Europäisches Patentamt European Patent Office

Office européen des brevets

EP 0 866 481 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 23.09.1998 Patentblatt 1998/39 (51) Int. Cl.6: H01H 33/66

(21) Anmeldenummer: 98103652.8

(22) Anmeldetag: 03.03.1998

(84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE**

Benannte Erstreckungsstaaten:

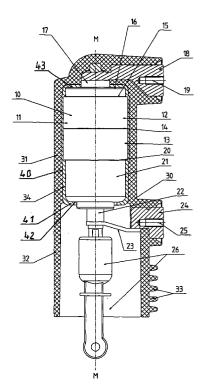
AL LT LV MK RO SI

(30) Priorität: 22.03.1997 DE 19712182

(71) Anmelder: ABB PATENT GmbH 68309 Mannheim (DE)

(72) Erfinder:

- · Leonhardt, Günter 40882 Ratingen (DE)
- · Fink, Harald, Dr.-Ing. 40882 Ratingen (DE)


- · Sonnenschein, Erich 47804 Krefeld (DE)
- · Dullni, Edgar, Dr.-Ing. 40880 Ratingen (DE)
- Straube, Hans-Joachim 42549 Velbert (DE)
- · Leskosek, Helmuth 42549 Monheim (DE)
- · Claus, Oliver, Dr.-Ing. 40878 Ratingen (DE)

(74) Vertreter:

Rupprecht, Klaus, Dipl.-Ing. et al c/o ABB Patent GmbH, Postfach 10 03 51 68128 Mannheim (DE)

(54)Vakuumkammer

(57)Die Erfindung betrifft eine Vakuumkammer mit einem zylindrischen Körper (11), der wenigstens teilweise aus einer isolierenden Keramik, vorzugsweise Al₂O₃, Glas oder dgl. besteht, mit einem feststehenden Kontaktstück und mit einem an einem beweglichen Kontaktstengel (22) angebrachten beweglichen Kontaktstück, wobei die Kontaktstücke im Vakuum angeordnet sind, der innerhalb des zylindrischen Körpers (11) herrscht. Der zylindrische Körper (11) ist in Isoliermaterial, insbesondere Gießharz, bis auf die Stirnfläche, auf der der Kontaktstengel (22) für das bewegliche Kontaktstück herausragt, eingegossen. Zwischen dem zylindrischen Körper (11) und dem Gießharz (30, 31) ist eine elastische Polsterung (34) vorgesehen, die z. B. temperaturbedingte Relativbewegungen zwischen dem zylindrischen Körper (11) und dem Isoliermaterial (30, 31) ausgleicht.

EP 0 866 481 A2

15

25

40

45

Beschreibung

Die Erfindung betrifft eine Vakuumkammer gemäß dem Oberbegriff des Anspruches 1.

Eine Vakuumkammer der eingangs genannten Art 5 besitzt einen zylinderförmigen Körper, in dem Vakuum herrscht und der ein bewegliches und ein festes Kontaktstück aufnimmt, wobei das feste Kontaktstück an einem feststehenden Kontaktstengel und das bewegliche Kontaktstück an einem beweglichen Kontaktstengel angeordnet sind, die vakuumdicht ins Innere des Körpers eingeführt sind. Die Vakuumkammer besitzt wenigstens einen zylindrischen Rohrabschnitt aus isolierendem Material, in bevorzugter Weise aus Keramik; der Körper ist an den beiden Enden mittels eines metallischen Deckels bzw. eines Faltenbalges vakuumdicht verschlossen, wobei der Faltenbalg die Bewegung des Kontaktstengels bzw. des beweglichen Kontaktstückes gestattet.

Solche Vakuumkammern sind in großer Vielzahl bekannt geworden.

Es ist bekannt, die Vakuumkammer eines Leistungsschalterpoles in ein Epoxidharzformstoffbauteil einzusetzen, welches dielektrische und mechanische Aufgaben übernimmt; zwischen der Vakuumkammer und dem Formstoffbauteil befindet sich ein technisches Isoliergas, beispielsweise SF₆. Es kann auch Luft voraesehen sein.

Es ist bekannt, die Vakuumkammer mit einem Kunststoff, vorzugsweise Epoxidharz zu umgießen, siehe GB 1 030 798, um die Oberfläche des aus isolierender Keramik bestehenden zylinderförmigen Rohrabschnitts der Kammer vor Verunreinigungen zu schützen, weil sich z. B. auf der Isolierstrecke, d. h. auf der Außenseite des isolierenden Abschnittes des zylindrischen Körpers Fremdschichten bilden können, die die Spannungsfestigkeit herabsetzen.

Wenn der zylindrische Körper einer Vakuumkammer in Gießharz, z. B. Epoxidharz, eingegossen ist, dann besteht das Problem, daß sich bei gasisolierter Oberfläche eine mangelhafte Haftung zwischen dem Gießharz und der Keramik ergibt, was nur durch Zusatz eines Haftvermittlers behoben werden kann. Bei extremen Temperaturbelastungen können Risse im Gießharz auftreten, wodurch die Funktionstüchtigkeit der einzelnen eingegossenen Kammer teilweise oder gänzlich aufgehoben wird.

Aufgabe der Erfindung ist es, eine Vakuumkammer der eingangs genannten Art zu schaffen, bei der bei wirtschaftlicher Herstellung ein Reißen des Gießharzes aufgrund von Temperatureinflüssen vermieden wird.

Diese Aufgabe wird erfindungsgemäß gelöst durch die kennzeichnenden Merkmale des Anspruches 1.

Erfindungsgemäß also befindet sich zwischen dem zylindrischen Körper und dem Isoliermaterial, d. h. dem Gießharz, eine elastische Polsterung, durch die z. B. temperaturbedingte Relativbewegungen zwischen dem zylindrischen Körper und dem Isoliermaterial ausgeglichen werden.

Gemäß einer vorteilhaften Ausgestaltung der Erfindung kann die Polsterung aus Ethylen-Propylen-Dienoder Ethylen-Prop-Ter-Kautschuk bestehen; sie ist in besonders vorteilhafter Weise durch einen Schlauch gebildet, der Mittel aufweist, mit denen der Schlauch zylindrisch gehalten ist, so daß er leicht über die Vakuumkammer geschoben werden kann; nach dem Überziehen werden die Mittel entfernt, so daß sich der Schlauch federnd - wie ein Schrumpfschlauch - um den zylindrischen Körper der Vakuumkammer herumlegt. Der Schlauch besitzt in dem Zustand, wenn die Mittel entfernt sind, einen deutlich kleineren Durchmesser als der zylindrische Körper.

Als Material für die Polsterung kann auch Ethylen-Propylen-Mastics oder Polyethylen bzw. vernetztes Polyethylen benutzt werden.

Dabei ist das Material des Schlauches so gewählt, daß es während des Eingusses der Schaltkammer den erhöhten Gießharztemperaturen widerstehen kann, ohne daß die Form oder die Eigenschaften verändert werden. Die Dicke der Polsterung, also des Schlauches, ist so zu wählen, daß sie während des Eingusses zum Abdichten der Gußform zum Formkern hin geeignet ist. Darüber hinaus ist das Material so zu wählen, daß es über einen Temperaturbereich von -30° C bis zu +105° C die unterschiedlichen Wärmekoeffizienten der Vakuumkammer ausgleicht und eine Rißbildung am Gießharz verhindert, d. h. die Polsterung muß die unterschiedlichen Wärmeausdehnungen des isolierenden Keramikabschnittes, Kupfer- und Stahlteile sowie des Gießharzes ausgleichen. Dieses wird mit dem im Patentanspruch 2 genannten Material erreicht.

Darüber hinaus geht die Polsterung eine gute Verbindung zum Gießharz ein und sie beeinflußt die Funktionseigenschaften der Schaltkammer nicht und verfügt weiterhin über ein gutes Eigenisoliervermögen.

Dadurch, daß die Polsterung durch die Mittel eine Form erhält, die ein leichtes Überziehen über den zylindrischen Körper gestattet, ist die Montage der Polsterung sehr einfach.

Schrumpfschläuche an sich sind bekannt.

Als elastisches Material kann auch Silikon bzw. Silikongummi verwendet werden.

In jedem Fall, insbesondere bei Silikongummi ist dafür zu sorgen, daß das elastische Material nicht vollständig in Gießharz eingebettet ist. In zweckmäßiger Weise ragt das elastische Material, insbesondere das Silikongummi an einem Ende der Vakuumkammer frei heraus, so daß sich das Material dort ausdehnen kann.

Anhand der Zeichnung, in der ein Ausführungsbeispiel der Erfindung dargestellt ist, sollen die Erfindung sowie weitere vorteilhafte Ausgestaltungen und Verbesserungen der Erfindung näher erläutert und beschrieben werden.

Es zeigt die einzige Fig. eine Schnittansicht durch eine erfindungsgemäße Vakuumkammer.

20

35

40

50

Eine Vakuumkammer 10 besitzt einen zylindrischen Körper 11, der zwei zylindrische Rohrabschnitte 12, 13 aus isolierender Keramik, vorzugsweise aus Al₂O₃, umfaßt, die unter Zwischenfügung eines metallischen Ringes 14 miteinander verbunden sind. Der metallische Ring dient dazu, einen im Inneren der Vakuumkammer 10 befindlichen Schirm zu halten. Die in der Zeichnung oben liegende Stirnkante 15 des zylindrischen Körpers 11 ist mit einem Metalldeckel 16 abgedeckt, der von einem feststehenden Kontaktstengel 17 durchdrungen ist, das an seinem inneren Ende ein nicht dargestelltes feststehendes Kontaktstück trägt. An dem aus der Vakuumkammer 10 herausragenden Ende ist senkrecht zur Mittelachse M-M der Vakuumkammer 10 ein Kontaktanschluß 18 angeschlossen, an dem eine obere Zuleitung mittels einer Schraubenverbindung 19 befestigbar ist.

Das andere, unten befindliche Stirnende 20 des unteren isolierenden Abschnittes 13 ist mit einem zylindrischen metallischen Rohrstück 21 verbunden, das von einem beweglichen Kontaktstengel 22 durchgriffen ist, wobei in nicht näher dargestellter Weise zwischen dem beweglichen Kontaktstengel 22 und dem metallischen Abschnitt 21 ein Faltenbalg angeordnet ist, der die Bewegung des beweglichen Kontaktstengels 22 in Richtung der Mittelachse M-M gestattet; am inneren Ende des beweglichen Kontaktstengels 22 befindet sich ein bewegliches Kontaktstück, das mit dem feststehenden Kontaktstück eine Kontaktstelle bildet. An dem äußeren Ende des Kontaktstengels 22 schließt ein flexibles Band 23 an, welches mit einem Kontaktanschluß 24 verbunden ist, an dem eine untere Zuleitung mittels einer Schraubverbindung 25 angeschlossen werden kann. Der Kontaktstengel 22 ist mit einer Antriebsstange 26 verbunden.

Die Vakuumkammer 10 ist, wie aus der Fig. ersichtlich, in eine Gießharzisolierung 30 eingegossen, die einen Abschnitt 31 aufweist, der den zylindrischen Körper 11 umgibt, wobei der Isolierkörper 30, 31 auch den Deckel 16 sowie den Kontaktanschluß 18 umschließt. An dem Stirnende des Körpers 11 der Vakuumkammer 10, aus dem der bewegliche Kontaktstengel 22 herausragt, schließt an den Abschnitt 31 ein zylindrischer Kragen 32 an, der einerseits den Kontaktanschluß 24 umschließt und an seiner Außenfläche umlaufende Vorsprünge 33 aufweist, die zur Erhöhung der Isolierfestigkeit bezüglich Kriechströme dienen. Der zylindrische Kragen umgibt teilweise die Antriebsstange 26.

Diese einzelnen Merkmale sind an sich bekannt, siehe beispielsweise die GB 1 030 798.

Zwischen der Innenseite des Abschnittes 31 des Isolierkörpers und der Außenfläche des zylindrischen Körpers 11 befindet sich eine Polsterung 34, die die beiden Stirnflächen des zylindrischen Körpers 11 bis auf den Bereich des Kontaktstengels 17 und des Kontaktstengels 22 umgibt.

Die Polsterung besteht aus einem Ethylen-Propylen-Dien-Kautschukschlauch, der mittels einer Kunst-

stoffspirale in einer zylindrischen Form gehalten ist, so daß der Schlauch über den zylindrischen Körper 11 der Vakuumkammer geschoben werden kann. Nach Entfernung der Kunststoffspirale legt sich der Schlauch ähnlich wie ein Schrumpfschlauch gegen die Außenfläche des Körpers 11 an, wobei das Entspannen des Schlauches gleichmäßig erfolgt, so daß sich zwischen dem Körper 11 und den Stirnflächen, also der Schaltkammer 10 kein Luftpolster bildet. Die Länge des Schlauches ist dabei so gewählt, daß eine nachträgliche Bearbeitung, z. B. ein Kürzen des Schlauches, nicht mehr erforderlich ist. Die vorgeheizte, gepolsterte Vakuumkammer wird dann im automatischen Druckgelierverfahren mit aromatischen oder zycloaliphatischen, gefüllten Epoxidharzen umgossen, wobei die Abdichtung der Gußform zum Formkern die Polsterung 34 übernimmt.

Gemäß einer besonders vorteilhaften Ausgestaltung kann die Polsterung auch aus Silikongummi bestehen

Die Zeichnung zeigt, daß die Polsterung 34 die obere und untere Stirnfläche der Vakuumkammer 21 teilweise überdeckt. An der unteren Stirnfläche ragt die Polsterung 34 aus dem Zwischenraum 40 zwischen der Vakuumkammer 21 und dem Gießharz 31 mit einem freien Ende 41 heraus. Daß die Polsterung 34 die untere Stirnfläche 42 teilweise überdeckt, ist von geringerer Bedeutung. Wesentlich ist, daß die Polsterung 34 dort nicht, wie an der oberen Stirnfläche 43, vollständig vom Gießharz umschlossen ist, sondern frei herausragt, so daß eine freie Ausdehnung nach unten möglich ist. Insbesondere bei Silikongummi als Polsterung 34 ist die freie Ausdehnungsmöglichkeit notwendig und vorteilhaft, um ausreichende elastische Polsterungswirkungen zu erzielen.

Patentansprüche

- Vakuumkammer mit einem zylindrischen Körper, der wenigstens teilweise aus einer isolierenden Keramik, vorzugsweise Al₂O₃, Glas oder dgl. besteht, mit einem feststehenden Kontaktstück und mit einem an einem beweglichen Kontaktstengel angebrachten beweglichen Kontaktstück, wobei die Kontaktstücke im Vakuum angeordnet sind, der innerhalb des Körpers herrscht, und der in Isoliermaterial, insbesondere Gießharz, bis auf die Stirnfläche, auf der der Kontaktstengel für das bewegliche Kontaktstück herausragt, eingegossen ist, dadurch gekennzeichnet, daß zwischen dem zylindrischen Körper (11) und dem isolierenden Material (30, 31) eine elastische Polsterung (34) vorgesehen ist, die z. B. temperaturbedingte Relativbewegungen zwischen dem zylindrischen Körper (11) und dem Isoliermaterial (30, 31) ausgleicht.
- Vakuumkammer nach Anspruch 1, dadurch gekennzeichnet, daß die Polsterung (34) vorzugsweise aus Ethylen-Propylen-Dien-Kautschuk,

5

besteht.

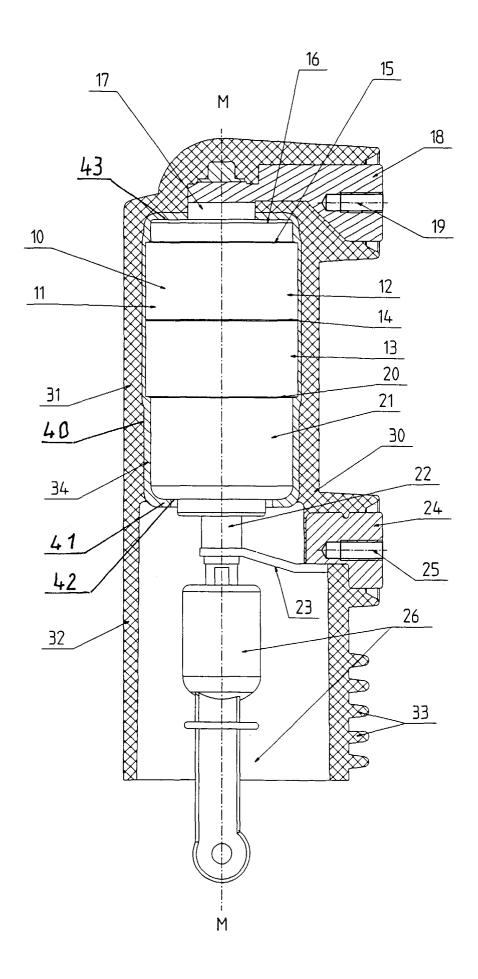
3. Vakuumkammer nach Anspruch 1, dadurch gekennzeichnet, daß die Polsterung (34) aus Silikongummi besteht.

4. Vakuumkammer nach Anspruch 2, dadurch gekennzeichnet, daß die Polsterung (34) durch einen Schlauch gebildet ist, der Mittel, insbesondere eine Kunststoffspirale, aufweist, mit denen der 10 Schlauch zylindrisch gehalten ist, wobei der Durchmesser dieses zylindrisch gehaltenen Schlauches größer ist als der Außendurchmesser des zylindrischen Körpers (11), wobei die Mittel nach Überziehen des Schlauches über den zylindrischen Körper 15 (11) entfernt werden.

5. Vakuumkammer nach Anspruch 4, dadurch gekennzeichnet, daß der Schlauch in dem Zustand, wenn die Mittel entfernt sind, einen kleineren 20 Durchmesser aufweist, als der zylindrische Körper (11), so daß die Enden des Schlauches zumindest teilweise die Stirnflächen des zylindrischen Körpers (11) überdecken.

6. Vakuumkammer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die elastische Polsterung (34) an einem Ende der Vakuumkammer (10) frei aus ihrem Zwischenraum (40) zwischen Gießharz (31) und Außenfläche der Vakuumkam- 30 mer (10) herausragt.

25


35

40

45

50

55

