

Europäisches Patentamt **European Patent Office** Office européen des brevets

EP 0 838 183 A2 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

29.04.1998 Bulletin 1998/18

(51) Int Cl.6: **A47G 19/22**, B65D 47/20

(21) Application number: 97122664.2

(22) Date of filing: 29.04.1994

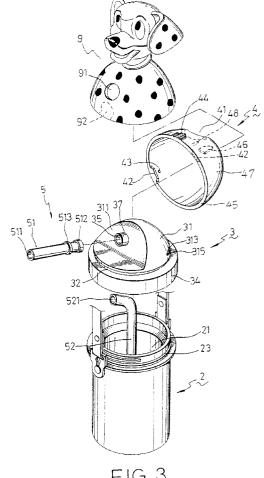
(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 94106781.1 / 0 680 719

(71) Applicant: SHING HONG INDUSTRIAL CO., LTD. Tainan (TW)

(72) Inventor: Lin, Bang H. Taipei . (TW)


(74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät Maximilianstrasse 58 80538 München (DE)

Remarks:

This application was filed on 22 - 12 - 1997 as a divisional application to the application mentioned under INID code 62.

(54)Combination of a cap and a straw for a beverage container

(57)A beverage container with a rotatable cover and an automatically extendable drinking straw. The container comprises an open ended body closed by a removable cap, straw means inserted through a conduit on the cap, a cover member rotatably fitted on the cap for rotation movement relative to the cap between a first position allowing the straw to extend through a slot of the cover member and a second position folding the straw means and closing the slot. A groove formed on the cap engages a raised spot formed on the inner edge of the cover member for indicating when the cover member is rotated to either the first or second position. The straw means comprises a first straw made of elastomeric material and a second straw made of rigid material and sized so that the first straw is held between the conduit and the second straw in a coaxial relation without the use of fastening elements.

10

15

20

40

50

Description

The present invention relates to a combination of a cap and a straw for a beverage container.

Conventional beverage containers require the cap to be first opened and then the beverage in the container to be poured into the container cap or a cup for drinking. This procedure is easy for an adult or a big child but small children do not find it easy and often spill the beverage during drinking.

To solve the above problem, a beverage container with an automatically extendable straw as shown in Figures 1 and 2 was developed. This beverage container 1 includes a body 11, a cap 12, upper and lower straws 13a and 13b and a cover 14. The body 11 is a hollow cylindrical member for containing the beverage such as iuice, water, etc.

The cap is screwed onto an outer thread of an upper open end of the body 11. Upper and lower disk members 121, 122 are formed with an annular groove 123 and two symmetrically cuts 124. The cap is formed with a tube 17 having a through hole to receive the straws 13a and 13b by means of which a user can suck the beverage from the container body. A strip 77 is used for fastening the upper straw 13a around the tube 17. Further, a member 125 is disposed on the upper member 121.

The cover 14 is disposed above the cap 12 and has an open end. Two symmetrically disposed projections 141 are formed on the inner edge of its open end corresponding to the cuts 124 in the cap 12. An upper wall of the cover 14 is formed with a slot 142 therein to receive the upper straw 13a which extends therethrough. A stopper 143 is formed on the inner surface of the upper wall in the vicinity of the slot 142.

When the projections 141 on the cover 14 are aligned with the cuts 124 on the cap 12, the cover 14 fits on the cap 12. The cover 14 can be rotated counterclockwise to move the slot 142 to a position above the straw 13 which extends outwardly through the slot 142 by means of its own resilience for a user to suck the beverage from the body 11. Conversely, when the cover 14 is rotated clockwise, the upper straw 13a is bent by the upper wall of the cover 14 and withdraw back into it. The rotation of the cover 14 is stopped when the stopper 143 abuts against the member 125 which is then just below the slot 142 to prevent the entering of foreign objects into the cover 14.

One drawback of such known container is that the member 125 having planer surface fails to effectively shield the slot 142 formed on the slightly arcuate upper wall of the cover member 14. Consequently, dust or other contaminants may pass through the clearance between the slot 142 and the member 125 to contaminate the upper straw 13a.

It is also found difficult for a user to recognize when the cover 14 has been rotated to a position where the upper straw 13a extends through the slot 142 and to a position where the upper straw 13a has been well folded and the slot of the cover member has been well shielded

Furthermore, the use of the elongate fastening strip 77 to secure the upper straw 13a onto the tube 17 is time costing in assembly work. The strip 77 secured around the straw is likely to be cut off or taken off or even swallowed by a child user to cause injury of the child. In addition, the strip 77 has a bulge end which is likely to scrape or hurt the child.

It is an object of the present invention to provide an improved combination of a cap and a straw for a beverage container, which simplifies the structure and enhances safety during use.

This object is achieved with a combination of a cap and a straw having the features of claim 1.

Preferable embodiments are the subject matter of the appended subclaims.

Fig. 1 is a perspective exploded view of a prior art container;

Fig. 2 is a perspective assembled view of the container shown in Fig. 1;

Fig. 3 is a perspective exploded view of a container comprising a preferred embodiment of a combination of a cap and a straw according to the present invention;

Fig. 4A is a cross-sectional view of Fig. 5 along line 4-4, showing a straw of the container of Fig. 3 in a position ready for use;

Fig. 4B is a cross-sectional view of Fig. 5 along line 4-4, showing a straw of the container of Fig. 3 in a folded, blocked position;

Fig. 5 is a cross-sectional view of the container of Fig. 3, showing a straw extending outside a cover member:

Fig. 6 is a cross-sectional view, in detail showing the arrangement of a straw and a cap according to one embodiment of the invention; and

Fig. 7 is a cross-sectional view, showing an alternative embodiment of the arrangement of Fig. 6.

Refering to Figs. 3 and 6, a container comprising a cap and a straw combination according to an embodiment of the present invention comprises a body 2 having an inner chamber 21 for receiving beverage and an upper open end with outer thread 23, a cap 3 screwed on the outer thread of the open end of the body 2, a cover member 4 rotatably disposed above the cap 3, a straw 5 extending through the cap 3, and a decorative cover 9 fixed on the cover member 4.

The cap 3 has a lower cylindrical portion 34 and an upper portion. The upper portion is defined by a convex curved portion 31 and a lateral inclined wall 311 and shaped like a quarter of a sphere. A circumferential groove 32 is formed extending around the entire surface of the curved portion 31 at its lower edge. Above the groove 32, a groove 313 with two ends is formed, extending partially around the surface of the portion 31 and

parallelly to the groove 32. Two raised bead 315, 315' are provided on the groove 313 in the vicinity of the two ends 315, 315', respectively.

The wall 311 of the cap 3 has a length of a cylindrical conduit 37 opening at both ends and communicating with the internal volume of the container body 2. The conduit 37 is projected from the wall 311 and directed toward a slot 41 formed on the cover 4. It is not necessary that the conduit 31 projects outwardly as shown. For example, it may projects from the wall 311 toward the interior of the cap 3 (not shown).

The straw 5 comprises an upper straw 51 extending out the conduit 37 and a lower straw 52 connected with the upper straw 51 and located between the cap 3 and the container body 2. The upper straw 51 is made of elastomeric material such as silicon rubber and has an outer diameter slightly less than the inner diameter of the conduit 37. The upper straw 51 has at one end two spaced outward flanges 512, 513, with the flange 513 abutting against the free end of the conduit 37 and the flange 512 abutting against the inner surface of the wall 311. Although the flanges 512, 513 as illustrated have the same outer diameter, the outer diameter of the flange 512 may be greater than that of the flange 513 such that the flange 513 may pass through the conduit 37 due to the elasticity while the flange 512 can not.

The lower straw 52 is made of rigid material such as polyester (PE) material and has an outer diameter slightly greater than the inner diameter of the upper straw 51, but less than the inner diameter of the conduit 37. The lower straw 52 has a taper end 521 for easy insertion into the upper straw 51. Thus, when the lower straw 52 is inserted into the upper straw 51 already inserted through the conduit 37, the upper straw 51 is expanded to contact the inner surface of the conduit 37. The upper straw 51 is therefore connected with the lower straw 52 and held in position due to frictional force in a coaxial relation, with its outer surface in surface contact with the inner surface of the conduit 37 and its inner surface in surface contact with the outer surface of the lower straw 52. The surface contacts form seals, preventing the flow of beverage in the container body therebetween.

The cover member 4 is disposed above the cap 3 and has a upper dome-typed wall 47 and an open end 45. The dome-typed wall 47 of the cover member 4 is formed with a slot 41 for the upper straw 51 to extend outwardly therethrough for a user to use. Two symmetrically disposed projections 42 are formed on the inner edge of its open end for slidably engaging the groove 32 on the curved portion 31 of the cap 3, allowing the cover member 4 to be rotated relative to the cap 3 as known.

The wall 47 of the cover member 4 is so sized that the inner surface of the wall 47 slidably engages the outer surface of the curved portion 31 of the cap 3, such that the slot 41 of the cover member 4 can be tightly closed by the curved portion 31 of the cap 3 to keep the

straw 51 from being contaminated when the container is not used. Preferably, the inner surface of the dometyped wall 47 and the outer surface of the curved portion 31 have the same curvature. As shown in Figs 4B and 5, the straw 51 is folded and stored in a space defined by the wall 311 of the cap 3 and the inner surface of the cover member 4 while the slot 41 of the cover 4 is tightly closed by the curved portion 31 of the cap 3.

A projecting plate 46 is formed on the inner surface of the curved wall of the cover 4 above one of the projections 42 and near the slot 41. Between the plate 46 and the slot 41, a projecting stopper 48 is provided. Above another projection 42, a raised spot 43 is formed on the inner surface of the cover 4 approximately opposing the plate 46 for slidably engaging the groove 313 on the curved portion 31 of the cap 3.

Thus, the cover 14 can be rotated counterclockwise to move the slot 41 from a folded position shown in Fig. 4B to a position facing the upper straw 51 and permitting the straw 51 to extend outwardly therethrough as shown in Fig. 4A for a user to suck the beverage from the container body 2. Upon the slot 41 arriving at the position shown in Fig. 4A, the spot 43 on the cover 4 just moves over the raised bead 315 and a pop sound is generated due to the deformation and recover of the cover 4, signaling a user that the cover 4 has been well located. The projecting plate 46 concurrently abuts against an edge of the inclined wall 311 to stop further rotation of the cover 4, as shown in Fig. 4A. Meanwhile, the spot 43 is positioned on the groove 313 between the bead 315 and one end of the groove 313.

Conversely, when the cover 4 is rotated clockwise from the position shown in Fig. 4A to a position shown in Fig. 4B, upon the upper straw 51 being bent by the plate 46 of the cover 4 against the inclined wall 311, the spot 43 just moves over the bead 315' and a pop sound is generated, signaling the user that the cover 4 has been well located to fold the straw 51 and that the slot 41 on the cover 4 has been tightly closed by the curved portion 3 of the cap 3. Meanwhile, further clockwise rotation of the cover 4 relative to the cap 3 is prevented by the stopper 48 which is abutting against an edge of the inclined wall 311, as shown in Fig. 4B. The spot 43 now is located on the groove 313 between the bead 315' and the other end of the groove 313.

A decorative cover 9 designed with attractive pattern may be fixed above the cover 4 as shown in Figs. 3 and 5. The decorative cover 9 is formed with a through hole 91 corresponding to the slot 41 of the cover 4 for the upper straw 51 to extend therethrough. The cover 4 is formed with a projecting section 44 engaging a corresponding recess 92 formed on the decorative cover 9 such that the cover 4 can be rotated by rotating the decorative cover 9.

Fig. 7 shows an alternative embodiment of a combination of a straw and a cap of a beverage container of the present invention wherein the straw extends through a horizontal portion of the cap rather than an inclined

55

25

wall as shown in Fig. 6.

A cap 6 as shown in Fig. 7 has a horizontal wall 61 which has a vertical cylindrical conduit 612 opening at both ends and communicating with the internal volume of a container body (not shown). A straw 7 comprises an upper straw 71 extending out the conduit 612 and a lower straw 72 connected with the upper straw 71. The upper straw 71 and lower straw 72 are made of the same material as those of the upper straw 51 and lower straw 52 of Fig. 6.

Similar to the arrangement shown in Fig. 6, the upper straw 71, lower straw 72 and the conduit 612 are sized so that the upper straw 71 is connected with the lower straw 72 and held in position in a coaxial relation, with its outer surface in surface contact with the inner surface of the conduit 612 and its inner surface in surface contact with the outer surface of the lower straw 72. The surface contacts form seals, preventing the flow of beverage in the container body therebetween.

It should be noted that the above embodiments are only examples of the present invention and any modification or derivation thereof should fall within the scope of the present invention.

Claims

- 1. Combination of a cap (3,6) and a straw (5,7) for a beverage container (2) closed by the cap, the cap having an upper wall and a cylindrical conduit (37,611) projecting from the wall, the conduit (37,611) opening at both ends and communicating with the internal volume of the container (2), the straw (5,7) inserted through the conduit (37,611) and comprised of a first straw (51,71) made of elastomeric material and a second straw (52,72) made of a rigid material, the first and second straws sized so that the first straw (51,71) is held between the conduit (37,611) and the second straw (52,72) in a coaxial relation without the use of fastening elements.
- 2. Combination as claimed in claim 1,

characterized in that

the first straw (51,71) has an inner diameter slightly less than the outer diameter of the second straw (52,72), the first straw (51,71) having at one end at least one outward flange (512,513,711).

3. Combination as claimed in claim 2.

characterized in that

the conduit (37) projects from an inclined portion (311) of the upper wall of the cap (3).

4. Combination as claimed in claim 3,

characterized in that

a cover member (4) having an upper wall (47)

and a slot (41) formed on the wall,

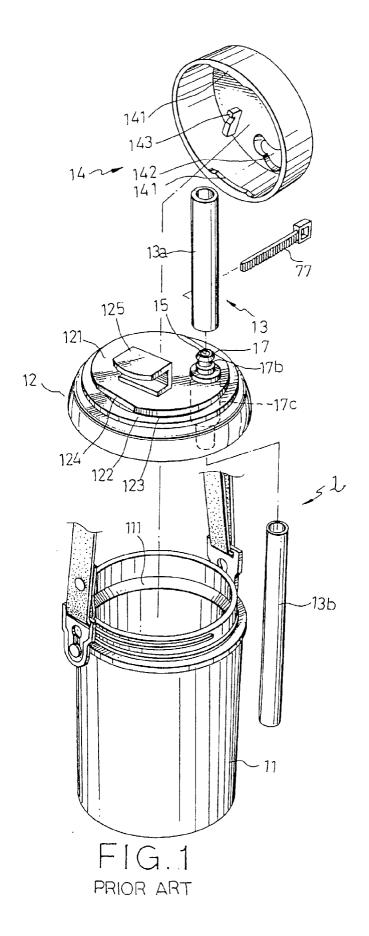
means for mounting the cover member (4) to the cap (3) for rotational movement relative to the cap (3) between a first position allowing the straw (5) to extend through the slot and a second position folding the straw (5) and closing the slot (41),

the cap (3) comprising a convex wall (31) having a curved portion sized to tightly close the slot (41) when the cover member (4) is in the second position.

15 **5.** Container as claimed in claim 1,

characterized in that

the outer surface (31) of the curved portion of the cap (3) and the inner surface of the upper wall (47) of the cover member (4) having substantially the same curvature for slidable engagement therebetween.

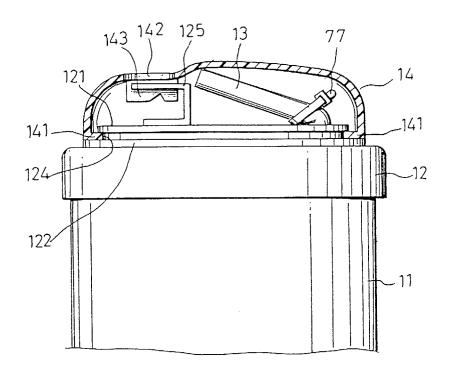

- **6.** Container as claimed in claim 4, wherein a decorative cover (9) is fixed onto the cover member (4) and has a through hole (91) corresponding to the slot (41) of the cover member (4).
- 7. Combination as claimed in claim 2,

characterized in that

the conduit (611) projects form a horizontal portion (61) of the cap (6).

50

55



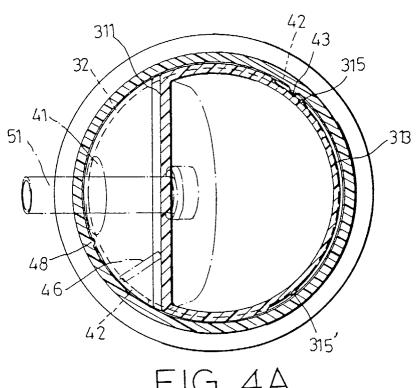
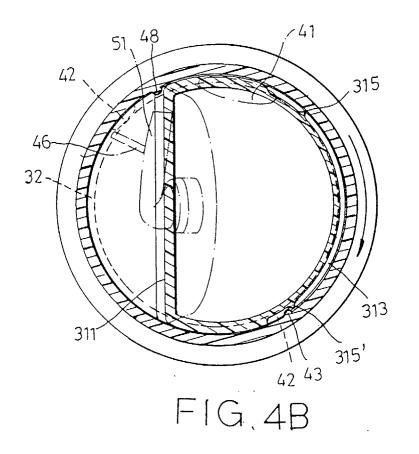



FIG. 2 PRIOR ART

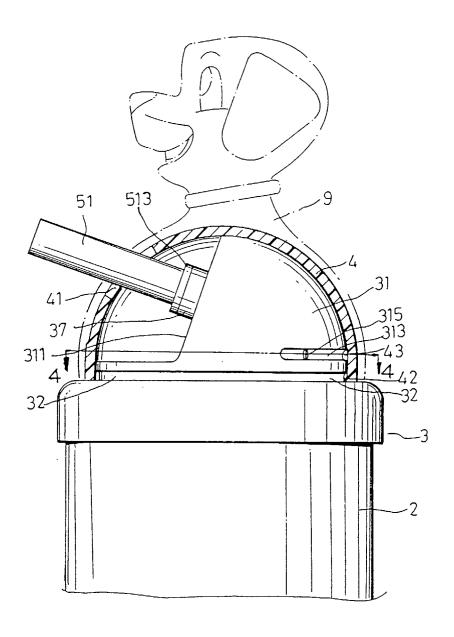
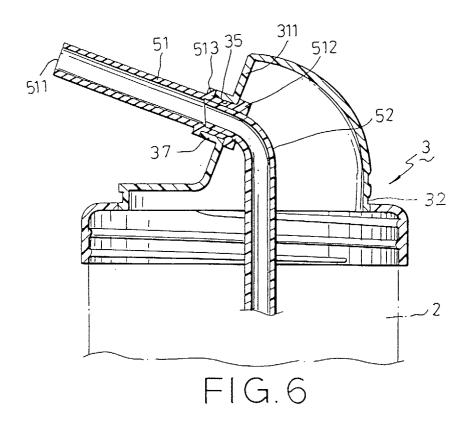



FIG.5

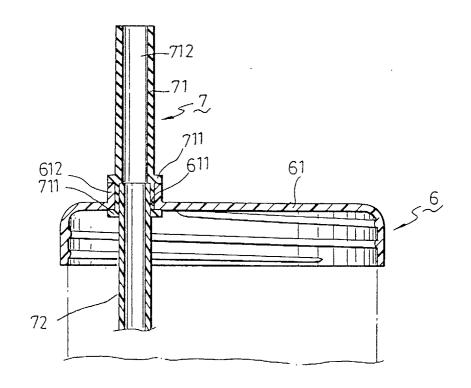


FIG.7