

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 855 663 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
24.01.2001 Bulletin 2001/04

(51) Int Cl.⁷: **G06F 17/50**

(43) Date of publication A2:
29.07.1998 Bulletin 1998/31

(21) Application number: **98300404.5**

(22) Date of filing: **20.01.1998**

(84) Designated Contracting States:
**AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE**

Designated Extension States:
AL LT LV MK RO SI

(30) Priority: **27.01.1997 US 789353**

(71) Applicant: **LUCENT TECHNOLOGIES INC.
Murray Hill, New Jersey 07974-0636 (US)**

(72) Inventor: **Roychowdhury, Jaijeet
Murray Hill, New Jersey 07974 (US)**

(74) Representative:
**Johnston, Kenneth Graham et al
Lucent Technologies (UK) Ltd,
5 Mornington Road
Woodford Green Essex, IG8 OTU (GB)**

(54) Efficient integrated circuit

(57) Novel algorithms for computing the responses of circuits to multi-tone excitations. The new algorithms are efficient and robust for large, strongly nonlinear circuits excited by multi-tone (quasi-periodic or envelope-modulated) signals. Hence they are particularly useful for integrated RF applications. The multivariate representation captures features produced by strong nonlinearities (such as spikes or pulses) much more compactly than traditional frequency- or time-domain representations. The new algorithms compute these functions efficiently by solving a partial differential equation (PDE) in the time or mixed frequency-time domains. Frequency-domain spectra or time-domain waveforms are generated from the multivariate functions as cheap post-processing steps. Two methods, multivariate FDTD and

hierarchical shooting, are purely time-domain techniques suitable for the general strongly nonlinear circuit problem. They differ in their memory and computation needs. A new mixed frequency-time method is more efficient for circuits that are moderately (but not strongly) nonlinear in one or more tones (e.g, switching mixers, switched-capacitor filters). The linear systems at the core of all three techniques are especially well suited for iterative solution. This is exploited in the methods to achieve linear growth of computation and memory with respect to circuit size. The mixed frequency-time method of this work avoids the ill-conditioning problem by computing with the slow harmonic components directly, rather than with time-domain samples at sets of points close to each other.

EP 0 855 663 A3

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 98 30 0404

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.Cl.6)		
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim			
D,A	MELVILLE R C ET AL: "Efficient multi-tone distortion analysis of analog integrated circuits" SANTA CLARA, MAY 1 - 4, 1995, NEW YORK, IEEE, US, vol. CONF. 17, 1 May 1995 (1995-05-01), pages 241-244, XP002102872 ISBN: 0-7803-2585-0 * the whole document *	1,10	G06F17/50		
A	BRACHTENDORF H G ET AL: "Numerical steady state analysis of electronic circuits driven by multi-tone signals" ELECTRICAL ENGINEERING, APRIL 1996, SPRINGER-VERLAG, GERMANY, vol. 79, no. 2, pages 103-112, XP000965144 ISSN: 0003-9039 * the whole document *	1			
P,X	ROYCHOWDHURY J: "Efficient methods for simulating highly nonlinear multi-rate circuits" PROCEEDINGS 1997. DESIGN AUTOMATION CONFERENCE, 34TH DAC, PROCEEDINGS OF 34TH DESIGN AUTOMATION CONFERENCE, ANAHEIM, CA, USA, 9-13 JUNE 1997, pages 269-274, XP002153172 1997, New York, NY, USA, ACM, USA ISBN: 0-89791-920-3 * the whole document *	1-10	<table border="1"> <tr> <td>TECHNICAL FIELDS SEARCHED (Int.Cl.6)</td> </tr> <tr> <td>G06F</td> </tr> </table>	TECHNICAL FIELDS SEARCHED (Int.Cl.6)	G06F
TECHNICAL FIELDS SEARCHED (Int.Cl.6)					
G06F					
The present search report has been drawn up for all claims					
Place of search	Date of completion of the search	Examiner			
THE HAGUE	30 November 2000	Guingale, A			
CATEGORY OF CITED DOCUMENTS					
X : particularly relevant if taken alone		T : theory or principle underlying the invention			
Y : particularly relevant if combined with another document of the same category		E : earlier patent document, but published on, or after the filing date			
A : technological background		D : document cited in the application			
O : non-written disclosure		L : document cited for other reasons			
P : intermediate document		& : member of the same patent family, corresponding document			