

(12)

Europäisches Patentamt **European Patent Office**

Office européen des brevets

EP 0 845 648 A2 (11)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 03.06.1998 Patentblatt 1998/23 (51) Int. Cl.⁶: **F28F 1/02**. F28D 1/047

(21) Anmeldenummer: 97120670.1

(22) Anmeldetag: 26.11.1997

(84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE**

Benannte Erstreckungsstaaten:

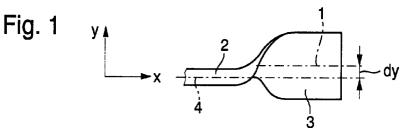
AL LT LV MK RO SI

(30) Priorität: 27.11.1996 DE 19649129

(71) Anmelder: Behr GmbH & Co. 70469 Stuttgart (DE)

(72) Erfinder:

- · Geiger, Wolfgang D-71642 Ludwigsburg (DE)
- Staffa, Karl-Heinz Dipl.-Ing. D-70567 Stuttgart (DE)
- (74) Vertreter:


Wilhelm & Dauster Patentanwälte **European Patent Attorneys** Hospitalstrasse 8 70174 Stuttgart (DE)

Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp (54)

(57)Die Erfindung bezieht sich auf einen Flachrohr-Wärmeübertrager mit einem Flachrohrblock aus einem oder mehreren Flachrohren, die mit vorzugsweise tordierten Endabschnitten an entgesetzten oder an derselben Rohrblockseiten in jeweilige Anschlußraumbauteile münden.

Erfindungsgemäß kann wenigstens einer der beiden Endabschnitte (3) eines jeweiligen Flachrohrs (5) so tordiert sein, daß seine Längsachse (1) gegenüber der Längsachse (4) des Mittelbereichs (2) in einer lateralen Richtung versetzt ist. Dies erlaubt kompakte Bauformen des Wärmeübertragers mit geringen Totvolumina. Des weiteren kann erfindungsgemäß ein Stapel serpentinenförmiger Flachrohre (17) vorgesehen sein, bei dem benachbarte Flachrohre mit ihren eintrittsseitigen bzw. ihren austrittsseitigen Rohrabschnitten (19a,19b) aneinandergrenzen, was Wärmeübertragungsverlusten vorbeugt.

Verwendung z.B. als Kondensator vom Serpentinentyp in Fahrzeugklimaanlagen.

25

Beschreibung

Die Erfindung bezieht sich auf einen Flachrohr-Wärmeübertrager mit einem Flachrohrblock mit einem oder mehreren Flachrohren, die mit ihren beiden Endabschnitten in ein jeweiliges Anschlußraumbauteil münden. Derartige Wärmeübertrager lassen sich beispielsweise als Kondensatoren vom Serpentinentyp in Klimaanlagen von Kraftfahrzeugen einsetzen.

In der Patentschrift US 3.416.600 ist ein derartiger Wärmeübertrager vom Serpentinentyp offenbart, bei dem ein Stapel serpentinenförmig gebogener Flachrohre vorgesehen ist, die in ihren Endabschnitten um 90° so tordiert sind, daß die Längsachse der tordierten Endabschnitte mit der Längsachse des nicht tordierten Flachrohrmittelabschnitts zusammenfällt. Mit diesen tordierten Endabschnitten sind die Flachrohre in zugehörige seitliche Sammelrohre eingefügt, die hierzu mit umfangsseitig eingebrachten, in Rohrlängsrichtung verlaufenden und in einer Linie angeordneten Längsschlitzen versehen sind. Zusätzlich können die Flachrohre in einem mittleren Bereich um 180° tordiert sein. Zur Bildung des Serpentinenflachrohrstapels sind die einzelnen serpentinenförmig gebogenen Flachrohre in gleicher Lage nebeneinander angeordnet. Dadurch stehen sich jeweils ein eintrittsseitiger Flachrohrabschnitt eines Flachrohres und ein austrittsseitiger Abschnitt eines benachbarten Flachrohres gegenüber. Da im Betrieb des Wärmeübertragers diese beiden sich gegenüberliegenden Abschnitte im allgemeinen auf deutlich unterschiedlichen Temperaturen liegen, kann es zu unerwünschten Wärmeübertragungseffekten zwischen diesen Flachrohrabschnitten kommen, die den Wirkungsgrad des Wärmeübertragers verringern.

Der Erfindung liegt als technisches Problem die Bereitstellung eines Flachrohr-Wärmeübertragers der eingangs genannten Art zugrunde, der sich mit geringem Totvolumen, hohem Wirkungsgrad, ausreichender Berstdrucksicherheit und bei gegebener Flachrohrbreite vergleichsweise geringer Bautiefe fertigen läßt und bei Bedarf insbesondere als Kondensator für eine Klimaanlage verwendbar ist.

Die Erfindung löst dieses Problem durch die Bereitstellung eines Flachrohr-Wärmeübertragers mit den Merkmalen des Anspruchs 1 oder 4.

Beim Wärmeübertrager nach Anspruch 1 ist speziell vorgesehen, daß wenigstens einer der beiden Endabschnitte eines jeweiligen Flachrohres außermittig, exzentrisch tordiert ist, d.h. daß die Längsachse des tordierten Endabschnitts gegenüber der Längsachse des nicht tordierten Flachrohrmittelabschnitts in einer lateralen Richtung versetzt ist.

Durch das Tordieren der Flachrohrenden läßt sich deren Quererstreckung bei im wesentlichen konstant gehaltenem Durchtrittsquerschnitt vermindern. Dies ermöglicht es, die seitlichen Anschlußraumbauteile, z.B. entsprechende Sammelrohre, mit einer Bautiefe zu realisieren, die nur wenig größer als die verringerte

Quererstreckung des tordierten Flachrohrendes zu sein braucht und beispielsweise kleiner als die Bautiefe der Flachrohre sein kann. Die geringe Bautiefe der Anschlußraumbauteile hat den weiteren Vorteil, daß sich selbige zur Erzielung einer vorgegebenen Berstdrucksicherheit mit relativ geringer Wandstärke fertigen lassen und nur ein verhältnismäßig geringes Totvolumen besitzen. Außerdem läßt sich das durchströmte Wärmeübertragervolumen bei gegebener Wärmeübertragerleistung vergleichsweise gering halten, was bei Bedarf eine Mengenreduzierung des durchströmenden Wärmeübertragungsfluides gegenüber konventionellen Flachrohr-Wärmeübertragern erlaubt.

Die außermittige Tordierung der Flachrohrenden schafft die Voraussetzung zur Realisierung noch kompakterer Bauformen des Wärmeübertragers. So kann bei entsprechender lateraler Versetzung benachbarter, in jeweils dasselbe Anschlußraumbauteil einmündender Flachrohrendabschnitte der Abstand der Flachrohre im nicht tordierten Mittelbereich selbst bei einem Torsionswinkel von 90° geringer gewählt werden als die Flachrohrbreite, ohne daß dazu die Flachrohre in ihren Mittelbereichen lateral versetzt angeordnet werden müssen. Außerdem kann durch entsprechende Querversetzung der tordierten Flachrohrenden in Rohrblocktiefenrichtung ein Wärmeübertrager realisiert werden, bei dem die Anschlußraumbauteile auf einer Seite des Rohrblocks angeordnet sind.

In einer Ausgestaltung der Erfindung nach Anspruch 2 sind wenigstens zwei benachbarte Endabschnitte aufeinanderfolgender Flachrohre so tordiert, daß ihre Längsachse senkrecht zur Ebene des nicht tordierten Flachrohrmittelabschnitts, d.h. in einer Rohrblockhochrichtung, gegenüber der Längsmittelachse des nicht tordierten Flachrohrmittelabschnitts versetzt ist. Im Flachrohrblock sind die zwei benachbarten Flachrohre so angeordnet, daß sie mit in Hochrichtung voneinanderweg versetzt tordierten Enden in dasselbe Anschlußraumbauteil einmünden. Das entgegengesetzt versetzte Tordieren der beiden Flachrohrenden ermöglicht es, die zwei benachbarten Flachrohre trotz der endseitigen Tordierung mit vergleichsweise geringem Abstand voneinander anzuordnen. So kann bei Realisierung des Flachrohrblocks als Rohr-/Rippenblock der Abstand der beiden Flachrohre selbst bei endseitiger Tordierung um 90° im Flachrohrmittelabschnitt auf die Höhe einer üblichen Wellrippe beschränkt bleiben, ohne daß hier eine unüblich hohe Wellrippe oder ein Doppelwellrippenkomplex benötigt wird.

In einer Ausgestaltung der Erfindung nach Anspruch 3 ist eine laterale Versetzung der tordierten Flachrohrendabschnitte gegenüber den Flachrohrmittelabschnitt in der Ebene des nicht tordierten Flachrohrmittelabschnitts, d.h. in einer Rohrblocktiefenrichtung, vorgesehen. Dies ermöglicht bei Bedarf z.B. die Realisierung von Wärmeübertragern, bei denen serpentinenförmige Flachrohre mit beiden Enden auf derselben Rohrblockseite in die beiden Anschlußraumbauteile ein-

20

25

münden, die dort separat oder in ein einziges Bauteil integriert in Blockhochrichtung verlaufen.

Beim Wärmeübertrager nach Anspruch 4, der insbesondere auch die Merkmale eines oder mehrerer der Ansprüche 1 bis 3 aufweisen kann, ist ein Rohrblock aus einem Stapel serpentinenförmiger Flachrohre vorgesehen, die so angeordnet sind, daß im Stapel benachbarte Flachrohre stets entweder mit ihren eintrittsseitigen oder mit ihren austrittsseitigen Abschnitten aneinandergrenzen. Wenn hierbei ein möglichst kleines Volumen für die Anschlußraumbauteile erwünscht ist, läßt sich dies vorteilhaft durch geeignete Tordierung der Flachrohrenden, insbesondere gemäß einem der Ansprüche 1 bis 3, erzielen, wobei durch entsprechende außermittige Tordierung ein geringer Abstand zwischen benachbarten Flachrohren beibehalten werden kann.

Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben.
Hierbei zeigen:

- Fig. 1 eine teilweise Seitenansicht eines Flachrohrs mit rechtwinkliger, in Hochrichtung außermittig versetzter endseitiger Tordierung zur Verwendung in einem Flachrohr-Wärmeübertrager,
- Fig. 2 eine schematische Seitenansicht eines Flachrohr-Kondensators vom Serpentinentyp, in welchem gemäß Fig. 1 tordierte Flachrohre verwendet sind,
- Fig. 3 eine Seitenansicht entsprechend Fig. 1, jedoch für den Fall einer in Tiefenrichtung, d.h. in der Ebene des nicht tordierten Flachrohrmittelabschnitts, versetzten Tordierung des Flachrohrendabschnitts.
- Fig. 4 eine schematische Draufsicht auf einen Teil eines weiteren Beispiels eines Wärmeübertragers vom Serpentinentyp mit serpentinenförmigen, in zwei seitengleiche Anschlußraumbauteile einmündenden Flachrohren und
- Fig. 5 eine teilweise, stark schematisierte, perspektivische Darstellung eines mit Flachrohren entsprechend Fig. 4 realisierten Kondensators.

In den Figuren sind verschiedene Wärmeübertrager und zugehörige Flachrohrgestaltungen dargestellt, wobei zur besseren Orientierung jeweils ein kartesisches xyz-Koordinatensytem angegeben ist, bei welchem die x-Achse eine Längsrichtung eines jeweiligen Rohrblocks bzw. der zugehörigen Flachrohre, die y-Achse eine Block- bzw. Rohr-Hochrichtung und die z-

Achse eine Block- bzw. Rohr-Tiefenrichtung bezeichnen

Fig. 1 zeigt eine endseitige Flachrohrtordierung, bei welcher der Flachrohrendabschnitt 3 gegenüber dem Flachrohrmittelabschnitt 2 um 90° und außermittig dergestalt tordiert ist, daß die Längsachse 1 des tordierten Endabschnitts um einen wählbaren Betrag dy gegenüber der Längsachse 4 des nicht tordierten Mittelabschnitts 2 in der oben definierten Hochrichtung, d.h. senkrecht zur Ebene des nicht tordierten Flachrohrmittelabschnitts 2, versetzt ist.

Fig. 2 zeigt einen z.B. als Kondensator in einer Kraftfahzeug-Klimaanlage verwendbaren Flachrohr-Wärmeübertrager vom Serpentinentyp, in welchem gemäß Fig. 1 tordierte, serpentinenförmige Flachrohre 5 verwendet sind. Der Wärmeübertrager beinhaltet einen Rohr-/Rippenblock, in welchem die serpentinenförmigen, jeweils vier Bögen aufweisenden Flachrohre 5 in einem Stapel in der Hochrichtung y aufeinanderfolgend angeordnet sind, wobei in die Zwischenräume zwischen benachbarten Flachrohrmittelabschnitten 2 wärmeleitende Wellrippen 30 eingebracht sind. Jedes Flachrohr 5 mündet mit seinen beiden gemäß Fig. 1 außermittig in Hochrichtung versetzt tordierten Endabschnitten 3 an gegenüberliegenden Längsseiten des Rohr-/Rippenblocks in ein jeweils dort längsverlaufendes Sammelrohr 6, 7 ein. Die Sammelrohre 6, 7 fungieren als Anschlußraumbauteile, von denen das eine über einen stirnseitigen Einlaß 8 und das andere über einen entsprechenden stirnseitigen Auslaß 9 verfügt. Damit kann ein Wärmeübertragungsfluid 10 über den Einlaß 8 in das eine Sammelrohr 6 eingespeist werden, wo es über die in dieses Sammelrohr 6 einmündenden Flachrohrenden in den eintrittsseitigen Abschnitt 11 jedes Flachrohres weitergeleitet wird, um dann durch das jeweilige serpentinenförmige Flachrohr hindurchzuströmen und von dessen austrittsseitigem Flachrohrabschnitt 12 über die dortigen tordierten Flachrohrenden in das andere Sammelrohr 7 zu gelangen, aus dem es über den Auslaß 9 abströmt.

Wie aus Fig. 2 zu erkennen, sind benachbarte Flachrohre stets so angeordnet, daß sie sich entweder mit ihren eintrittsseitigen Abschnitten 11 oder mit ihren austrittsseitigen Abschnitten 12 gegenüberliegen. Da diese Abschnitte untereinander jeweils auf praktisch gleicher Temperatur liegen, treten keine unerwünschten Wärmeübertragungseffekte zwischen Fluid, das im einen Flachrohr strömt, und Fluid, das in einem angrenzenden Flachrohr strömt, auf, was eine entsprechende Verschlechterung des Wirkungsgrades der beabsichtigten Wärmeübertragung zwischen dem Wärmeübertragungsfluid 10 einerseits und einem senkrecht zur Zeichenebene von Fig. 2 durch den Rohr-/Rippenblock hindurchströmenden Medium, wie z.B. Luft, vermeidet. Es sind durch diese spezielle Anordnung der Flachrohre 5 auch keine besonderen Maßnahmen zur thermischen Isolierung von sich gegenüberliegenden Abschnitten benachbarter Flachrohre erforderlich, wie

50

25

35

40

dies in herkömmlichen Anordnungen zweckmäßig ist, bei denen jeweils der eintrittsseitige Abschnitt des einen Flachrohres einem austrittsseitigen Abschnitt des anderen Flachrohres gegenüberliegt.

Bedingt durch das Anordnen der Flachrohre 5 mit 5 sich gegenüberliegenden eintrittsseitigen bzw. austrittsseitigen Abschnitten, sind entsprechend die tordierten Endabschnitte 3 je zweier benachbarter Flachrohre 5 einander direkt benachbart. Die tordierten Flachrohrenden 3 münden folglich jeweils in Gruppen von zwei direkt benachbarten Rohrenden, die von der nächsten Zweiergruppe um die doppelte Flachrohrausdehnung in Hochrichtung beabstandet sind, in das jeweilige Sammelrohr 6, 7 ein. Durch geeignete, außermittige Tordierung entsprechend Fig. 1 ist dafür gesorgt, daß der Abstand zwischen den nicht tordierten Mittelabschnitten je zweier benachbarter eintrittsseitiger oder austrittsseitiger Rohrabschnitte 11, 12 nicht größer, sondern genauso groß ist wie der Abstand der übrigen, nicht tordierten Flachrohrmittelabschnitte 2 der serpentinenförmigen Flachrohre 5. Dies hat zur Folge, daß zwischen je zwei benachbarten Flachrohren 5 dieselben Wellrippen 30 verwendet werden können wie zwijedes den Mittelabschnitten schen 2 serpentinenförmigen Flachrohrs 5.

Dazu sind je zwei benachbarte, rechtwinklig tordierte Flachrohrendabschnitte 3 entgegengesetzt in der Hochrichtung y versetzt, d.h. in Fig. 2 das eine Rohrende nach oben und das andere Rohrende nach unten. Damit ist es möglich, trotz der rechtwinkligen Tordierung der Flachrohrenden Wellrippen zu verwenden, deren Höhe bei Bedarf geringer sein kann als die Breite, d.h. Tiefe der Flachrohre 5. Aus einer einfachen geometrischen Betrachtung ergibt sich, daß hierzu der Betrag dy an lateraler Versetzung der tordierten Rohrendabschnitte 3 größer als die halbe Differenz zwischen Flachrohrbreite und Wellrippenhöhe zu wählen ist, d.h. bei gegebener Flachrohrbreite B und gegebener Wellrippenhöhe W gilt dy>(B-W)/2. Die Einhaltung dieser Bedingung erlaubt eine in der Blocklängsrichtung fluchtende Anordnung der auf der betreffenden Blockseite ausmündenden Flachrohrenden 3 und entsprechend eine fluchtende Einbringung der zugehörigen Durchsteckschlitze in den Sammelrohren 6, 7. Die in diesem Beispiel gewählte rechtwinklige Tordierung der Flachrohrenden 3 erlaubt andererseits die Erzielung einer minimalen Bautiefe für die Sammelrohre 6, 7, deren Durchmesser dadurch nur wenig größer als die Dicke der Flachrohre 5 zu sein braucht. Die Sammelrohre 6, 7 können auf diese Weise in ihrem Querschnitt so klein gehalten werden, daß sie in Tiefenrichtung nicht über den Rohr-/Rippenblock herausragen, sondern bei Bedarf sogar merklich schmaler ausgelegt sein können. Alternativ ist selbstverständlich auch eine Tordierung der Flachrohrenden um weniger als 90° und/oder mit zusätzlicher Versetzung in der Tiefenrichtung möglich.

Die Fig. 3 bis 5 zeigen Anwendungsbeispiele, bei denen die Tordierung der Flachrohrenden eine laterale Versetzung in der Tiefenrichtung z beinhaltet. Fig. 3 zeigt ausschnittweise ein derartiges Flachrohr mit nicht tordiertem Mittelabschnitt 13 und demgegenüber tordiertem Endabschnitt 14. Wie aus Fig. 3 ersichtlich, ist der Rohrendabschnitt 14 gegenüber dem Rohrmittelabschnitt 13 um einen Winkel von 90° und mit einer Versetzung um einen Betrag dz tordiert, d.h. die Längsachse 15 des tordierten Endabschnitts 14 ist von der Längsachse 16 des Mittelabschnitts 13 um den Betrag dz in der z-Richtung des gewählten Koordinatensystems, d.h. in der Rohr- bzw. Block-Tiefenrichtung, versetzt.

Fig. 4 zeigt eine ausschnittweise Draufsicht auf einen Rohr-/Rippenblock mit flachrohren 17 und zwischen benachbarten Flachrohrmittelabschnitten liegenden Wellrippen 18, bei dem die Flachrohrenden entsprechend Fig. 3 tordiert sind. Speziell sind die Flachrohre 17 in diesem Beispiel serpentinenförmig so gestaltet, daß sie mit beiden Enden 19a, 19b an derselben Blockseite münden. Die beiden Endbereiche 19a, 19b sind dabei entgegengesetzt in z-Richtung tordiert, d.h. die beiden Endbereiche 19a, 19b liegen mit ihren Längsachsen symmetrisch zur Längsachse 20 des nicht tordierten Rohrmittelabschnitts 21 jeweils um den Betrag dz von dieser entfernt. Korrespondierend dazu befindet sich auf jeder Seite der Längsachse 20 der nicht tordierten Flachrohrmittelabschnitte 21 ein in Blocklängsrichtung, d.h. Blockhochrichtung, verlaufendes Sammelrohr 22, 23, von denen wiederum das eine als Verteilerkanal und das andere als Sammelkanal fungiert. Jedes Flachrohr 17 des Rohr-/Rippenblocks mündet mit seinem einen tordierten Endbereich 19a in das eine Sammelrohr 22 und mit dem anderen Endbereich 19b in das andere Sammelrohr 23.

Bei dem solchermaßen realisierten Wärmeübertrager, wie er insbesondere als Kondensator für eine Kraftfahrzeug-Klimaanlage einsetzbar ist, befinden sich somit die beiden Sammelrohre 22, 23 längsverlaufend an derselben Blockseite. Durch die rechtwinklig tordiert einmündenden Flachrohrenden 19a, 19b lassen sich die Sammelrohre 22, 23 wiederum mit realtiv kleinem Durchmesser fertigen, so daß sie beide zusammen nebeneinanderliegend, wie aus Fig. 4 ersichtlich, nicht wesentlich über die Tiefe des Rohr-/Rippenblocks hinausragen. Alternativ zur gezeigten Anordnung zweier separater Sammelrohre können die beiden als Sammel- bzw. Verteilerkanal fungierenden Anschlußraumbauteile in einem gemeinsamen Anschlußraumbauteil integriert sein, das zwei Kammern aufweist, die durch eine längsverlaufende Trennwand separiert sind und in die jedes Flachrohr mit je einem Ende einmündet.

Fig. 5 zeigt als perspektivische Schemaskizze ausschnittweise in einer Seitenansicht eine Modifikation des Rohr-/Rippenblocks von Fig. 4. Bei dieser Variante ist ein Stapel serpentinenförmiger Flachrohre 24 vorgesehen, die mit ihren Enden auf derselben Blockseite in zwei nebeneinanderliegende Sammelrohre 25, 26 münden. Die beiden Sammelrohre 25, 26 liegen dabei wiederum in Blocktiefenrichtung versetzt nebeneinander, wie dies beim Wärmeübertrager von Fig. 4 der Fall ist. Aus Fig. 5 wird deutlich, daß bei diesem Wärmeübertrager die Flachrohre 24 entsprechend dem Wärmeübertrager von Fig. 2 so angeordnet sind, daß sie sich ieweils entweder mit ihren eintrittsseitigen Rohrabschnitten 27 oder ihren austrittsseitigen Rohrabschnitten 28 gegenüberliegen. Dies hat den oben zu Fig. 2 beschriebenen Vorteil der Vermeidung von Wärmeübertragungsverlusten zwischen benachbarten Rohrabschnitten merklich unterschiedlicher Temperatur. Dadurch liegen bei der Variante von Fig. 5 die in das jeweilige Sammelrohr 25, 26 einmündenden Enden der aneinandergrenzenden eintrittsseitigen bzw. austrittsseitigen Rohrabschnitte 27, 28 benachbarter Flachrohre 24 wiederum relativ nahe beieinander.

Um nun einerseits entsprechend dem Beispiel von Fig. 2 unerwünscht große Abstände zwischen benachbarten Flachrohren zu vermeiden und andererseits entsprechend Fig. 4 die Anordnung der beiden Sammelrohre 25, 26 auf derselben Seite des Rohr-/Rippenblocks mit geringem Sammelrohrtotvolumen zu erlauben, sind die Flachrohre 24 in ihren Endabschnitten rechtwinklig und kombiniert sowohl in Hochrichtung y als auch in Tiefenrichtung z versetzt tordiert. Die Versetzung in Blockhochrichtung y ist entsprechend dem Beispiel von Fig. 2 realisiert, d.h. von den beiden tordierten Rohrenden je zwei benachbarter Flachrohre 24 ist das eine in positive und das andere in negative y-Richtung um einen jeweils geeigneten Betrag gegenüber der Längsachse des Flachrohrmittelabschnitts versetzt. Dadurch lassen sich benachbarte Flachrohre 24 mit vergleichsweise geringem Abstand unter Zwischenfügung einer einfachen Wellrippe anordnen. Die zusätzliche Versetzung der tordierten Rohrenden in der Tiefenrichtung z erlaubt die in dieser Richtung versetzte Anordnung der beiden Sammelrohre 25, 26 entsprechend Fig. 4.

Eine in der Blocktiefenrichtung z versetzte Tordierung des Flachrohrendbereichs gegenüber dem Flachrohrmittelabschnitt läßt sich vorteilhaft auch für Wärmeübertrager mit geradlinigen Flachrohren verwenden, die an gegenüberliegenden Rohrblockseiten in ein jeweiliges Anschlußraumbauteil einmünden. Denn durch eine solche tordierte Versetzung brauchen seitengleiche Enden benachbarter Flachrohre in Blockhochrichtung nicht beabstandet sein, sondern können sich in Blocktiefenrichtung teilweise überlappen. Dadurch kann beispielsweise der Abstand der Flachrohre in ihrem Mittelabschnitt und damit die Höhe von dort gegebenenfalls einzubringenden Wellrippen trotz einer rechtwinkligen Tordierung der Flachrohrenden merklich kleiner als die Breite, d.h. Tiefe, der geradlinigen Flachrohre gehalten werden. Im zugehörigen Anschlußraumbauteil sind in diesem Fall zwei in Blocktiefenrichtung versetzte Reihen voneinander in Blockrichtung beabstandeter Durchsteckschlitze Einfügen der Rohrenden vorgesehen.

Die oben beschriebenen Flachrohr-Wärmeübertrager lassen sich aufgrund der erwähnten Eigenschaften bei gegebener, geforderter Wärmeübertragungsleistung sehr kompakt und mit vergleichsweise geringem Aufwand fertigen. Zu bemerken ist hierzu insbesondere auch, daß zum Aufbau des jeweiligen Rohr-/Rippenblocks nur eine einzige Sorte von Flachrohren benötigt wird, die in identischer oder in einer um die x-Achse um 180° gekippten Lage aufeinanderfolgend im Rohrblockstapel angeordnet werden. Es versteht sich, daß neben den beschriebenen Beispielen weitere Realisierungen des erfindungsgemäßen Flachrohr-Wärmeübertragers möglich sind, insbesondere auch solche mit geradlinigen statt serpentinenförmigen Flachrohren und mit endseitiger Tordierung um weniger als 90° und/oder beliebiger Kombination von in Hochrichtung und Tiefenrichtung um einen jeweils gewünschten Betrag versetzter Tordierung. Es versteht sich weiter, daß der erfindungsgemäße Wärmeübertrager auf allen Gebieten verwendbar ist, in denen herkömmlicherweise Flachrohr-Wärmeübertrager zum Einsatz kommen.

Patentansprüche

25

40

- **1.** Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp, mit
 - einem Flachrohrblock mit einem oder mehreren Flachrohren (5), die mit ihren beiden Endabschnitten (3) in ein jeweiliges Anschlußraumbauteil (6, 7) münden, wobei wenigstens ein Endabschnitt (3) gegenüber dem Flachrohrmittelabschnitt (2) tordiert ist, dadurch gekennzeichnet, daß
 - wenigstens einer der beiden Flachrohrendabschnitte (3) so tordiert ist, daß seine Längsachse (1) gegenüber der Längsachse (4) des Flachrohrmittelabschnitts (2) in einer lateralen Richtung (y, z) versetzt ist.
- 2. Flachrohr-Wärmeübertrager nach Anspruch 1, weiter dadurch gekennzeichnet, daß der Flachrohrblock einen Stapel mit mehreren geradlinigen oder serpentinenförmigen Flachrohren (5) beinhaltet, wobei für wenigstens ein Paar seitengleicher tordierter Endabschnitte (3) benachbarter Flachrohre (5) eine bezüglich der Längsachse des Flachrohrmittelabschnitts entgegengesetzt parallel zur Stapelrichtung (y) versetzte Tordierung dieser beiden benachbarten Flachrohrendbereiche vorgesehen ist
- Flachrohr-Wärmeübertrager nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, daß der Flachrohrblock einen Stapel mehrerer geradliniger oder serpentinenförmiger Flachrohre (17) beinhaltet, deren jeweilige beiden Endbereiche (19a, 19b) an entgegengesetzten Rohrblockseiten oder an der-

selben Rohrblockseite münden, wobei wenigstens ein Teil der Endbereiche (19a, 19b) gegenüber der Längsachse (20) des Flachrohrmittelabschnitts (21) in der zur Ebene des Flachrohrmittelabschnitts parallelen Lateralrichtung (z) versetzt tordiert ist.

- **4.** Flachrohr-Wärmeübertrager, insbesondere nach einem der Ansprüche 1 bis 3, mit
 - einem Flachrohrblock mit einem Stapel mehrerer, serpentinenförmiger Flachrohre (5), die mit ihren beiden Endabschnitten an gegenüberliegenden Rohrblockseiten oder an derselben Rohrblockseite in ein jeweiliges, längs der betreffenden Rohrblockseite verlaufendes 15 Anschlußraumbauteil münden, dadurch gekennzeichnet, daß
 - sich im Stapel benachbarte Flachrohre jeweils mit ihren eintrittsseitigen Rohrabschnitten (11) oder mit ihren austrittsseitigen Rohrabschnitten (12) gegenüberliegen.

25

30

35

40

45

50

55

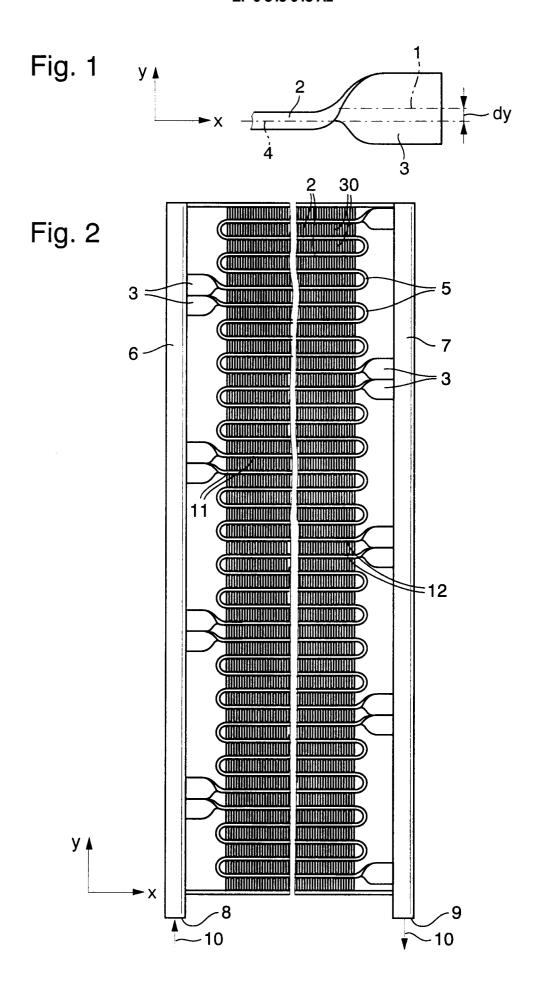


Fig. 3

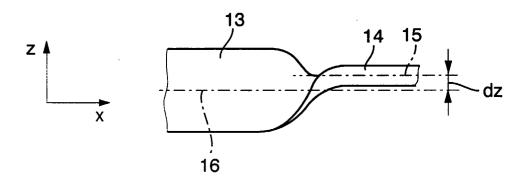


Fig. 4

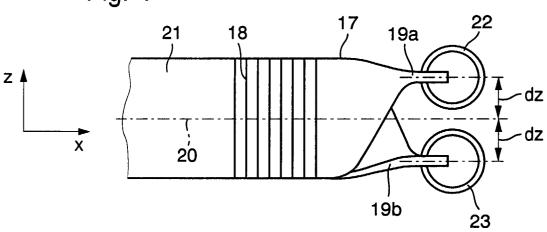
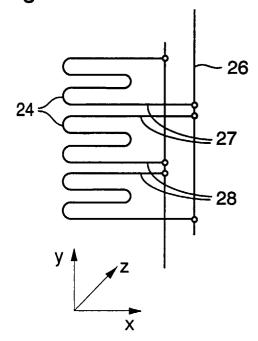



Fig. 5

