Europäisches Patentamt European Patent Office Office européen des brevets

EP 0 848 165 A2 (11)

EUROPÄISCHE PATENTANMELDUNG (12)

(43) Veröffentlichungstag:

17.06.1998 Patentblatt 1998/25

(21) Anmeldenummer: 97121424.2

(22) Anmeldetag: 05.12.1997

(51) Int. Cl.6: F04C 2/10

(84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 12.12.1996 DE 19651683

(71) Anmelder: Eckerle, Otto D-76316 Malsch (DE)

(72) Erfinder: Eckerle, Otto D-76316 Malsch (DE)

(74) Vertreter:

LOUIS, PÖHLAU, LOHRENTZ & SEGETH Hauptstrasse 19 82319 Starnberg (DE)

(54)Füllstücklose Innenzahnradmaschine

(57)Eine füllstücklose Innenzahnradmaschine mit einem Gehäuse (1), einem in einer Bohrung (15) des Gehäuses quer zu seiner Achse bewegbar, jedoch undrehbar aufgenommenen Lagerring (4), einem in dem Lagerring umlaufend gelagerten innenverzahnten Hohlrad (3) und einem in dem Gehäuse drehbar gelagerten Ritzel (2). Der Lagerring ist relativ zu der Gehäusebohrung (15) um eine zu seiner Achse parallele Schwenkachse (16,17) schwenkbar. Die Schwenkachse liegt so, daß der dem eingriffsfreien Hohlradbereich zugeordnete Ringabschnitt des Lagerrings (4) durch die im Druckraum auf das Hohlrad wirkenden Druckkräfte (Resultierende R) zumindest annähernd radial zur Ritzelachse hin bewegt wird.

Beschreibung

Die Erfindung betrifft eine füllstücklose Innenzahnradmaschine mit den Merkmalen gemäß dem Oberbegriff des Patentanspruches 1.

Bei einer bekannten Innenzahnradmaschine dieser Art (DE 195 17 296 A1) ist der Lagerring, in dem das Hohlrad umläuft, in einer Gehäusebohrung mit einem Radialspiel von etwa 0,2 mm aufgenommen. Im Ausmaß dieses Radialspiels ist der Lagerring quer zu seiner Achse bewegbar, jedoch durch eine Stiftschraube, die auf der Saugseite des Gehäuses angeordnet ist, an einer Drehung gehindert. Auf der Druckseite ist in der Wand der Gehäusebohrung eine flache Ausnehmung ausgebildet, in der eine Anzahl von Druckfeldern definiert ist, die über radiale Durchbrüche des Lagerrings sowie radiale Durchbrüche des Hohlrads mit dem Druckraum der Verzahnung in Verbindung stehen.

Die im Druckraum der Verzahnung herrschenden Druckkräfte wirken so, daß das Hohlrad sich von dem Ritzel zu entfernen sucht. Dadurch besteht die Neigung, daß der zur Abgrenzung des Druckraums vom Saugraum bestehende Dichtkontakt zwischen den Zahnköpfen von Ritzel und Hohlrad in dem eingriffsfreien Hohlradbereich, in welchem die Ritzelzähne praktisch völlig aus den Zahnlücken des Hohlrads ausgetreten sind, abnimmt oder ganz verloren geht. Dieser Neigung wirkt jedoch die von den Druckfeldern erzeugte Druckkraft entgegen, durch die der Lagerring und zusammen mit diesem das Hohlrad im Rahmen des zur Verfügung stehenden Radialspiels zur Saugseite hin verschoben wird. Aufgrund dieser Bewegbarkeit des Lagerrings mit dem Hohlrad wird proportional zu dem auf der Druckseite herrschenden Druck der Dichtkontakt zwischen den Zahnköpfen von Ritzel und Hohlrad aufrecht erhal-

Die Ausbildung von Druckfeldern in einer Ausnehmung des Gehäuses und deren Verbindung mit dem Druckraum der Verzahnung ist relativ aufwendig und erhöht daher die Herstellungskosten der Innenzahnradmaschine. Darüberhinaus bilden die auf der Druckseite in dem Lagerring vorgesehenen Durchbrüche, über welche die Druckfelder mit Druck beaufschlagt sind, bezüglich der Beanspruchung und Verformung des Lagerrings eine Inhomogenität, die den Umlauf des Hohlrades im Lagerring beeinträchtigen kann.

Aufgabe der Erfindung ist es daher, eine Innenzahnradmaschine dieser Art zu schaffen, die bei einwandfreier Funktion einfacher aufgebaut ist.

Erfindungsgemäß wird diese Aufgabe gelöst durch eine Gestaltung der gattungsgemäßen Innenzahnradmaschine gemäß dem Kennzeichen des Patentanspruches 1.

Auch bei der erfindungsgemäßen Innenzahnradmaschine ist der Lagerring mit einem Radialspiel (beispielsweise von 0,2 mm) in der Gehäusebohrung aufgenommen, jedoch nicht darin verschiebbar, sondern um eine achsparallele Schwenkachse innerhalb

der Gehäusebohrung schwenkbar. Die Schwenkachse ist so gelegt, daß einerseits der dem eingriffsfreien Hohlradbereich zugeordnete Ringabschnitt - und damit der eingriffsfreie Hohlradbereich selbst - bei der Schwenkbewegung des Lagerrings sich möglichst radial bezüglich der Ritzelachse bewegt. Dadurch werden die Zahnköpfe von Ritzel und Hohlrad im eingriffsfreien Hohlradbereich gegeneinander zum Dichtkontakt beaufschlagt. Eine solche Bewegungsrichtung wird am besten erreicht, wenn die Schwenkachse bezüglich des eingriffsfreien Hohlradbereichs grob angenähert um einen rechten Winkel auf dem Umfang versetzt liegt. Andererseits muß die Schwenkachse aber auch so bezüglich der Resultierenden R der im Druckraum herrschenden hydraulischen Kräfte liegen, daß diese um die Schwenkachse ein Drehmoment erzeugt, welches die Annäherung der Zahnköpfe von Ritzel und Hohlrad im eingriffsfreien Hohlradbereich bewirkt. Die günstigste Lage für die Schwenkachse ist somit auf der Seite des Druckraums zwischen der Linie der Resultierenden R der hydraulischen Kräfte und dem dem eingriffsfreien Hohlradbereich zugeordneten Ringabschnitt des Lagerrings, wobei besonders bevorzugt die Schwenkachse der Linie der Resultierenden R näher als dem dem eingriffsfreien Hohlradbereich zugeordneten Ringabschnitt 25 liegt.

Im Unterschied zu der eingangs beschriebenen bekannten Innenzahnradmaschine bedarf es somit keines auf den Lagerring wirkenden Druckfelds, durch das der Lagerring zusammen mit dem Hohlrad gegen die im Druckraum herrschenden Kräfte abgestützt ist, um den durch die Verzahnungsgeometrie gegebenen Dichtkontakt der Zahnköpfe im eingriffsfreien Hohlradbereich aufrecht zu erhalten. Vielmehr werden die im Druckraum herrschenden Druckkräfte selbst dazu herangezogen, über das Hohlrad den Lagerring um die Schwenkachse so zu schwenken, daß der eingriffsfreie Hohlradbereich nachgeführt und proportional zur Größe der herrschenden Druckkräfte der Dichtkontakt beibehalten wird.

Die Schwenklagerung des Lagerrings ist auf unterschiedliche Weise realisierbar, zum Beispiel durch an dem Lagerring selbst vorgesehene Lagerzapfen, die in entsprechende Ausnehmungen des Gehäuses eingreifen. Vorteilhafter und einfacher ist jedoch eine Schwenklagerung des Lagerrings durch einen im Gehäuse fixierten Lagerstift, der mit einem Teil seiner Umfangsfläche als Lagerfläche in einer Axialnut am Außenumfang des Lagerrings liegt. Da der Lagerring durch die im Druckraum herrschenden Kräfte bei der vorstehend als zweckmäßig geschilderten Ausführungsform mit der Axialnut gegen den Lagerstift gedrückt wird, ist die teilzylindrische Axialnut in ihren Abmessungen auf den Lagerstift so abgestimmt, daß eine möglichst gleichmäßige Flächenpressung auftritt. Der Lagerstift verhindert zugleich eine Drehung des Lagerrings in der Gehäusebohrung.

Die beschriebene Innenzahnradmaschine kann in

35

einer einfachen Ausführungsform so ausgestaltet sein, daß Ritzel, Hohlrad und Lagerring mit ihren jeweiligen Stirnflächen dichtend unmittelbar an Gehäusewandungen anliegen. Jedoch können zur Verbesserung des Wirkungsgrades in bekannter Weise Axialscheiben vorgesehen sein, die durch Druckfelder in Dichtkontakt mit den Stirnseiten von zumindest Ritzel und Hohlrad gehalten werden. Die Druckfelder können in den Gehäusewandungen und/oder in den der Verzahnung abgewendeten Stirnflächen der Axialscheiben ausgebildet sein.

Eine weitere Steigerung des Wirkungsgrades der erfindungsgemäßen Innenzahnradmaschine, bei der Axialscheiben vorgesehen sind, läßt sich dann erzielen, wenn durch eine entsprechende Konstruktion dafür gesorgt ist, daß die Axialscheiben gemeinsam mit dem Lagerring und dem Hohlrad die erwünschte Ausgleichsbewegung für die Beibehaltung des Dichtkontakts zwischen den Zahnköpfen ausführen können. Denn hierdurch ist gewährleistet, daß die Steuerung der hydraulischen Druckverhältnisse im Druck- bzw. Saugraum, die in bekannter Weise durch Steuer- bzw. Vorfüllschlitze in den Axialscheiben erfolgt, unabhängig von den Bewegungen des Hohlrads und des Lagerrings optimal bleibt.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der beiliegenden Zeichnungen. In den Zeichnungen zeigen:

Fig. 1 eine erste Ausführungsform im Querschnitt längs der Linie I-I in Fig. 2;

Fig. 2 einen Axialschnitt längs der Linie II-II in Fig. 1:

Fig. 3 eine zweite Ausführungsform im Querschnitt längs der Linie III-III in Fig. 4;

Fig. 4 einen Axialschnitt längs der Linie IV-IV in Fig. 3;

Fig. 5 eine Innenansicht des Gehäusedeckels, geschnitten längs der Linie V-V in Fig. 4, mit einer Darstellung der zugeordneten Axialscheibe;

Fig. 6 eine dritte Ausführungsform in einem Axialschnitt analog zu Fig. 4;

Fig. 7 eine Innenansicht des Gehäusedeckels, geschnitten längs der Linie VII-VII in Fig. 6, entsprechend Fig. 5;

Fig. 8 eine vierte Ausführungsform in einem Axialschnitt analog zu Fig. 4;

Fig. 9 einen Fig. 5 entsprechenden Querschnitt längs der Linie IX-IX in Fig. 8;

Fig. 10 eine fünfte Ausführungsform im Querschnitt längs der Linie X-X in Fig. 11;

Fig. 11 einen Axialschnitt längs der Linie XI-XI in Fig. 10;

Fig. 12 einen Fig. 5 entsprechenden Querschnitt längs der Linie XII-XII in Fig. 11;

Fig. 13 eine sechste Ausführungsform im Querschnitt längs der Linie XIII-XIII in Fig. 14;

Fig. 14 einen Axialschnitt längs der Linie XIV-XIV in Fig. 13;

Fig. 15 einen Fig. 5 entsprechenden Querschnitt längs der Linie XV-XV in Fig. 14;

Fig. 16 eine siebte Ausführungsform im Querschnitt längs der Linie XVI-XVI in Fig. 17;

Fig. 17 einen Axialschnitt längs der Linie XVII-XVII in Fig. 16, und

Fig. 18 einen der Fig. 5 entsprechenden Querschnitt längs der Linie XVIII-XVIII in Fig. 17.

Die in den Fig. 1 und 2 dargestellte Innenzahnradmaschine umfaßt ein im Ganzen mit 1 bezeichnetes Gehäuse, das aus einem topfförmigen Gehäuseteil 11 und einem an dessen Stirnseite befestigten Gehäusedeckel 12 aufgebaut ist. In dem topfförmigen Gehäuseteil 11 ist eine Ritzelwelle 14 drehbar gelagert, auf der ein Ritzel 2 drehfest befestigt ist. Das Ritzel 2 kämmt mit einem Hohlrad 3, das in einem Lagerring 4 aufgenommen und darin drehbar gelagert ist. Das Ritzel 2 und das Hohlrad 3 sind, wie aus Fig. 1 hervorgeht, relativ zueinander mit einer Exzentrizität e gelagert. Die Exzentrizität e, d. h. der Abstand zwischen der Ritzelachse und der Hohlradachse, entspricht der theoretischen Verzahnungsgeometrie von Ritzel und Hohlrad und setzt spielfreies Abwälzen bzw. Gleiten der Verzahnungen aneinander voraus. Die Verzahnungen des Ritzels 2 und des Hohlrads 3 kämmen in einer Weise miteinander, daß auf der linken Seite in Fig. 1 im Bereich der Trennlinie A die Zähne des Ritzels 2 voll in die Zahnlücken des Hohlrads 3 eingreifen und an den Zahnflanken anliegen, während sie auf der gegenüberliegenden, in Fig. 1 rechten Seite ganz aus den Zahnlücken des Hohlrads 3 ausgetreten sind. In diesem eingriffsfreien Hohlradbereich E stützen sich mehrere der Zahnköpfe des Ritzels 2 und des Hohlrads 3 (in dem gezeigten Ausführungsbeispiel jeweils 3 Zahnköpfe) nacheinander im Verlauf der Umdrehung aufeinander ab. Die Zähnezahlen und die Geometrie der miteinander kämmenden Verzahnungen sind so gewählt, daß diese Art des Kämmens bewirkt werden kann. In dem gezeigten Ausführungsbeispiel sind die Zahnflanken als

Evolventen-Kurven gebildet, wobei die Zahnköpfe zur Erzielung eines Wälz- und Gleitkontakts zum Zweck der Abdichtung gerundet sind. Die Zähnezahl des Hohlrads 3 unterscheidet sich von derjenigen des Ritzels 2 um 1.

Bei der Drehung des Ritzels 2 in der durch Pfeil angedeuteten Richtung vergrößert sich der frei werdende Zahnlückenraum, ausgehend von dem vollen Eingriff der Ritzelverzahnung in die Hohlradverzahnung über der Trennlinie A, zunehmend bis zum Erreichen des aus Fig. 1 ersichtlichen Zustandes beim erneuten Überschreiten der Trennlinie A (auf der rechten Seite in Fig. 1). Hierdurch ist über der Trennlinie der Saugraum S der Innenzahnradmaschine gebildet. Unter der Trennlinie verringert sich der freie Zahnlückenraum wieder zunehmend, so daß dadurch der Druckraum D gebildet ist. In Fig. 1 sind der Saugraum S und der Druckraum D in ihrer Projektion angedeutet; es versteht sich jedoch, daß der Saugraum S und der Druckraum D sich jeweils in Umfangsrichtung innerhalb der Verzahnung erstrekken.

Der Lagerring 4 ist in einer Gehäusebohrung 15 des topfförmigen Gehäuseteils 11 mit einem Radialspiel von etwa 0,2 mm aufgenommen. Die Wand der Gehäusebohrung 15 wird teilweise von einem Lagerstift 16 durchsetzt, der in den Boden der Gehäusebohrung 15 fest eingepreßt ist. Mit dem über die Wand der Gehäusebohrung 15 überstehenden weitgehend halbzylindrischen Teil des Lagerstifts 16 ist dieser in einer axial gerichteten Nut 17 des Lagerrings 4 aufgenommen. Die Axialnut 17 ist der Form des Lagerstifts 16 angepaßt und ebenfalls teilzylindrisch.

Der in die Axialnut 17 eingreifende Lagerstift 16 bildet für den Lagerring 4 eine zu den Achsen von Ritzel 2 und Hohlrad 3 parallel verlaufende Schwenkachse, um welche der Lagerring 4 im Rahmen des zur Verfügung stehenden Radialspiels in der Gehäusebohrung 15 schwenkbar ist. Wie aus Fig. 1 hervorgeht, liegt diese Schwenkachse in einem Quadrant des Lagerrings 4, der sich zwischen dem eingriffsfreien Hohlradbereich E und der Mitte des Druckraums D erstreckt. In dem gezeigten Ausführungsbeispiel befindet sich die Schwenkachse in einem Winkelabstand von etwa 80° von dem Scheitelpunkt des eingriffsfreien Hohlradbereichs E. In diesem Scheitelpunkt stehen zwei Zähne von Ritzel und Hohlrad mit ihren Zahnköpfen weitgehend zueinander ausgerichtet aufeinander.

Die Wirkungsweise der Innenzahnradmaschine gemäß den Fig. 1 und 2 ist folgende:

Bei Drehung des Ritzels 2 in der gezeigten Drehrichtung wird Fördermedium durch einen nicht gezeigten Saugkanal in den Saugraum S zwischen den Verzahnungen des Ritzels 2 und des Hohlrads 3 eingefördert. Aus dem Druckraum D wird das Fördermedium mit erhöhtem Druck durch einen nicht gezeigten Druckkanal gedrückt. Der diesbezügliche Aufbau einer Innenzahnradmaschine ist hinreichend bekannt und bedarf daher hier keiner gesonderten Erläuterung.

Die im Druckraum D herrschenden Druckkräfte zwi-

schen den miteinander kämmenden Verzahnungen wirken längs einer Resultierenden R so, daß das Hohlrad 3 sich von dem Ritzel 2 zu entfernen sucht, d. h. es besteht die Neigung, daß der aufgrund der Verzahnungsgeometrie vorhandene Kontakt zwischen den Zähnen von Ritzel 2 und Hohlrad 3. insbesondere der Dichtkontakt zwischen den Zahnköpfen in dem eingriffsfreien Hohlradbereich E, verloren geht. Die durch den Lagerstift 16 bzw. dessen Eingriff in die Axialnut 17 gebildete Schwenkachse des Lagerrings 4 liegt jedoch dem eingriffsfreien Hohlradbereich E näher als die Linie der Resultierenden R. Da die Resultierende R über das Hohlrad 3 auf den Lagerring 4 wirkt, entsteht somit ein Drehmoment um die Schwenkachse 16, 17 in Fig. 1 im Gegenuhrzeigersinn. Durch dieses Drehmoment wird der Lagerring 4 um die Schwenkachse 16, 17 geschwenkt, wodurch der dem eingriffsfreien Hohlradbereich E entsprechende Ringabschnitt annähernd radial bezüglich der Ritzelachse und zu dieser hin bewegt wird. Folglich werden in dem eingriffsfreien Hohlradbereich E die Zahnköpfe von Ritzel 2 und Hohlrad 3 mit einer der Größe der Resultierenden R proportionalen Kraft gegeneinander bewegt. Dadurch ist der Dichtkontakt in diesem Verzahnungsbereich druckproportional aufrecht erhalten. 25

Der Lagerring 4 weist an einer Stelle, die dem Scheitelpunkt des eingriffsfreien Hohlradbereichs E zugeordnet ist, eine weitere Axialnut 18 mit einem Rechteckquerschnitt an seinem Außenumfang auf. Dieser Axialnut 18 ist in dem Boden der Gehäusebohrung 15 eine Aufnahmebohrung 19 zugeordnet, in der eine Haarnadelfeder 20 gehalten ist. Die Haarnadelfeder 20 ragt in die Axialnut 18 und belastet den Lagerring 4 radial so, daß die Zähne des Hohlrads 3 in dem eingriffsfreien Hohlradbereich E mit ihren Zahnköpfen gegeneinander gedrückt werden. Diese Belastungsrichtung entspricht weitgehend der Bewegungsrichtung, die der Lagerring 4 infolge der Schwenkbewegung um die Schwenkachse 16, 17 ausführt. Die Kraft der Haarnadelfeder 20 kann relativ gering gehalten werden, da sie lediglich dazu dient, den notwendigen Dichtkontakt zwischen den Zahnköpfen in dem eingriffsfreien Hohlradbereich E beim Anlaufvorgang der Innenzahnradmaschine zu gewährleisten, d. h. zu einer Zeit, in der im Druckraum D noch kein Betriebsdruck aufgebaut ist und daher auch noch keine Druckkräfte wirken.

Die Lage und Richtung der Resultierenden R ist weitgehend vorherbestimmbar und entspricht im wesentlichen der in Fig. 1 eingezeichneten. Der Druckaufbau in dem Druckraum D läßt sich in bekannter Weise durch Vorfüllschlitze an den Zähnen von Ritzel 2 und/oder Hohlrad 3 beeinflussen, so daß z. B. über die Zahnlücken des Druckraums D hinweg ein weitgehend gleicher Druck besteht. In diesem Fall steht die Resultierende R senkrecht auf der in Fig. 1 ausgezogen dargestellten Linie, die den Scheitelpunkt des eingriffsfreien Hohlradbereichs E mit dem Ritzelzahn bei vollem Eingriff in eine Zahnlücke des Hohlrads verbindet.

Im Unterschied zu der vorstehend beschriebenen Ausführungsform gemäß den Fig. 1, 2 zeigen die Fig. 3 bis 18 Ausführungsformen der erfindungsgemäßen Innenzahnradmaschine, die an den Stirnseiten der Verzahnung dichtend anliegende Axialscheiben aufweisen. Das Zusammenwirken von Ritzel und Hohlrad, deren Aufnahme in einem Lagerring und dessen Beweglichkeit relativ zu der Gehäusebohrung stimmt jedoch mit denjenigen der Ausführungsform gemäß den Fig. 1, 2 überein und bedarf daher keiner gesonderten Erläuterung.

Bei dem Ausführungsbeispiel gemäß den Fig. 3 bis 5 ist die Ritzelwelle 114 sowohl in dem topfförmigen Gehäuse 111 als auch in dem Gehäusedeckel 112 über Lagerbuchsen 113 gelagert. Der Lagerring 104 weist an seinem Innenumfang einen eingepreßten und folglich mit dem Lagerring eine Einheit bildenden Laufring 105 aus einem Lagermetall, z. B. Bronze, auf, in dem das Hohlrad 103 gelagert ist. Wie aus Fig. 4 hervorgeht, übersteigt der Lagerring 104, 105 die Breite von Ritzel 102 und Hohlrad 103 erheblich und liegt mit seinen Stirnflächen verschiebbar an den Wandungen des Gehäuses 111 bzw. des Deckels 112 an. Hingegen liegt an der Verzahnung von Ritzel und Hohlrad stirnseitig zu beiden Seiten je eine Axialscheibe 130 dichtend an, deren Form aus Fig. 5 hervorgeht. Jede der beiden Axialscheiben weist auf ihrer der Verzahnung zugewendeten Fläche ein Druckfeld 107 auf. Im Bereich des Druckfelds 107 weist die Axialscheibe 130, die auf der Seite des Gehäusedeckels 112 angeordnet ist, drei Durchbrüche 108 auf, die von dem Druckraum zu dem nicht dargestellten Druck-Auslaßkanal im Gehäusedekkel 112 führen. Der Gehäusedeckel 112 weist diametral gegenüber dem Druck-Auslaßkanal einen Saug-Einlaßkanal 109 auf, der sich an seiner Einmündung zu einem Saugfeld 110 erweitert. In der Wand des Gehäuses 111 und des Gehäusedeckels 112 ist je ein Druckfeld 131 angedeutet, durch das die jeweilige Axialscheibe 130 von außen her gegen die Wirkung des inneren Druckfelds 107 so beaufschlagt ist, daß die Axialscheibe bei allen Betriebszuständen Dichtkontakt mit Ritzel 102 und Hohlrad 103 beibehält. Ausbildung und Wirkungsweise der Druckfelder an Axialscheiben sind einschlägig bekannt und bedürfen deshalb an dieser Stelle keiner näheren Erläuterung.

Auf der der Verzahnung zugewendeten Fläche weisen die Axialscheiben 130 Vorfüllschlitze 132 auf, durch die die Druckverteilung im Druckraum der Verzahnung gesteuert wird. Jede Axialscheibe 130 stützt sich zum Zweck ihrer Lagesicherung einerseits über den Umfang einer Lagerbohrung 133 auf der zugeordneten Lagerbuchse 113 und andererseits an einem in dem Gehäuse 111 bzw. dem Gehäusedeckel 112 eingesetzten Stift 134 ab. Die Stifte 134 ragen jeweils in eine Sackbohrung in der äußeren Stirnfläche der Axialscheiben 130 und sind dadurch axial gehalten.

Die Ausführungsform gemäß den Fig. 6 und 7 unterscheidet sich von derjenigen gemäß den Fig. 3 bis

5 nur dadurch, daß die Axialscheiben 230 sich mit dem Innenumfang ihrer Lagerbohrung 233 nicht auf der jeweils zugeordneten Lagerbuchse 213 abstützen, sondern unmittelbar auf der Ritzelwelle 214. Die Lagerbuchsen 213 enden somit vor den Axialscheiben 230.

Bei der Ausführungsform gemäß den Fig. 8 und 9 haben die Axialscheiben 330 angenähert eine Sichelform und umgreifen die zugeordneten Lagerbuchsen 313, ohne sich darauf abzustützen. Zu ihrer Lagesicherung sind in diesem Fall für jede Axialscheibe 330 zwei Stifte 334, 335 vorgesehen, die jeweils in den Endbereichen der Axialscheiben 330 in eine Sackbohrung einerseits und in eine entsprechende Bohrung des Gehäuses andererseits eingreifen. Die Lagerbuchsen 313 erstrecken sich bei dieser Ausführungsform unter den Axialscheiben 330 bis nahe an die Verzahnung.

Bei den vorstehend beschriebenen Ausführungsbeispielen gemäß den Fig. 3 bis 9 sind die Axialscheiben relativ zu dem Gehäuse fest angeordnet. Daraus folgt, daß im Betrieb der Innenzahnradmaschine mit der betriebsbedingten Bewegung von Ritzel, Hohlrad und Lagerring relativ zu dem Gehäuse aufgrund der zugelassenen Schwenkbewegung des Lagerrings der Druckraum in der Verzahnung relativ zu den in den Axialscheiben vorgesehenen Steuerschlitzen und Druckfeldern ebenfalls seine Lage verändert. Da hierdurch zwangsläufig Abweichungen von der eingestellten optimalen Lage auftreten, kann der Wirkungsgrad herabgesetzt werden. Um dies zu verhindern, sind bei den Ausführungsformen gemäß den Fig. 10 bis 18 die Axialscheiben in einer Weise angeordnet, daß sie zusammen mit Ritzel, Hohlrad und Lagerring gemeinsam beweglich sind. Dabei sind in allen Fällen die Axialscheiben im Rahmen des Spiels, z. B. des Lagerspiels, gegenüber der Ritzelwelle hinreichend frei, daß sie der Schwenkbewegung des Lagerrings folgen können, um den angestrebten Dichtkontakt der Zahnköpfe nicht zu behindern.

Bei der Ausführungsform gemäß den Fig. 10 bis 12 weist der Lagerring 404 auf der (in Fig. 11) rechten Seite an beiden Stirnflächen eine Radialnut 440 auf deren Nutgrund mit den Stirnflächen, der Verzahnung in einer Ebene liegt. Die Axialscheiben 430 besitzen an ihrem äußeren Rand einen Fortsatz 441, der mit Spiel in die Nut 440 hineinragt und darin geführt ist. Mit dem Innenumfang ihrer Lagerbohrung 433 stützen sich die Axialscheiben 430 mit einem gewissen Lagerspiel auf dem Umfang der Ritzelwelle 413 ab. Durch diese Abstützung einerseits und die Führung des Fortsatzes 441 in der Nut 440 andererseits ist jede Axialscheibe 430 mit der Bewegungseinheit Ritzel/Hohlrad/Lagerring gekoppelt und führt daher deren Bewegungen mit aus.

Weiterhin sind die dem jeweiligen Druckfeld 407 der Axialscheiben 430 zugeordneten äußeren Druckfelder 431 ausschließlich auf der jeweiligen Außenfläche der Axialscheiben 430 ausgebildet. Bei den betriebsbedingten Schwenkbewegungen des Lagerrings 404 um den Lagerstift 416 bleibt daher die Lage der Druckfelder

407, 431 sowie der Steuerschlitze 432 relativ zum Druckraum weitgehend unverändert. Der in den Lagerring 404 eingepreßte Laufring 405 ist auf die Breite des Hohlrads beschränkt.

Die Ausführungsform gemäß den Fig. 13 bis 15 5 unterscheidet sich von der vorstehend beschriebenen Ausführungsform gemäß den Fig. 10 bis 12 durch die Form der Axialscheiben 530 und deren Art der Lagesicherung. Die Axialscheiben 530 sind in diesem Fall kreisförmig berandet und zwischen Ritzel, Hohlrad einerseits und der zugeordneten Gehäusewandung andererseits voll in dem Raum aufgenommen, der durch die gegenüber Hohlrad und Ritzel größere Breite des Lagerrings 504 geschaffen ist. Auch hier ist die Breite des in den Lagerring 504 eingepreßten Laufrings 505 auf die Breite des Hohlrads beschränkt. Der Außenumfang der Axialscheiben 530 liegt an dem freiliegenden Innenumfang des Lagerrings 504 eng an und weist einen kleinen Fortsatz 541 auf, mit dem die Axialscheibe 530 in die auf jeder Stirnfläche des Lagerrings 504 vorgesehene Radialnut 540 eingreift. Da die Axialscheiben 530 über ihren Außenumfang in dem Lagerring 504 gehalten sind, umgreift der Umfang ihrer Lagerbohrung 533 die Ritzelwelle 513 bei dieser Ausführungsform mit deutlichem Spiel.

Da die Axialscheiben 530 bei dieser Ausführungsform Ritzel und Hohlrad stirnseitig völlig abdecken, ist im Bereich des Saugraums der Verzahnung ein teilkreisförmiger Durchbruch 536 vorgesehen, der den Zustrom des Fördermediums aus dem Saugkanal 509 zur Verzahnung gestattet.

Auch bei der Ausführungsform gemäß den Fig. 16 bis 18 sind die Axialscheiben 630 kreisförmig, haben jedoch einen so großen Außendurchmesser, daß sie über das Hohlrad hinaus den Lagerring 604 an dessen Stirnseiten übergreifen. Hierzu ist die Breite des Lagerrings 604 zusammen mit dem darin eingepreßten Laufring 605 auf die Breite von Hohlrad und Ritzel beschränkt. Um die Axialscheiben 630 wiederum zu einem Teil der Bewegungseinheit Ritzel/Hohlrad/Lagerring zu machen, weist der Lagerring 604 eine axial durchgehende Bohrung auf, in der ein Stift 642 aufgenommen ist. Dieser ragt beidendig über die Stirnseiten des Lagerrings 604 hinaus und in Langlöcher 643 der Axialscheiben 630 hinein. Mit dem Innenumfang ihrer Lagerbohrung 633 stützen sich die Axialscheiben 630 in diesem Fall mit engem Lagerspiel auf der Ritzelwelle 613 ab. Hierdurch und durch den Stift 642 sind sie mit dem Lagerring 604 bewegungseinheitlich gekoppelt. Wie in den vorstehend beschriebenen Ausführungsbeispielen gemäß den Fig. 10 bis 15 bleibt daher die Relativlage der Steuerschlitze 632 und der Druckfelder 607 bzw. 631 zur Verzahnung erhalten. Auch hier weisen die Axialscheiben 630 im Bereich des Saugraums einen Durchbruch 636 auf, um den Zutritt des Fördermediums zu gewährleisten.

Die Erfindung ist nicht auf die Ausbildung der Innenzahnradmaschine gemäß den vorstehend beschriebenen Ausführungsbeispielen beschränkt. So ist es grundsätzlich möglich, anstelle der für Ritzel und Hohlrad gewählten Evolventenverzahnung mit abgerundeten Zahnköpfen eine Trochoiden- oder Zykloidenverzahnung zu wählen. Weiterhin kann an dem Lagerring auch spiegelbildlich zu der Trennlinie A eine der Axialnut für die Schwenkachse entsprechende Axialnut vorgesehen sein für den Fall, daß die Innenzahnradmaschine für beide Drehrichtungen des Ritzels 2 ausgelegt sein soll. In diesem Fall würde der die Schwenkachse bestimmende Lagerstift entsprechend versetzt im Gehäuse angeordnet sein. Schließlich müssen die Nuten in den Stirnseiten des Lagerrings (Fig. 10,13) nicht radial dessen Umfangsfläche durchsetzen, was nur zur Vereinfachung der Herstellung bevorzugt ist, sondern können auf den Innenumfang beschränkte Ausnehmungen sein. Auch kann die Lage von Vorsprung und Ausnehmung zur Erzielung des erwünschten Formschlusses zwischen Axialscheibe und Lagerring auch vertauscht sein.

Obwohl in den vorstehenden Ausführungsbeispielen stets zwei Axialscheiben dargestellt und beschriesind, kann grundsätzlich auch nur eine Axialscheibe vorgesehen sein, wobei dann gegebenenfalls erforderliche Steuerschlitze und Druckfelder unmittelbar in der Gehäusewand vorgesehen sind, an der Ritzel und Hohlrad stirnseitig anliegen. Schließlich kann die durchgehend als Stift gezeigte und beschriebene Schwenkachse des Lagerrings auch durch eine Kugel realisiert sein, die in einer kalottenförmigen Ausnehmung der Gehäusebohrung aufgenommen ist. Hierdurch ist der Lagerring nicht nur um eine zur Ritzelachse parallele Schwenkachse, sondern allseitig schwenkbar, um Anpassungsbewegungen an Gestaltabweichungen der einzelnen Komponenten ausführen zu können.

Patentansprüche

Füllstücklose Innenzahnradmaschine mit einem Gehäuse (1), einem in einer Bohrung (15) des Gehäuses quer zu seiner Achse bewegbar, jedoch undrehbar aufgenommenen Lagerring (4), einem in dem Lagerring umlaufend gelagerten innenverzahnten Hohlrad (3) und einem in dem Gehäuse drehbar gelagerten, mit dem Hohlrad kämmenden Ritzel (2), dessen Zähne durch einen vollen Eingriff in Zahnlücken des Hohlrads, einerseits, und einen Dichtkontakt mit den Zahnköpfen des Hohlrads in einem dem Zahnlückeneingriff annähernd diametral gegenüberliegenden eingriffsfreien Hohlradbereich (E), andererseits, einen Saugraum (S) und einen Druckraum (D) der Verzahnung definieren,

dadurch gekennzeichnet,

daß der Lagerring (4) relativ zu der Bohrung (15) um eine zu seiner Achse parallele Schwenkachse (16,17) schwenkbar ist und daß die Schwenkachse derart angeordnet ist, daß der dem eingriffsfreien

15

20

25

35

40

50

55

Hohlradbereich (E) zugeordnete Ringabschnitt des Lagerrings (4) nur durch die im Druckraum (D) auf das Hohlrad (3) wirkenden Druckkräfte zumindest annähernd radial zur Ritzelachse hin bewegt wird.

2. Innenzahnradmaschine nach Anspruch 1, dadurch gekennzeichnet,

daß die Schwenkachse (16,17) auf der Seite des Druckraums (D) zwischen der Linie der Resultierenden (R) der Druckkräfte und dem dem eingriffsfreien Hohlradbereich (E) zugeordneten Ringabschnitt des Lagerrings liegt.

3. Innenzahnradmaschine nach Anspruch 2, dadurch gekennzeichnet,

daß die Schwenkachse näher an der Linie der Resultierenden (R) als an dem dem eingriffsfreien Hohlradbereich (E) zugeordneten Ringabschnitt liegt.

 Innenzahnradmaschine nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet,

daß die Schwenkachse am Außenumfang des Lagerrings angeordnet ist.

5. Innenzahnradmaschine nach Anspruch 1, dadurch gekennzeichnet.

daß die Schwenkachse durch einen gehäusefesten Lagerstift (16) gebildet ist, der mit seiner Umfangsfläche teilweise in einer Axialnut (17) der Außenumfangsfläche des Lagerrings aufgenommen ist.

 Innenzahnradmaschine nach einem der Ansprüche 1 bis 5,

dadurch gekennzeichnet,

daß der dem eingriffsfreien Hohlradbereich (E) zugeordnete Ringabschnitt radial zur Ritzelwelle hin federbelastet ist.

7. Innenzahnradmaschine nach Anspruch 6, dadurch gekennzeichnet,

daß der dem eingriffsfreien Hohlradbereich (E) zugeordnete Ringabschnitt am Außenumfang eine Ausnehmung (18) aufweist, in die eine am Gehäuse (1) abgestützte Feder (20) eingreift.

 Innenzahnradmaschine nach einem der Ansprüche 1 bis 7,

dadurch gekennzeichnet,

daß der Druckraum (D) durch an den Stirnflächen der Verzahnung von Ritzel und Hohlrad anliegende Axialscheiben (130 bis 630) abgedichtet ist.

9. Innenzahnradmaschine nach Anspruch 8, dadurch gekennzeichnet,

daß jede Axialscheibe (130, 230) über mindestens einen Vorsprung (Stift 134) an dem Gehäuse und über eine Lagerbohrung (133, 233) an der Ritzelwelle (113, 114; 214) abgestützt ist.

10. Innenzahnradmaschine nach Anspruch 8, dadurch gekennzeichnet,

daß jede Axialscheibe (330) über mindestens zwei Vorsprünge (Stifte 334, 335) an dem Gehäuse abgestützt ist.

10 **11.** Innenzahnradmaschine nach Anspruch 8, **dadurch gekennzeichnet**,

daß die Axialscheiben (430, 530, 630) zusammen mit dem Lagerring (404, 504, 604) und dem Hohlrad relativ zu dem Gehäuse schwenkbar sind.

12. Innenzahnradmaschine nach Anspruch 11, dadurch gekennzeichnet.

daß der Lagerring formschlüssig mit den Axialscheiben verbunden ist.

13. Innenzahnradmaschine nach Anspruch 12, dadurch gekennzeichnet,

daß der Lagerring (404, 504) mindestens eine Ausnehmung (440, 540) aufweist, in welche ein an jeder Axialscheibe (430, 530) ausgebildeter Vorsprung (441, 541) eingreift.

14. Innenzahnradmaschine nach Anspruch 13, dadurch gekennzeichnet,

daß jedem Vorsprung der Axialscheiben eine gesonderte Ausnehmung des Lagerrings zugeordnet ist

15. Innenzahnradmaschine nach Anspruch 13 oder 14, dadurch gekennzeichnet,

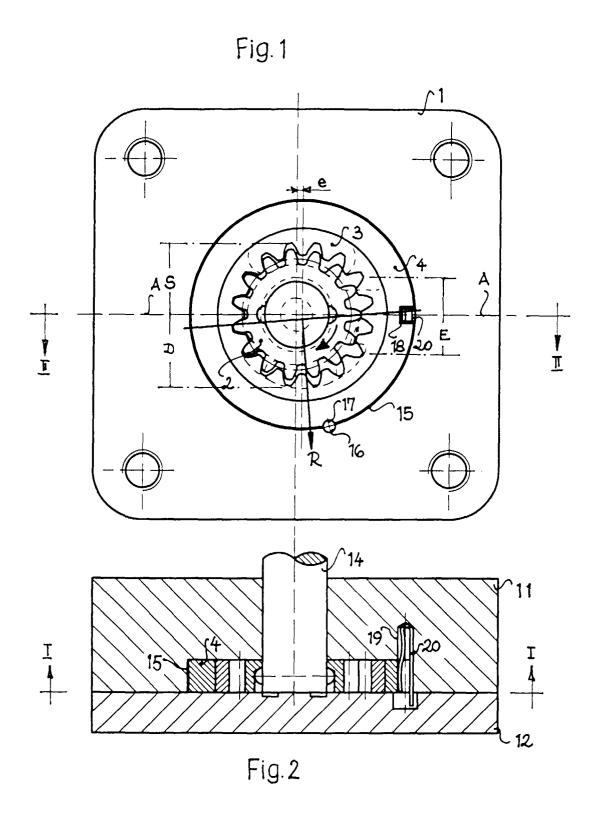
daß der Vorsprung mit Spiel in der Ausnehmung des Lagerrings geführt ist und die Axialscheibe sich mit einer Lagerbohrung (433, 533) auf der Ritzelwelle abstützt.

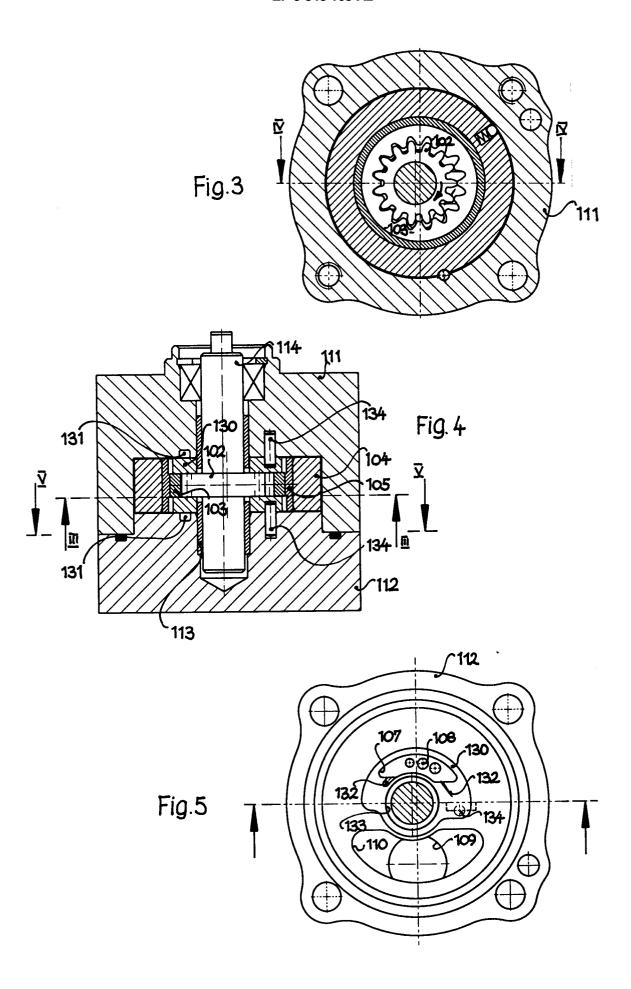
16. Innenzahnradmaschine nach Anspruch 11 oder 12, dadurch gekennzeichnet,

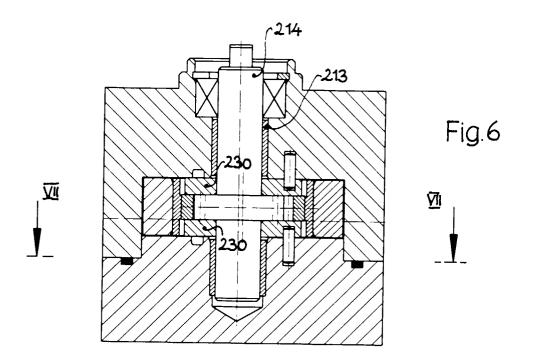
daß jede Axialscheibe (530) kreisförmig ist und mit ihrem Außenumfang in dem Lagerring (504) aufgenommen ist.

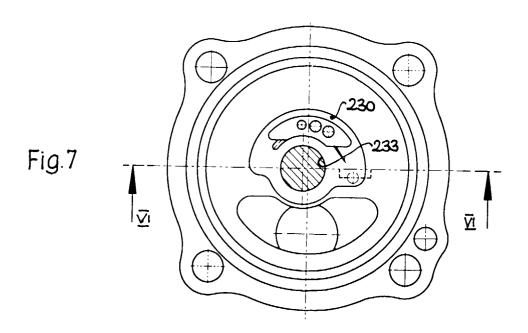
17. Innenzahnradmaschine nach Anspruch 11, dadurch gekennzeichnet,

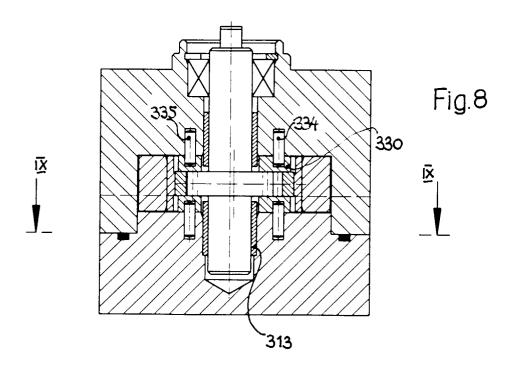
daß jede Axialscheibe (630) kreisförmig ist und sich auf der zugeordneten Stirnfläche des Lagerrings (604) sowie mit einer Lagerbohrung (633) auf der Ritzelwelle abstützt.


 Innenzahnradmaschine nach Anspruch 17, dadurch gekennzeichnet,


daß die Axialscheibe mit dem Lagerring formsschlüssig verbunden ist.


7


19. Innenzahnradmaschine nach Anspruch 18, **dadurch gekennzeichnet**,


daß die Formschlußverbindung einen in eine Bohrung des Lagerrings und in ein Langloch (643) der Axialscheibe eingreifenden Stift (642) umfaßt.

