(11) EP 0 841 107 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 13.05.1998 Bulletin 1998/20

(51) Int Cl.6: **B21D 22/14**, C22F 1/10

(21) Numéro de dépôt: 97402569.4

(22) Date de dépôt: 29.10.1997

(84) Etats contractants désignés:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Etats d'extension désignés:

AL LT LV RO SI

(30) Priorité: 31.10.1996 FR 9613334

 (71) Demandeur: AEROSPATIALE Société Nationale Industrielle
 75781 Paris Cédex 16 (FR) (72) Inventeur: Bernard, Frédéric 92150 Suresnes (FR)

 (74) Mandataire: Dubois-Chabert, Guy et al Société de Protection des Inventions 25, rue de Ponthieu 75008 Paris (FR)

(54) Procédé de fabrication par fluotournage à froid d'une pièce en alliage inconel 718

(57) L'invention concerne un procédé de fabrication par fluotournage à froid, (ou par fort écrouissage) d'une pièce en alliage 718 (Inconel 718), éventuellement suivi d'un traitement thermique de vieillissement.

Le procédé selon l'invention permet notamment l'obtention par fluotournage à froid de corps ou de struc-

tures cylindriques présentant de très hautes caractéristiques mécaniques notamment à chaud.

De tels corps ou structures métalliques de grande longueur mais de faible épaisseur peuvent être en particulier utilisés comme réservoirs ou comme structure de propulseur dans l'industrie aéronautique.

Description

La présente invention concerne un procédé de fabrication par fluotournage à froid, (ou par fort écrouissage) d'une pièce en alliage 718 (Inconel 718), éventuellement suivi d'un traitement thermique de vieillissement.

Le procédé selon l'invention permet notamment l'obtention par fluotournage à froid de corps ou de structures cylindriques présentant de très hautes caractéristiques mécaniques notamment à chaud.

De tels corps ou structures métalliques de grande longueur mais de faible épaisseur peuvent être en particulier utilisés comme réservoirs ou comme structure de propulseur dans l'industrie aéronautique.

L'alliage connu sous le nom d'Inconel 718, appelé aussi NC19FENB est un alliage à base de nickel composé, en pourcentages en poids de:

- 18,5% de Fer
- 18% de Chrome
- 5.2% de niobum et de tantale
- 15 3% de Molybdène
 - 0,9% de titane
 - 0,5% d'Aluminium,

et le reste de nickel.

Ce matériau est inoxydable et amagnétique est présente de plus à l'état vieilli, une excellente tenue mécanique à chaud jusqu'à 650 degrés.

Un tel matériau est généralement élaboré de manière classique par un laminage à chaud, puis traité par un traitement thermique classique de vieillissement de l'alliage d'Inconel de base non écroui, qui est indispensable pour élever les caractéristiques mécaniques du matériau, mais aussi et surtout pour lui garantir une excellente tenue mécanique à chaud.

Sans vouloir été lié par une quelconque théorie, il apparaît qu'un tel traitement de vieillissement entraîne une précipitation d'une phase delta dans la structure métallurgique de l'alliage; et que cette phase assure la stabilité et le maintien des caractéristiques mécaniques à chaud du matériau.

Le traitement de vieillissement classique d'un alliage 718 consiste en:

30

10

20

25

- un chauffage à 720 degrés pendant huit heures.
- un refroidissement au four à 50 degrés par heure jusqu'à 620 degrés.
- un maintien en température à 620 degrés pendant huit heures.
- un refroidissement à l'air jusqu'à température ambiante.

35

40

45

50

55

Or il s'est avéré que le traitement classique de laminage à chaud présentait les inconvénients suivants :

- température de mise en solution élevée (à x°C pendant y heures)
- matériel conséquent
- coût de l'ébauche élevé;

en particulier lorsqu'il s'agissait de préparer des pièces creuses, massives et longues.

Une technique bien connu pour le traitement d'alliages métalliques divers est la technique du fluotournage.

La technique du fluotournage consiste à placer une ébauche de pièce sur un mandrin mis en rotation et à provoquer la déformation plastique de cette ébauche en l'allongeant et en réduisant son épaisseur, au moyen d'une ou plusieurs molettes exerçant une pression élevée sur la pièce.

Cette technique permet de fabriquer des pièces creuses de révolution de faible épaisseur, en des matériaux malléables à température ambiante tels que l'acier, sans aucune soudure.

On peut donner à ces pièces, par exemple de forme cylindrique, un diamètre quelconque adapté à l'utilisation envisagée. Des pièces partiellement ou totalement tronconiques peuvent également être fabriquées.

Il serait donc intéressant de pouvoir traiter un alliage tel que l'Inconel 718 par fluotournage à froid éventuellement sans vieillissement pour pouvoir surmonter les inconvénients liés par exemple au laminage à chaud.

Toutefois, jusqu'à présent, un fluotournage ou un écrouissage à froid de cet alliage Inconel 718 n'a jamais été ni mentionné ni proposé ni même suggéré dans la littérature et aucune étude métallurgique n'a été menée sur ses caractéristiques mécaniques, son comportement à haute température et sur sa structure métallurgique après un fort écrouissage.

Le but de la présente invention est d'obtenir par un traitement essentiellement réalisé à froid un matériau inoxydable et amagnétique doté de performances mécaniques équivalentes notamment à hautes températures, à celle d'un In-

conel 718 traité de manière classique c'est-à-dire par exemple laminé à chaud puis éventuellement vieilli.

Ce but et d'autres encore sont atteints conformément à la présente invention par un procédé de fabrication d'une pièce en alliage Inconel 718 caractérisé en ce qu'il comprend au moins une opération de fluotournage à froid.

Il a été montré selon l'invention que l'Inconel 718, de manière surprenante pouvait être fluotourné et utilisé de façon fiable sans être vieilli.

Le fait qu'un alliage tel que l'Inconel 718 puisse subir une opération de fluotournage à froid n'est ni décrit ni suggéré par l'antérieur et est en soit surprenant, le fait qu'un tel matériau ayant subi une simple opération de fluotournage, puisse en outre être utilisé de façon "fiable" sans être vieilli est encore plus inattendu et va à l'encontre d'un certain nombre de préjugés dans ce domaine de la technique.

Selon une forme de réalisation particulièrement avantageuse de l'invention le procédé comprend en outre une opération de traitement thermique, dite opération de vieillissement, afin de communiquer au matériau fluotourné à froid une bonne tenue mécanique à haute température.

Il a en effet été montré que l'Inconel 718 fluotourné par exemple au delà d'un taux de réduction de 50% ne pouvait être vieilli à l'aide du traitement de vieillissement classique tel que décrit plus haut car un tel traitement induit une fragilisation excessive du matériau.

L'invention a donc également pour objet une opération de traitement thermique ou de vieillissement spécifique, adapté à un Inconel 718 ayant subi une opération de fluotournage à froid selon l'invention.

Ainsi l'invention a également pour objet un procédé comprenant, outre l'opération de fluotournage, un traitement thermique de vieillissement dont les paramètres spécifiques sont adaptés à un matériau écroui ayant subi une opération de fluotournage.

Selon l'invention, le matériau subit au moins une opération de fluotournage, qui peut être réalisée dans tout outillage de fluotournage classique qui comporte principalement par exemple un mandrin, généralement deux ou trois molettes et des moyens permettant de solidariser en rotation l'ébauche de pièce du mandrin.

Cet outillage est monté sur une machine qui s'apparente à un tour classique. Cette machine possède un banc supportant un chariot porte-molettes, une broche transmettant son mouvement de rotation au mandrin et une contrepointe qui fait office de serre-flanc solidarisant en rotation l'ébauche de pièce du mandrin.

Selon l'invention, ce fluotournage est réalisé à froid c'est-à-dire de préférence à une température de 15 à 50°C et généralement à la température ambiante.

Les paramètres de l'opération de fluotournage peuvent être facilement déterminées par l'homme du métier dans ce domaine de la technique, en recourant éventuellement éventuellement à quelques essais de routine, ainsi le taux d'écrouissage ou de réduction sera généralement de 10% à 90%, et de préférence de 30 à 70%.

De tels taux de réduction permettent d'obtenir un Inconel 718 qui peut être utilisé de façon stable sans être vieilli. Les caractéristiques mécaniques d'un matériau ainsi traité sont généralement les suivantes:

Résistance à la rupture (R_m): de 1100 à 1900 Mpa, Résistance élastique ($Rp_{0.2}$): de 700 à 1500 Mpa,

Allongement inférieur à 1 à 30%.

5

10

15

20

30

35

40

45

50

55

De préférence toutefois on met en oeuvre un taux de réduction n'excédant pas 70% car, généralement, au delà de cette limite, le matériau présente un allongement A% et une zone de ductilité trop réduite, et le matériau devient alors excessivement fragile.

Si la tenue mécanique à chaud, à haute température, de l'alliage, n'est pas un facteur primordial dans l'utilisation qui doit en être faite, on peut se passer de tout autre traitement thermique, le matériau selon l'invention alors simplement écroui à froid, présentant déjà des performances mécaniques excellentes à température ambiante.

On pourra même augmenter encore le taux d'écrouissage appliqué à froid au matériau pour obtenir des performances mécaniques encore supérieure.

Cependant, selon une forme de réalisation de l'invention, convenant particulièrement dans le cas où la tenue mécanique à chaud du matériau est primordiale, le procédé comprend en outre, suite à l'opération de fluotournage à froid, une opération de traitement thermique, dite opération de vieillissement, afin de communiquer au matériau une bonne tenue mécanique à haute température. Par bonne tenue mécanique on entend que le matériau ainsi traité, est doté de performances mécaniques au moins équivalentes à hautes températures à celle d'un Inconel 718 traité de manière classique, c'est-à-dire laminé à chaud puis vieilli.

Il a été montré, comme on l'a déjà mentionné plus haut que l'Inconel 718 fluotourné à froid selon l'invention, et au delà d'un certain taux de réduction, par exemple 50%, ne pouvait être traité thermiquement, ou vieilli, à l'aide du traitement de vieillissement classique tel qu'il est couramment appliqué à un Inconel 718 laminé à chaud.

L'invention concerne donc également un traitement thermique de vieillissement spécialement adapté à un Inconel 718 fluotourné à froid caractérisé par des paramètres de traitement spécifiques.

Parmi la multitude de traitements thermiques possibles qui peuvent être appliquées à l'Inconel 718, parmi lesquels

on peut citer le système consistant en un chauffage et en un maintien en température à double palier, ou encore les traitements décrits dans le brevet FR-A-2722510, on a pu mettre en évidence de manière surprenante selon l'invention, qu'un traitement thermique de vieillissement spécifique comportant un chauffage jusqu'à une température de préférence de 400 à 600°C par exemple de 450 à 550°C et le maintien à cette température pendant une durée de préférence de 10 à 20 heures par exemple environ 16 heures permettrait d'obtenir un matériau gardant des caractéristiques mécaniques élevées à haute température, similaires voire supérieures par exemple à celles d'un même matériau élaboré puis traité de manière classique.

Un tel traitement de vieillissement permet de traiter des Inconel qui ont été préalablement écroui à froid à un taux d'écrouissage élevé pouvant atteindre 60, 70% et même plus et d'obtenir un matériau final présentant d'excellentes caractéristiques mécaniques et en particulier une ductilité suffisante, la ductilité étant définie par exemple, par un A% supérieur de préférence à 3%.

Un tel compromis, atteint grâce au traitement thermique de vieillissement spécifique selon l'invention, rend l'opération de fluotournage à froid économiquement rentable.

Avantageusement, et selon une forme de réalisation particulièrement préféré de l'invention, il a été mis en évidence que la meilleure configuration entre le taux d'écrouissage appliqué au matériau, le traitement de vieillissement et la ductilité résultante obtenue, était obtenu avec un taux de réduction de 60% lors de l'opération de fluotournage à froid accompagné d'un traitement de vieillissement à 450°C pendant une durée de 16 heures.

Le matériau final obtenu suite au traitement de vieillissement selon l'invention présente d'excellentes caractéristiques mécaniques à température ambiante définies par exemple par une résistance à la rupture généralement de 1500 à 1700 MPa, une résistance élastique généralement de 1400 à 1600 MPa, et un allongement généralement de 1,8 à 4 % et un module de YOUNG généralement de 195000 à 230000 MPa.

Ce matériau présente également d'excellentes caractéristiques mécaniques à chaud. Par "caractéristiques mécaniques à chaud ou à haute température", on entend par exemple les caractéristiques mécaniques à une température supérieure à 650°C, par exemple voisine de 750°C. Une telle température est couramment rencontrée par le matériau lorsqu'il est par exemple soumis à un cycle thermique de chauffage classique auquel sont soumises les pièces en de tels alliages, qui se compose de:

- une montée rapide en température : 150°C en une minute,
- une montée en température régulière jusqu'à 750° pendant environ 6 minutes,
- un maintien en température à 750° pendant environ 2 minutes.

Les caractéristiques mécanique à chaud du matériau fluotourné puis vieilli selon l'invention sont par exemple les suivantes à une température de 750°C :

résistance à la rupture R_{max}: 700 à 750 Mpa,
résistance élastique: 600 à 650 Mpa,
allongement: 15 à 17 %,

- Module de YOUNG : 145000 à 160000 MPa

Les pièces qui sont fabriquées par le procédé selon l'invention sont de nature diverse quant à leur forme, et à leur taille.

Grâce à l'invention on peut notamment obtenir par fluotournage puis éventuellement par traitement thermique de vieillissement des corps ou structures cylindriques à très haute caractéristiques mécaniques, ces corps ou structures cylindriques en particulier de grande longueur, par exemple de 0,5 à 2,5 m, mais de faible épaisseur par exemple de 0,7 à 3 mm peuvent être utilisés par exemple comme réservoirs ou comme structure de propulseur pour l'industrie aéronautique.

Il est bien évident que le procédé selon l'invention pourra être utilisé dans d'autres types d'industries telles que celle de l'armement, de l'aviation ou du nucléaire.

Les exemples suivants décrivent et illustrent l'invention :

EXEMPLE 1

Dans cet exemple, le matériau à traiter qui est un alliage Inconel 718 de deux fournisseurs différents à savoir les variétés AUBERT et DUVAL, et TELPHY a été fluotourné à froid, à température ambiante (à savoir 20°C) à différents taux d'écrouissage : 30%, 40%, 50%, 60%, 70%, 80%.

La résistance mécanique des alliages fluotournés a été caractérisée par la mesure de la résistance à la rupture (R_m) , de la résistance élastique, et de l'allongement (A%).

Les résultats obtenus pour les caractéristiques mécaniques des Inconel à l'état "brut de fluotournage" sont regrou-

4

50

55

10

15

20

25

30

35

40

pés dans les tableaux I et II suivants : pour des Inconel 718 fournis respectivement par les Sociétés TECPHY et

	AUBERT et DUVAL.		
5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

TABLEAU I

			Rm(MPa)) ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	R. (MDa)	V	V0/.	7 71
يا منظور المرئين حالم ريم يحيه			,		VO.	(a)	C	ę	(mm)
laux de reduction	abete B	annean	eprouv	eprouvette plate	éprouve	éprouvette plate			anneau
			sens long	sens travers	sens lang	sens travers	sens long	sens travers	
			capteur	capteur	capteur	capteur	capteur	capteur	
	6,1,1	1391	1365	1379	1228	1132	9,4	9	49
30%	6,1,2	1372	1377	1376	1267	1162	•	6.1	4
	6,1,3	1378	1390	1377	1271	1200	7.5	99	; rc
		moy:1380	moy:1377	moy.1377	moy.1255	moy:1164	moy.84	mov.6.2	mov.4.9
	6,2,1	1468	1451	1448	1388	1183	59	39	48
40%	6,2,2	1451	<u>4</u>	1462	1396	1209	5,7	43	47
	6,2,3	1458	1471	1458	1392	1250	•	1.4	. 4
		moy:1459	moy:1462	moy:1456	moy.1392	moy:1214	moy:5,8	mov:4.2	mov4.7
	6,3,1	1500	1454	1497	1345	1318	52	3.1	42
20%	6,3,2	1468	1462	1480	1421	1467	4.7	3.4	. 4
	6,3,3	1498	1494	1493	1383	1226		3,6	- o
		moy:1489	moy:1470	moy:1490	moy:1383	moy.1337	moy:5,0	mov.3.4	mov.4.1
	7,1,1	1607	1540	1574	1339	1286	5.1	2.9	38
%09 —	7,1,2	1593	1515	1551	1237	1298	4,9	3.1	42
	7,1,3	1598	1536	1595	1311	1340	4,4	. m	. 4 . 5
		moy.1599	moy.1530	moy.1573	moy:1295	moy:1301	moy:4,7	mov.3.0	mov:4.1
	7,2,1	1630	1570	1616	1375	1356	2,7	2.1	42
%O/	7,2,2	1649	1554	1888	1365	1397	က	2,1	39
	7,2,3	1658	1565	1652	1413	1400		2.6	6 6 7
		moy:1645	moy.1563	moy:1627	moy:1384	moy.1384	may.2,9	moy.2,3	mov.4
	7,3,1	1704	1646	1723	1422	1275	2,5	1,8	4
	7,3,2	1733	1622	1738	1391	1380	•	12	4
	7,3,3	1723	1621	1714	1430	1390	2,9	2,3	38
		moy:1720	moy.1629	moy:1725	moy:1414	moy:1380	mov:2.7	mov.2.1	mov:3.9

TABLEAU II

(Mmm)	annean	sens travers	capteur			3,5	2 	-	_	48	mov4.7			3.		5 46		. <u>.</u>	mov.4.5 mov.4.6	-		8 44			4.7		
A%			88	3	4				4	4			- m			\perp	7	· (r)		2		5 2	mov.3.	32	-	39	0000
		senslong	capteur	8,2	6,7	? ∞	moy:8,0	6,5	99	62	mov:6.4	59	5,0	4,8	mov.5.5		4.1	4.6	mov:4.4	3.7	4.	3,8	moy.3.9	11	<u>, 1</u>	<u>+</u>	V Frican
R _{oz} (MPa)	éprouvette plate	sens travers	capteur	1321	1218	1130	moy.1223	1291	152	1273	moy:1239	1195	1556	1213	moy:1211	1270	1244	1387	moy:1300	1312	1349	1423	moy:1361	1446	1525	1554	mo. 1500
Rox	éprouv	sens long	capteur	1248	1237	1264	moy.1250	1185	1262	1326	moy.1220	1151	1265	1358	moy.1258		1353	1263	moy:1303	1280	1225	1516	moy:1340	1328	1453	1410	7021-Jun
	éprouvette plate	sens travers	capteur	1406	1398	1387	moy:1397	1493	1490	1495	moy:1493	1535	1532	1550	moy:1539	1636	1622	1618	moy:1625	1646	1646	1640	moy.1644	1775	1744	1747	movr 1755
Rm(MPa)	éprou	sens long	capteur	1379	1367	1372	moy:1373	1426	1428	1437	moy:1430	1446	1532	1550	moy:1462		1523	1498	moy:1510	1555	1526	1550	moy.1544	1616	1617	1629	mor/1620
	anneau			1323	1330	1322	moy:1325					1485	1545	1523	moy:1518	1633	1629	1670	moy:1644	1775	1732	1674	moy:1727	1776	1856		mov1816
	nepère			9,	9,5	6,3		9,4	9,5	9,6		6'2	86	66		5,	10,2	10,3		10,4	10,5	10,6		10,7	10,8	10,9	
	taux de réduction				%0°C				40%				20%				%09				%0,4				%08		

Il apparaît au vu des tableaux I et II que l'Inconel 718, peut, conformément à l'invention, être fluotourné et utilisé de façon fiable sans être vieilli jusqu'à un taux de réduction élevé, par exemple de 70%.

Au-delà, le matériau présente généralement un allongement A% et une zone de ductilité trop réduite.

5 **EXEMPLE 2**

Dans cet exemple, l'Inconel 718 fourni par deux Sociétés différentes : AUBERT et DUVAL, et TECPHY, qui a été fluotourné à froid conformément à l'EXEMPLE 1 à des taux d'écrouissage différents a été vieilli suivant le traitement classique déjà décrit ci-dessus à savoir :

- 10
- un chauffage à 720° pendant huit heures,
- un refroidissement au four à 50° par heure jusqu'à 620°,
- un maintien en température à 620° pendant huit heures,
- un refroidissement à l'air jusqu'à la température ambiante.

Les tableaux III et IV regroupent les caractéristiques mécaniques à température ambiante des Inconel à l'état fluotourné et vieillis par le traitement classique des Inconel 718 fournis respectivement par les Sociétés AUBERT et **DUVAL** et TECPHY.

20

25

15

TABLEAU III

taux de réduction	référence	Rm(MPa)	R _{0,2} (MPa)	Α%
30%	9,21	1714	1683	2,3
	9,22	1686		2,7
50%	9,71	1830	1697	0,9
	9,81	1960	1835	0,9
60%	10,11	1940	1851	1,1
	10,12	1920	1829	0,85

30

TARLEAU IV

35	
40	
45	
50	
55	

	TABLEAU) I V	
taux de réduction	Rm(MPa)	R _{0,2} (MPa)	Α%
	1670	1310	1,8
30%	1652	1305	1,9
	1679	1334	
	moy:1667	moy:1316	moy:1,8
	1766	1477	1,4
40%	1766	1404	1,5
	1815		1,4
	moy:1782	moy:1440	moy:1,4
	1909	1650	1,1
50%	1841	1640	1,2
	1878	1660	1,2
	moy:1876	moy:1650	moy:1,1
	1936	1630	1
60%	1931	1650	0,5
	moy:1934	moy:1640	moy:0,7
	2034	1700	0,6
70%	2060	1670	0,7
	moy:2047	moy:1685	moy:0,6
	2048	1980	0,9
80%	2022	1970	<0,3

TABLEAU IV (suite)

taux de réduction	Rm(MPa)	R _{0,2} (MPa)	Α%
	2076		
	moy:2049	moy:1975	moy:<0,5

EXEMPLE 3

Dans cet exemple, qui vise à mettre en évidence l'influence d'un traitement thermique de vieillissement sur un matériau écroui conformément à l'invention, un traitement thermique de vieillissement consistant en un chauffage et en un maintien en température à 450°C pendant 16 heures a été mis en oeuvre.

Les résultats concernant les mesures de résistance mécanique à température ambiante pour respectivement des éprouvettes en métal de base, en métal fluotourné, et en métal fluotourné et ayant subi un traitement de vieillissement sont donnés ci-après.

Résistance mécanique du métal de base.

Résistance à la rupture : 891 MPA,
Résistance élastique : 504 MPA,
Allongement (A%) : 46,7%.

Résistances mécaniques du matériau obtenu après fluotournage

Taux de réduction appliqué: 60%
Résistance à la rupture: 1600 MPA,
Résistance élastique: 1300 MPA,
Allongement (A%): 4,5%.

Résistances mécaniques du matériau obtenu après traitement de vieillissement et à température ambiante

Résistance à la rupture : 1630 MPA,
Résistance élastique : 1530 MPA,
Allongement (A%) : 3,6%.

35 EXEMPLE 4

Cet exemple est relatif à la caractérisation à chaud du matériau obtenu conformément à l'invention après le traitement de fluotournage et un traitement thermique de vieillissement selon l'invention.

Le cycle thermique mis en oeuvre pour effectuer cette caractérisation à chaud du matériau correspond à des cycles thermiques utilisés dans ce domaine de la technique, ce cycle se compose de :

- une montée rapide en température : 150°C en une minute,
- une montée en température régulière jusqu'à 750°C pendant environ 6 minutes,
- un maintien en température à 750°C pendant environ 2 minutes.

Les essais pratiqués ont consisté à rompre des éprouvettes de traction, chauffées par effet joule, à une température de consigne déterminée.

Les différents résultats des essais de traction à haute température sont regroupés dans le tableau V suivant:

50 TABLEAU V

repère des éprouvettes	Rmax (Mpa)	Rp 0,2% (Mpa)	A% L0=22mm	E MPA.
1	734	635	15	151000
2	725	601	16	157000
3	711	622	17	147000
moyennes	723	619	16	152000

9

5

10

15

20

25

30

45

A 750 degrés le matériau perd 55% de sa résistance à la rupture, 59% de sa résistance élastique et augmente son module d'élasticité de 32%.

EXEMPLE 5 (COMPARATIF)

5

10

Dans cet exemple et à des fins de comparaison, des essais analogues à ceux des exemples précédents ont été effectués afin de comparer les valeurs des caractéristiques mécaniques obtenues par un traitement conforme à l'invention comportant une étape de vieillissement selon l'invention et les valeurs de traction à hautes températures d'un matériau identique mais usiné dans des barres laminées à chaud, ce qui constitue un mode d'obtention tout à fait usuel et classique.

Ces éprouvettes de comparaisons ont été traitées à l'aide du traitement de vieillissement classique c'est-à-dire chauffage à 720 degrés pendant huit heures, maintien à température à 620 degrés pendant huit heures suivi d'un refroidissement lent à l'air.

Les valeurs obtenus pour le matériau élaboré de façon traditionnelle sont:

15

20

A température ambiante:

Résistance à la rupture: 1375 MPA
Résistance élastique: 1200 MPA
Allongement (A%): 26%

Module d'YOUNG: 200000 MPA

A 750 degrés

25

Résistance à la rupture: 780 MPA
Résistance élastique: 750 MPA
Allongement (A%): 14%

Module d'YOUNG: 142000 MPA

30

Nous pouvons observer que les résultats métallurgiques observés à une température de référence de 750 degrés sur ces deux matériaux sont très voisins.

Cela montre qu'à haute température, le matériau fluotourné puis vieilli selon l'invention perd de ses caractéristiques mécaniques mais reste cependant dans une plage identique à celle du même matériau élaboré et traité de façon classique.

35

40

Revendications

- 1. Procédé de fabrication d'une pièce en alliage Inconel 718 caractérisé en ce qu'il comprend au moins une opération de fluotournage à froid.
- 2. Procédé selon la revendication 1 caractérisé en ce que l'opération de fluotournage à froid est réalisée à un taux de réduction de 10 à 90%.
- 45 3. Procédé selon la revendication 2 caractérisé en ce que ledit taux de réduction est de 30 à 70%.
 - **4.** Procédé selon la revendication 1 caractérisé en ce que suite à l'opération de fluotournage à froid, la pièce est soumise à un traitement thermique de vieillissement afin de communiquer à l'alliage Inconel 718 une bonne tenue mécanique à haute température.

- 5. Procédé selon la revendication 4, caractérisé en ce que ledit traitement thermique de vieillissement comprend un chauffage de la pièce jusqu'à une température de 400 à 600°C et le maintien à cette température pendant une durée de 10 heures à 20 heures.
- 55 **6.** Procédé selon la revendication 5, caractérisé en ce que la pièce est chauffée jusqu'à une température de 450 à 550°C et qu'il est maintenu à cette température pendant une durée d'environ 16 heures.
 - 7. Procédé selon la revendication 1, caractérisé en ce que ladite pièce présente une forme cylindrique.

	8.	Procédé selon la revendication 7, caractérisé en ce que la pièce est un réservoir ou une structure de propulsion.
5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
- -		

Office europeen RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 97 40 2569

Catégorie	Citation du document avec ir des parties pertine		Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.Cl.6)
X	PATENT ABSTRACTS OF vol. 11, no. 218 (M- & JP 62 034639 A (T février 1987, * abrégé *	607), 15 juillet 1987	1,4-6	B21D22/14 C22F1/10
Х	GB 2 196 706 A (THE COMPANY LIMITED) * le document en ent		1-3,7,8	
Х	GB 2 102 321 A (BICC * abrégé; revendicat		1,4	
А	EP 0 151 976 A (FISH -ING. ET AL.) * abrégé; figure 1	HER, FRITZ, PROF. DR.	1-3,7,8	
Α	FR 2 668 085 A (BROM (S.A.)) * le document en en	·	1,7,8	
Α	US 3 660 177 A (EDG/ * abrégé; revendica		1,4-6	DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6) B21D C22F
A,D		IETE NATIONALE D ETUDE DE MOTEURS D AVIATION)		
Le p	résent rapport a été établi pour tou	tes les revendications		
	Lieu de la recherche BERLIN	Date d'acnèvement de la recherche 21 janvier 1998	Cui	Examinateur 1y, J-M
X:par Y:par aut	CATEGORIE DES DOCUMENTS CITES ticulièrement pertinent à lui seul ticulièrement pertinent en combinaison re document de la même catégorie ière-plan technologique	E : document de br date de dépôt o	evet anterieur, m u après cette date nande es raisons	ais publié à la