

Europäisches Patentamt European Patent Office Office européen des brevets

EP 0 849 559 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 24.06.1998 Patentblatt 1998/26 (51) Int. Cl.6: **F41A 9/14**, F41A 9/20

(21) Anmeldenummer: 97119876.7

(22) Anmeldetag: 13.11.1997

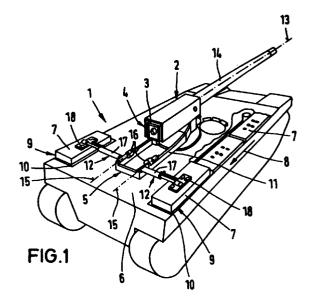
(84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE**

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 20.12.1996 DE 19653504


(71) Anmelder:

- Rheinmetall Industrie Aktiengesellschaft 40880 Ratingen (DE)
- FAC Frank Abels Consulting & Technology **GmbH** 29624 Munster (DE)
- (72) Erfinder: Abels, Frank 29633 Munster (DE)

(54)Automatische Ladevorrichtung für ein Panzerfahrzeug

(57)Die Erfindung betrifft eine automatische Ladevorrichtung für ein Panzerfahrzeug (1) mit in einem drehbaren Turm angeordneten Rohrwaffe (2), wobei mit der Ladevorrichtung (5) Munitionscontainer (7) von einer seitlich von der Seelenachse (13) des Waffenrohres (14) angeordneten Container-Entnahmestation (9) eines Containermagazins zu dem verschlußseitigen Teil der Rohrwaffe (2) verbracht werden.

Um ein schnelles Laden der Rohrwaffe auf einfache Weise zu erreichen, schlägt die Erfindung vor, den jeweiligen Munitionscontainer (7) mittels mindestens eines schwenk- und teleskopierbaren Ladearmes (12) von der Container-Entnahmestation (9) bis zu dem Verschluß (3) der Rohrwaffe (2) zu transportieren. Dort werden dann die einzelnen Patronen (21) aus dem Container (7) in das Patronenlager der Rohrwaffe (2) nacheinander eingeschoben und die leeren Munitionscontainer anschließend abgeworfen bzw. mittels einer pyrotechnischen Ladung abgesprengt.

30

45

Beschreibung

Die Erfindung betrifft eine automatische Ladevorrichtung für ein Panzerfahrzeug mit in einem drehbaren Turm angeordneten Rohrwaffe nach den Merkmalen 5 des Oberbegriffs des Anspruchs 1.

Aus der DE 32 37 729 ist ein Panzerfahrzeug mit einer Rohrwaffe bekannt, bei dem die Munition in Containern gelagert wird. Zum Laden der Rohrwaffe wird jeweils ein Munitionscontainer mit Hilfe einer als Aufzug ausgebildeten Ladevorrichtung von einer Container-Entnahmestation an das verschlußseitige Ende der Rohrwaffe transportiert. Die nicht zum Laden der Waffe benötigten Munitionscontainer befinden sich in Containermagazinen, die beidseitig von der Waffe oberhalb der Kettenabdeckung angeordnet und jeweils als waagerechte Verschiebebahn ausgebildet sind.

Nachteilig bei dieser Vorrichtung ist u.a. die relativ platzaufwendige Ladevorrichtung.

Aus der EP 0 569 342 A1 ist eine Vorrichtung zum 20 Zuführen von Geschoßmunition in einem Panzerfahrzeug bekannt, bei der die Munition in Trommeln beidseitig von der Waffe angeordnet ist.

Nachteilig bei dieser Vorrichtung ist unter anderem, daß die jeweilige Patrone zum Laden der Rohrwaffe 25 zunächst von der jeweiligen Trommel in eine Ladeschale umgeladen werden muß. Abgesehen davon, daß dieser Ladevorgang relativ zeitaufwendig ist, ist mit ihm häufig auch eine Verschmutzung der Munition verbunden.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs erwähnten Art anzugeben, die einfach aufgebaut ist und ein schnelles Laden der Rohrwaffe erlaubt.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung offenbaren die Unteransprüche.

Im wesentlichen liegt der Erfindung der Gedanke zugrunde, den jeweiligen Munitionscontainer mittels mindestens eines schwenk- und teleskopierbaren Ladearmes von der Container-Entnahmestation bis zu dem Verschluß der Rohrwaffe zu transportieren. Dort werden dann die einzelnen Patronen aus dem Container in das Patronenlager der Rohrwaffe nacheinander eingeschoben und die leeren Munitionscontainer anschließend abgeworfen bzw. mittels einer pyrotechnischen Ladung abgesprengt.

Bei einer vorteilhaften Ausführungsform der Erfindung sind auf beiden Seiten der Rohrwaffe oberhalb der Ketten- bzw. Radabdeckungen Containermagazine angeordnet sowie für beide Magazine jeweils ein getrennter Ladearm vorgesehen. Dadurch wird erreicht, daß bei Zerstörung nur einer der beiden Ladearme (bzw. eines der beiden Containermagazine) der jeweils andere Ladearm weiterverwendet und die Restmunition weiterverschossen werden kann.

Durch die Anordnung der Munition oberhalb der Kettenabdeckung wird ein üblicherweise nur unzureichend genutzter Raum einer sinnvollen Verwendung für die Lagerung der Munition zugeführt, wobei der Transport der Munition durch einen einfachen Kettenförderer realisiert werden kann. Arßerdem ergeben sich bei einer derartigen Anordnung der Munition besonders aünstige Voraussetzungen für das "Blow-Out" der Munition im Falle einer Detonation, weil sich der Druck (mit Ausnahme zur Bordwand des Panzerfahrzeuges hin) praktisch nach allen Seiten frei abbauen kann, ohne die Besatzung und das Panzerfahrzeug weiter zu gefähr-

Als besonders vorteilhaft hat es sich erwiesen, wenn die Munitionscontainer einen z.B. mit Druckluft getriebenen integrierten Patronenansetzer enthalten, weil dann kein separater Kettenansetzer, Teleskopzylinder oder ähnliches sowie keine Ladebrücken erforder-

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus den folgenden anhand von Figuren erläuterten Ausführungsbeispielen. Es zeigen:

eine perspektivische Ansicht eines Panzers Fig.1 mit einer Rohrwaffe in Indexstellung und einer erfindungsgemäßen automatischen Ladevorrichtung;

Fig.2 eine Fig.1 entsprechende Ansicht des Panzers mit hinter die Waffe geschwenktem Munitionscontainer;

Fig.3 eine Fig.2 entsprechende Ansicht des Panzers mit nach außen geschwenktem Ladearm und abgesprengtem Munitionscontainer und

die Seitenansicht eines für die erfindungsge-Fig.4 mäße Ladevorrichtung besonders geeigneten Munitionscontainers, der an dem verschlußseitigen Ende der Rohrwaffe angeordnet ist.

In Fig.1 ist mit 1 ein Panzer bezeichnet, dessen turmseitige Panzerung aus Übersichtlichkeitsgründen abgenommen ist. Der Panzer 1 besitzt eine seiten- und höhenrichtbare Rohrwaffe 2 mit einem Verschlüß 3. An dem verschlußseitigen Ende 4 ist eine Ladevorrichtung 5 angeordnet, die mit der Rohrwaffe 2 seitlich verschwenkbar ist.

Zwischen den beiden Kettenabdeckungen (nicht dargestellt) und der oberen Panzerabdeckung 6 sind Munitionscontainer 7 angeordnet, die durch einen ebenfalls nicht dargestellten Antriebsmotor und einen Kettenförderer in Richtung des Pfeiles 8 bewegt werden können. Zur Entnahme der Munitionscontainer 7 ist auf beiden Seiten des Panzers 1 eine Entnahmestation 9 vorgesehen, die jeweils eine Entnahmeöffnung 10 in der Panzerabdeckung 6 umfaßt.

Die Ladevorrichtung 5 besteht im wesentlichen aus einem mit der Rohrwaffe 2 verbundenen Rahmen 11, an dem zwei Ladearme 12 angeordnet sind, die jeweils um eine zur Seelenachse 13 des Waffenrohres 14 parallele Achse 15 mittels entsprechender elektrischer oder hydraulischer Stellmotoren 16 schwenkbar sind. Die Ladearme 12 sind jeweils mittels eines hydraulischen oder elektrischen Antriebes 17 verlängerbar und besitzen an ihren der Container-Entnahmestation 9 zugewandten Seite plattenförmige Greiferelemente 18.

Zum Laden der Rohrwaffe 2 greift das Greiferelement 18 des entsprechenden Ladearmes 12 in Ausnehmungen des Munitionscontainers 7 ein und wird dort verriegelt. Anschließend wird der Ladearm 12 durch den Stellmotor 16 um deren Achse 15 nach oben gedreht, so daß der Container 7 über die Panzerabdekkung 6 gehoben wird und die Rohrwaffe verschwenkt werden kann.

In Fig.2 ist die Rohrwaffe 2 aus ihrer Indekstellung herausgeschwenkt dargestellt, wobei der rechte Munitionscontainer 7 hinter den Verschluß 3 geschwenkt ist. In dieser Stellung kann dann eine der in dem Munitionscontainer 7 befindlichen Patrone in das Patronenlager 20 der Rohrwaffe geschoben werden.

Nach dem Schuß und dem Auswerfen der Patronenhülse wird anschließend der Ladearm 12 -und damit auch der Munitionscontainer 7- durch Betätigung des hydraulischen Antriebes 17 in Richtung des Pfeiles 19 verschoben, bis die nächste Patrone mit dem Patronenlager der Rohrwaffe 2 fluchtet. Anschließend wird die neue Patrone in das Patronenlager geschoben etc.

Sobald der jeweilige Munitionscontainer 7 leer ist, wird er mittels einer integrierten pyrotechnischen Ladung abgesprengt, so daß der leere Container 7 in Richtung des in Fig.3 mit 20 bezeichneten Pfeiles vom Fahrzeug wegfliegt.

Fig.4 zeigt einen Munitionscontainer 7 für drei Patronen 21, der sich in der Praxis besonders bewährt hat. In jeder der drei Patronenkammern 22 des Munitionscontainers 7 befindet sich ein Plastikkolben 23 mit ausfahrbarem Balgzylinder 24.

Zum Einschieben einer Patrone 21 in das Patronenlager der Rohrwaffe 2 wird eine nicht dargestellte Druckluftquelle aktiviert, die den entsprechenden Plastikkolben 23 und damit die Patrone 21 in Richtung auf die Rohrwaffe 2 verschiebt. Zur Überbrückung der Strecke zwischen dem Munitionscontainer 7 und dem Patronenlager wird am Ende der Laufstrecke des Kolbens 23 der Balgzylinder 24 ausgedehnt (vgl. in Fig.4 die untere Patrone 21, die gerade in das Patronenlager der Rohrwaffe eingeschoben wird), so daß diese Lücke überwunden wird.

Bezugszeichenliste

- Panzer, Panzerfahrzeug
- 2 Rohrwaffe
- 3 Verschluß
- 4 verschlußseitige Ende
- 5 Ladevorrichtung
- 6 Panzerabdeckung

- 7 Munitionscontainer
- 8 Pfeil
- 9 Entnahmestation
- 10 Entnahmeöffnung
- 11 Rahmen
 - 12 Ladearme
 - 13 Seelenachse
 - 14 Waffenrohr
 - 15 Achse
- 16 Stellmotor
- 17 hydraulischer Antrieb
- 18 Greiferelement
- 19 Pfeil
- 20 Pfeil

15

25

- 21 Patrone
- 22 Patronenkammer
- 23 Plastikkolben
- 24 Balgzylinder

Patentansprüche

Automatische Ladevorrichtung für ein Panzerfahrzeug (1) mit in einem drehbaren Turm angeordneten Rohrwaffe (2), wobei mit der Ladevorrichtung (5) Munitionscontainer (7) von einer seitlich von der Seelenachse (13) des Waffenrohres (14) angeordneten Container-Entnahmestation (9) eines Containermagazins zu dem verschlußseitigen Teil der Rohrwaffe (2) verbracht werden,

dadurch gekennzeichnet,

daß hinter dem verschlußseitigen Ende (4) der Rohrwaffe (2) mindestens ein -um eine zur Seelenachse (13) des Waffenrohres (14) parallele Achse (15)- schwenkbarer und in Richtung seiner Längsachse teleskopartig verlängerbarer Ladearm (12) angeordnet ist und

daß der Ladearm (12) an seinem äußeren Ende ein Greiferelement (18) trägt, welches in einer vorgebbaren Indexstellung der Rohrwaffe (2) mit einer entsprechenden Befestigungsvorrichtung des jeweiligen in der Entnahmestation (9) befindlichen Munitionscontainers (7) verbindbar ist.

2. Ladevorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß auf beiden Seiten der Rohrwaffe (2) jeweils ein in Richtung der Längsachse des Panzerfahrzeuges (1) sich erstreckendes und als waagerechte Verschiebebahn ausgebildetes Containermagazin mit jeweils einer Container-Entnahmestation (9) vorgesehen ist, und daß hinter dem verschlußseitigen Ende (4) der Rohrwaffe (2) zwei schwenkbare Ladearme (12) zur Entnahme der Munitionscontainer (7) aus den Container-Entnahmestationen (9) angeordnet sind.

50

55

3. Ladevorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Munitionscontainer (7) zwischen der Ketten- bzw. Radabdeckung und der oberen Panzerabdeckung (6) des Panzerfahrzeuges (1) angeordnet sind und daß im Bereich der 5 jeweiligen Container-Entnahmestation (9) in der Panzerabdeckung (6) eine Entnahmeöffnung (10) vorgesehen ist, durch die der jeweilige Munitionscontainer (7) mittels des schwenkbaren Ladearmes (12) entnehmbar ist.

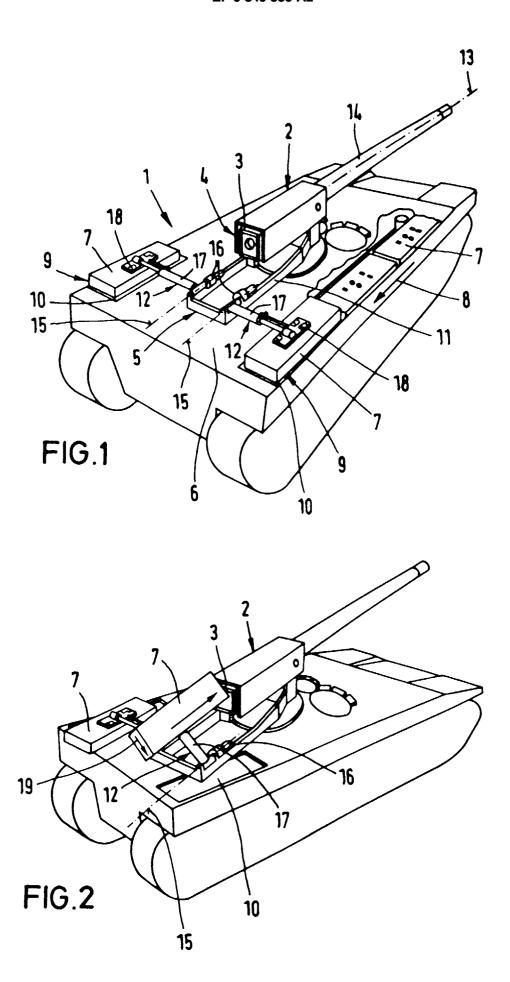
10

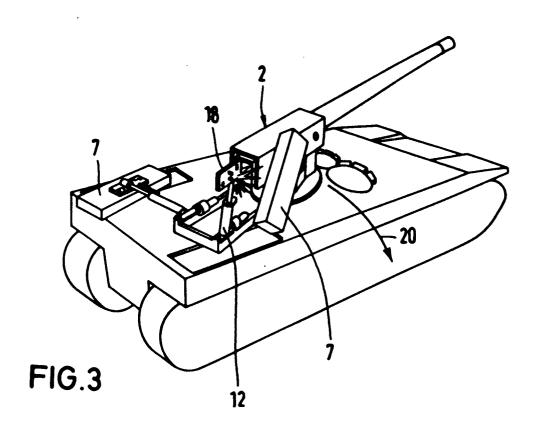
4. Ladevorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur Längenänderung des jeweiligen Ladearmes (12) ein hydraulischer oder elektrischer Antrieb (17) vorgesehen ist. 15

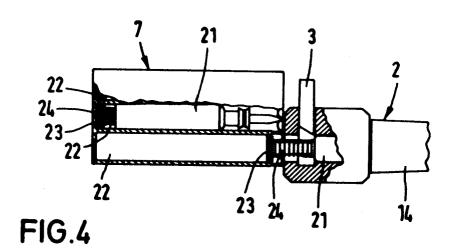
5. Ladevorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zum Schwenken des jeweiligen Ladearmes (12) ein elektrischer oder hydraulischer Stellmotor (16) vorgesehen ist.

25

30


35


40


45

50

55

