Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 856 620 A2 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

05.08.1998 Bulletin 1998/32

(21) Application number: 98101193.5

(22) Date of filing: 23.01.1998

(51) Int. Cl.6: E04F 19/06

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

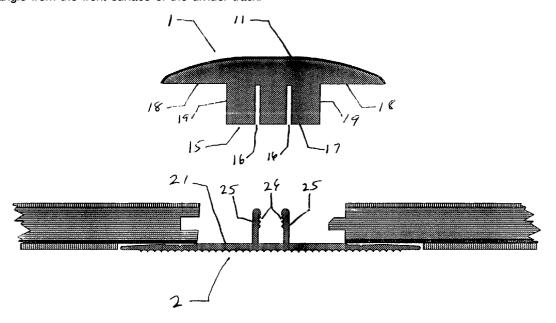
Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 31.01.1997 US 791928

(71) Applicant:

Premark RWP Holdings, Inc. Wilmington, Delaware 19801 (US) (72) Inventor: Murdoch, Richard L. Belton, TX 76513 (US)


(74) Representative:

Howden, Christopher Andrew et al **FORRESTER & BOEHMERT** Franz-Joseph-Strasse 38 80801 München (DE)

(54)Molding affixed with a divider track

(57)A divider track is used for installing wood molding and laminate covered molding. A divider track having a pair of spaced apart flanges extending at a right angle from the front surface of the divider track is affixed to a surface. Kerfs cut on the back surface of molding is positioned over spaced apart flanges extending at a right angle from the front surface of the divider track.

Pressure is applied on the front surface of the molding for seating the molding on the divider track. Serrations extending along the interior upper surfaces of the flanges aid in interlocking with kerfs cut on the back surface of the molding.

EP 0 856 620 A2

Description

This invention relates to the installation of molding with a divider track. This installation method is particularly useful in the installation of laminate flooring.

Commercially available laminate flooring generally includes a wear surface glued to a substrate. The wear surface generally is high-wear resistant decorative laminate. The substrate generally is fiber board or particle board. Each piece of laminate flooring generally has a groove along one end and one side suitable for joining with a tongue along one side or end of an adjacent piece of laminate flooring. Laminate flooring is commercially installed over a pad.

Aluminium divider tracks are commercially used for the installation of flexible molding, such as vinyl molding. This includes the installation of expansion and transition molding, end caps and reducer strips. Divider tracks are affixed to a floor and a rib on the back of flexible molding is interlocked between a pair of flanges extending from the front of the divider track. Serrations extending along the rib and the interior surfaces of the flanges interlock for resisting the removal of the rib from the flanges. Molding can be installed by interconnecting it with a divider track without penetrating its decorative front surface with fastening means or otherwise blemishing it.

There is a need in the installation of molding for securely affixing the molding without blemishing its decorative front surface. In the installation of laminate flooring, there is a need for molding covered with laminate that matches the pattern of the laminate flooring and wood molding that co-ordinates with the pattern on the laminate flooring. There is a need for a method of installing laminate covered and wood molding that does not blemish its decorative front surface.

It has now been discovered that a divider track can be used for installing molding. A divider track having a pair of spaced apart flanges extending at a right angle from the front surface of the divider track is affixed to a surface. Kerfs cut on the back surface of molding are positioned over spaced apart flanges extending at a right angle from the front surface of the divider track. Pressure is applied on the front surface of the molding for seating the molding on the divider track. Serrations extending along the interior upper surfaces of the flanges aid in interlocking with kerfs cut on the back surface of the molding.

Molding for laminate flooring has a decorative front surface and planar rear surface. The planar rear surface has a planar central portion and a planar flange portion. The flange portion intersects the decorative front face of the molding at its edge. The flange portion also intersects a shoulder that extends from the planar central portion to the planar flange portion. The shoulder extend at a right angle from the planar central and flange portion of the molding.

A pair of kerfs are cut in the planar central portion of

the planar rear surface and extend along the molding for joining the molding in a friction fit on a pair of spaced apart flanges extending at a right angle from the front surface of a divider track. The depth of the kerf cuts is about the thickness of laminate flooring and the distance from the planar central portion to the planar flange portion is less than the thickness of laminate flooring whereby the planar flange portion of the molding will be seated on the planar front surface of the laminate flooring when the molding is seated on a divider track. The kerfs have side walls that extend at right angles from the planar thousandths of an inch less than the widths of flanges extending from the front of a central portion of the back surface of the molding. The kerfs have widths of about two divider track on which the molding is to be seated.

The molding can be wood or laminate wrapped particleboard, wood or extruded plastic.

Shown on the figure is the insulation of an expansion joint between sections of laminate flooring with kerfs cut in a planar back surface of molding for interconnection with flanges extending at right angles from the front surface of a divider track.

The use of kerfs (16) cut in a planar back surface (15) of molding (1) for installing the expansion molding for laminate flooring is shown on the figure. Kerfs (16) cut in the planar back of expansion molding provide a friction fit between the molding and flanges (25) on an aluminium divider track (2) for securely connecting the molding and divider track.

The expansion molding shown on the figure is laminate wrapped fibreboard. Laminate can be bonded to other substrates, such as particle board, wood or extruded plastic for making a molding. Molding can also be wood that co-ordinates with the laminate flooring pattern. This expansion molding has kerfs cut into its back side. These kerfs have sidewalls that extend at right angles from a planar back surface of the expansion molding, these kerfs having widths for providing a friction fit with flanges on a divider track. A kerf that is about two thousandths of an inch less in width than the width of flanges extending from the front of a divider track has been found suitable for providing a secure, friction fit between the molding and the divider track. It has also been found that the planar back surface of the molding should not contact the front surface of the divider track when the molding is seated on the divider track.

The molding has a decorative front surface (11) and a planar rear surface (15). The planar rear surface (15) has a planar central portion (17) and at least one planar flange portion (18). The kerfs (16) are cut in the planar central portion (17). The planar rear surface (15) of expansion molding has two planar flange portions (18). These flange portions (18) intersect the decorative front face (11) of the transition molding at the edge of the molding (1) and shoulders (19) that extend from the planar central portion (17) to the planar flange portions (18). The shoulders (19) extend at right angles from the

55

15

planar central (17) and flange portions (18) of the transition molding.

3

It has been found that the distance from the planar central portion (17) to the planar flange portion (18) should be less than the thickness of laminate flooring. The kerfs (16) should be cut to depth of about the thickness of laminate flooring. Thereby, the planar flange portions (18) of the transition molding will be seated on the planar front surfaces of the laminate flooring on both sides of the divider track when the transition molding is seated on the divider track. Other molding, such as end cap and reducer strip molding, will only have one planar flange portion for seating on laminate flooring on one side of the divider track.

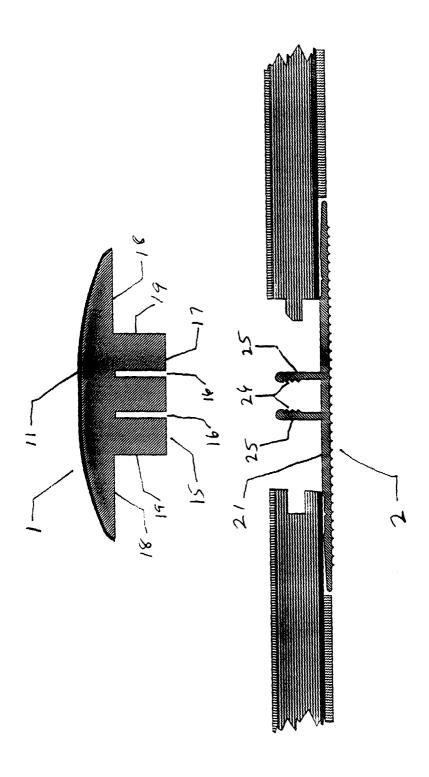
A pair of flanges (25) extend at right angles from the front planar surface (21) of an elongated aluminum divider track (2), Figure. Serrations (26) extend along the interior upper surfaces of the flanges (25). When the expansion molding is seated on the divider track, the serrations aid in a friction fit of the expansion molding on 20 the divider track.

The divider track shown in the Figure illustrating this invention can be made by extrusion molding metal, preferably aluminium, or rigid synthetic resin. The selection of suitable materials, methods and equipment for extrusion molding is known to those skilled in the art of making extruded molding.

While the illustrative embodiments of the invention have been described with particularity, it will be understood that various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the spirit and scope of the invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the examples and descriptions set forth herein but rather that the claims be construed as encompassing all the features of patentable novelty that reside in the present invention, including all features that would be treated as equivalents thereof by those skilled in the art to which this invention pertains.

The features disclosed in the foregoing description, in the following claims and/or in the accompanying drawing may, both separately and in any combination thereof, be material for realising the invention in diverse forms thereof.

Claims


1. Molding for laminate flooring, characterized by; a decorative front surface and planar rear surface, the planar rear surface having a planar central portion and a planar flange portion, the flange portion intersecting the decorative front face of the molding at the edge of the molding and a shoulder that extends from the planar central portion to the planar flange portion, the shoulder extending at a right angle from the planar central and flange portion of the molding; a pair of kerfs cut in the planar central

portion of the planar rear surface and extending along the molding for joining the molding in a friction fit on a pair of spaced apart flanges extending at a right angle from the front surface of a divider track, the depth of the kerf cuts and the distance from the planar central portion to the planar flange portion being less than the thickness of laminate flooring whereby the planar flange portion of the molding will be seated on the planar front surface of the laminate flooring when the molding is seated on a divider track.

- The molding according to Claim 1, further characterized by a method of joining the molding in a divider track, comprising; affixing a divider track having a pair of spaced apart flanges extending at a right angle from the front surface of the divider track to a surface, positioning kerfs cut on the back surface of the molding over spaced apart flanges extending at a right angle from the front surface of the divider track, and applying pressure on the front surface of the molding for seating the molding on the divider track.
- 25 The molding according to Claims 1 or 2, further characterized by the kerfs having side walls that extend at right angles from the planar central portion of the back surface of the molding.
- The molding according to any one of the preceding Claims, further characterized by the kerfs having widths of about two thousandths of an inch less than the widths of flanges extending from the front of a divider track on which the molding is to be 35 seated.
 - The molding according to any one of the preceding Claims, further characterized by the molding being laminate wrapped particleboard, wood, or extruded plastic.
 - The molding according to any one of the preceding Claims, further characterized by serrations extending along the interior upper surfaces of the flanges for interlocking with kerfs cut on the back surface of the molding.

40

45

