleaned, or designed to improve the aesthetics of
the compositions. Such materials are further illustrated in U.S. Pat. No. 3,936,537,
Baskerville et al. Adjuncts which can also be included in compositions of the present
invention, in their conventional art-established levels for use (generally from 0%
to about 20% of the detergent ingredients, preferably from about 0.5% to about 10%),
include other active ingredients such as dispersant polymers from BASF Corp. or Rohm
& Haas; anti-tarnish and/or anti-corrosion agents, dyes, fillers, optical brighteners,
germicides, hydrotropes, enzyme stabilizing agents, perfumes, solubilizing agents,
clay soil removal/anti-redeposition agents, carriers, processing aids, pigments, solvents,
fabric softeners, static control agents, etc.
[0065] Dye Transfer Inhibiting Agents - The compositions of the present invention may also include one or more materials
effective for inhibiting the transfer of dyes from one dyed surface to another during
the cleaning process. Generally, such dye transfer inhibiting agents include polyvinyl
pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone
and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof.
If used, these agents typically comprise from about 0.01% to about 10% by weight of
the composition, preferably from about 0.01% to about 5%, and more preferably from
about 0.05% to about 2%.
[0066] More specifically, the polyamine N-oxide polymers preferred for use herein contain
units having the following structural formula: R-A
x-P; wherein P is a polymerizable unit to which an N-O group can be attached or the
N-O group can form part of the polymerizable unit or the N-O group can be attached
to both units; A is one of the following structures: -NC(O)-, -C(O)O-, -S-, -O-, -N=;
x is 0 or 1; and R is aliphatic, ethoxylated aliphatics, aromatics, heterocyclic or
alicyclic groups or any combination thereof to which the nitrogen of the N-O group
can be attached or the N-O group is part of these groups. Preferred polyamine N-oxides
are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole,
pyrrolidine, piperidine and derivatives thereof.
[0067] The N-O group can be represented by the following general structures:

wherein R
1, R
2, R
3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof;
x, y and z are 0 or 1; and the nitrogen of the N-O group can be attached or form part
of any of the aforementioned groups. The amine oxide unit of the polyamine N-oxides
has a pKa <10, preferably pKa <7, more preferred pKa <6.
[0068] Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble
and has dye transfer inhibiting properties. Examples of suitable polymeric backbones
are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates
and mixtures thereof. These polymers include random or block copolymers where one
monomer type is an amine N-oxide and the other monomer type is an N-oxide. The amine
N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1,000,000.
However, the number of amine oxide groups present in the polyamine oxide polymer can
be varied by appropriate copolymerization or by an appropriate degree of N-oxidation.
The polyamine oxides can be obtained in almost any degree of polymerization. Typically,
the average molecular weight is within the range of 500 to 1,000,000; more preferred
1,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials
can be referred to as "PVNO". The most preferred polyamine N-oxide useful in the detergent
compositions herein is poly(4-vinylpyridine-N-oxide) which as an average molecular
weight of about 50,000 and an amine to amine N-oxide ratio of about 1:4.
[0069] Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers (referred to as a
class as "PVPVI") are also preferred for use herein. Preferably the PVPVI has an average
molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 200,000,
and most preferably from 10,000 to 20,000. (The average molecular weight range is
determined by light scattering as described in Barth, et al.,
Chemical Analysis, Vol 113. "Modern Methods of Polymer Characterization", the disclosures of which
are incorporated herein by reference.) The PVPVI copolymers typically have a molar
ratio of N-vinylimidazole to N-vinylpyrrolidone from 1:1 to 0.2:1, more preferably
from 0.8:1 to 0.3:1, most preferably from 0.6:1 to 0.4:1. These copolymers can be
either linear or branched.
[0070] The present invention compositions also may employ a polyvinylpyrrolidone ("PVP")
having an average molecular weight of from about 5,000 to about 400,000, preferably
from about 5,000 to about 200,000, and more preferably from about 5,000 to about 50,000.
PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897
and EP-A-256,696, incorporated herein by reference. Compositions containing PVP can
also contain polyethylene glycol ("PEG") having an average molecular weight from about
500 to about 100,000, preferably from about 1,000 to about 10,000. Preferably, the
ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to
about 50:1, and more preferably from about 3:1 to about 10:1.
[0071] Suds Boosters - If high sudsing is desired, suds boosters such as C
10-C
16 alkanolamides can be incorporated into the compositions, typically at 1%-10% levels.
The C
10-C
14 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
Use of such suds boosters with high sudsing adjunct surfactants such as the amine
oxides, betaines and sultaines noted above is also advantageous. If desired, soluble
magnesium salts such as MgCl
2, MgSO
4, and the like, can be added at levels of, for example, 0.1%-2%, to provide additional
suds and to enhance grease removal performance.
[0072] Brightener - Any optical brighteners, fluorescent whitening agents or other brightening or whitening
agents known in the art can be incorporated in the instant compositions when they
are designed for fabric treatment or laundering, at levels typically from about 0.05%
to about 1.2%, by weight, of the detergent compositions herein. Commercial optical
brighteners which may be useful in the present invention can be classified into subgroups,
which include, but are not necessarily limited to, derivatives of stilbene pyrazoline,
coumarin, carboxylic acids, methinecyanines, dibenzothiophene-5,5-dioxide, azoles,
5- and 6-membered-ring heterocyclic brighteners, this list being illustrative and
non-limiting. Examples of such brighteners are disclosed in "The Production and Application
of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons,
New York (1982).
[0073] Specific examples of optical brighteners which are useful in the present compositions
are those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988.
These brighteners include the PHORWHITE series of brighteners from Verona. Other brighteners
disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available
from Ciba-Geigy; Artic White CC and Artic White CWD, available from Hilton-Davis,
located in Italy; the 2-(4-styryl-phenyl)-2H-naphthol[1,2-d]triazoles; 4,4'-bis- (1,2,3-triazol-2-yl)-stil-
benes; 4,4'-bis(styryl)bisphenyls; and the aminocoumarins. Specific examples of these
brighteners include 4-methyl-7-diethyl- amino coumarin; 1,2-bis(benzimidazol-2-yl)ethylene;
2,5-bis(benzoxazol-2-yl)thiophene; 2-styrylnapth-[1,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho-[1,2-d]triazole.
See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton. Anionic brighteners
are typically preferred herein.
[0074] Bleach catalysts - If desired, compositions herein may additionally incorporate a catalyst or accelerator
to further improve bleaching or soil removal. Any suitable bleach catalyst can be
used. For detergent compositions used at a total level of from about 1,000 to about
5,000 ppm in water, the composition will typically deliver a concentration of from
about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 50 ppm,
or less, of the catalyst species in the wash liquor.
[0075] Typical bleach catalysts comprise a transition-metal complex, for example one wherein
the metal co-ordinating ligands are quite resistant to labilization and which does
not deposit metal oxides or hydroxides to any appreciable extent under the typically
alkaline conditions of washing. Such catalysts include manganese-based catalysts disclosed
in U.S. Pat. 5,246,621, U.S. 5,244,594; U.S. 5,194,416; U.S. 5,114,606; and EP Nos.
549,271 A1, 549,272 A1, 544,440 A2, and 544,490 A1; preferred examples of these catalysts
include Mn
IV2(µ-O)
3(TACN)
2-(PF
6)
2, Mn
III2(µ-O)
1(µ-OAc)
2(TACN)
2(ClO
4)
2, Mn
IV4(µ-O)
6(TACN)
4(ClO
4)
4, Mn
IIIMn
IV4-(µ-O)
1(µ-OAc)
2-(TACN)
2-(ClO
4)
3, Mn
IV-(TACN)-(OCH
3)
3(PF
6), and mixtures thereof wherein TACN is trimethyl-1,4,7-triazacyclononane or an equivalent
macrocycle; though alternate metal-co-ordinating ligands as well as mononuclear complexes
are also possible and monometallic as well as di- and polymetallic complexes and complexes
of alternate metals such as iron or ruthenium are all within the present scope. Other
metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S.
Pat. 5,114,611. The use of manganese with various complex ligands to enhance bleaching
is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612;
5,256,779; 5,280,117; 5,274,147; 5,153,161; and 5,227,084.
[0076] Transition matals may be precomplexed or complexed
in-situ with suitable donor ligands selected in function of the choice of metal, its oxidation
state and the denticity of the ligands. Other complexes which may be included herein
are those of U.S. Application Ser. No. 08/210,186, filed March 17, 1994.
[0077] Pretreater Formulation - The preferred compositions of the present invention are liquid, they have a viscosity
1 cps or greater at 20°C when measured with a Brookfield viscometer at 50 rpm with
a spindle n°3, more preferably of from about 50 to about 2000 cps, and still more
preferably of from about 200 to about 1500 cps. Any surfactant system or polymeric
thickener known in the art to increase the viscosity of a composition can be used
to achieve the preferred viscosity. Thus the surfactants suitable to be used herein
may be thickening surfactants such as nonionic, anionic, cationic, zwitterionic and/or
amphotheric surfactants.
[0078] The liquid bleaching composition herein comprise water in any amount up to about
98% by weight of the total composition. Preferably, the compositions herein will comprise
from about 5% to about 98%, more preferably from about 10% to about 95%, by weight
of the bleaching composition, of water.
[0079] When the liquid peroxygen bleach-containing compositions according to the present
invention further comprise an optional bleach activator, it is highly desired herein
to formulate said compositions either as a microemulsion or as a stable emulsion.
[0080] When formulated as a microemulsion, the composition comprises the bleach activator
in a matrix of water, the peroxygen bleach, and hydrophilic anionic and nonionic surfactants.
Suitable anionic surfactants herein include the alkyl benzene sulfonates, alkyl sulfates,
alkyl alkoxylated sulfates, and mixtures thereof. Suitable nonionic surfactants for
use in the microemulsions herein include the hydrophilic nonionic surfactants as defined
hereinafter for the emulsions according to the present invention.
[0081] When formulated as an emulsion, the composition comprises at least a hydrophilic
surfactant having an HLB (hydrophilic-lipophilic balance) above 10 and at least a
hydrophobic surfactant having an HLB up to 9, wherein said bleach activator is emulsified
by said surfactants. The two different surfactants in order to form emulsions which
are stable must have different HLB values, and preferably the difference in value
of the HLBs of said two surfactants is at least 1, preferably at least 3. In other
words, by appropriately combining at least two of said surfactants with different
HLBs in water, stable emulsions will be formed, i.e. emulsions which do not substantially
separate into distinct layers, upon standing for at least two weeks at 40 °C, preferably
50 °C. The emulsions comprise from about 2 % to about 50%, by weight of the total
composition, of said hydrophilic and hydrophobic surfactants, preferably from about
5% to about 40%, and more preferably from about 8% to about 30%. The emulsions comprise
at least about 0.1%, preferably at least 3%, more preferably at least 5%, by weight
of the total emulsion, of one or more hydrophobic surfactant and at least about 0.1%,
preferably at least 3%, more preferably at least 5%, by weight of the total emulsion,
of one or more hydrophilic surfactant. Preferred to be used herein are the hydrophobic
nonionic surfactants and hydrophilic nonionic surfactants. Said hydrophobic nonionic
surfactants to be used herein have an HLB up to 9, preferably below 9, more preferably
below 8 and said hydrophilic surfactants have an HLB above 10, preferably above 11,
more preferably above 12. Suitable nonionic surfactants for use herein include alkoxylated
fatty alcohols, preferably fatty alcohol ethoxylates and/or propoxylates. A variety
of alkoxylated fatty alcohols are commercially available which have very different
HLB values. For further discussion of HLB theory and its application to the formation
of emulsions, please see the:
Encyclopedia of Emulsion Technology; Becher, P., Ed.; Marcel Dekker, Inc.: New York, 1985; Volumes 1 and 2, and references
cited therein.
[0082] In a particularly preferred embodiment of the emulsion, if present, wherein the emulsions
comprise acetyl triethyl citrate as the bleach activator, an adequate nonionic surfactant
system would comprise a hydrophobic nonionic surfactant with, for instance, an HLB
of 6, such as a Dobanol
R 23-2 and a hydrophilic nonionic surfactant with, for instance, an HLB of 15, such
as a Dobanol
R 91-10. Other suitable nonionic surfactant systems comprise for example a Dobanol
R 23-6.5 (HLB about 12) and a Dobanol
R 23 (HLB below 6) or a Dobanol
R 45-7 (HLB=11.6) and Lutensol
R TO3 (HLB=8). Dobanol
R are commercially available nonionic surfactants available from Shell Corp. Lutensol
R are commercially available nonionic surfactants available from BASF Corp.
[0083] The peroxygen bleach-containing compositions according to the present invention may
further comprise an amine oxide surfactant according to the formula R1R2R3NO, wherein
each of R1, R2 and R3 is independently a C6-C30, preferably a C10-C30, most preferably
a C12-C16 hydrocarbon chain. It has been further observed that in a pretreatment process,
the presence of said amine oxide further improves the cleaning performance on particulate
and/or greasy stains. It is believed that this improvement in cleaning performance
is matrix independent. To obtain either of these benefits, amine oxides, if present,
should be present in amounts ranging from 0.1% to 10 % by weight of the total composition,
preferably from 1.5% to 3%.
[0084] The following examples illustrate the compositions of this invention, but are not
intended to be limiting thereof. All materials in the Examples satisfy the functional
limitations herein.
| Formulation I |
| Na Alkylsulphate |
2.0 |
| Dobanol ® 45-7 |
6.5 |
| Dobanol ® 23-3 |
8.5 |
| ATC |
3.5 |
| H2O2 |
4.0 |
| BHT |
0.05 |
| ATMP |
0.15 |
| H2SO4 up to pH 4 |
|
| water |
balance to 100% |
| Formulation II |
| Na Alkylsulphate |
12.0 |
| Dobanol ® 45-7 |
6.0 |
| Dobanol ® 23-6.5 |
6.0 |
| ATC |
3.5 |
| H2O2 |
6.0 |
| BHT |
0.05 |
| ATMP |
0.15 |
| Propanediol |
3.0 |
| H2SO4 up to pH 4 |
|
| water |
balance to 100% |
| Formulation III |
| Na Alkylsulphate |
1.5 |
| Dobanol ® 45-7 |
1.5 |
| Dobanol ® 91-10 |
1.5 |
| H2O2 |
7.0 |
| BHT |
0.02 |
| ATMP |
0.02 |
| Citric Acid |
0.02 |
| H2SO4 up to pH 4 |
|
| water |
balance to 100% |