(11) **EP 0 869 540 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 07.10.1998 Bulletin 1998/41

(51) Int Cl.⁶: **H01J 61/35**, H01J 61/30, H01J 61/36

(21) Application number: 98302182.5

(22) Date of filing: 24.03.1998

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

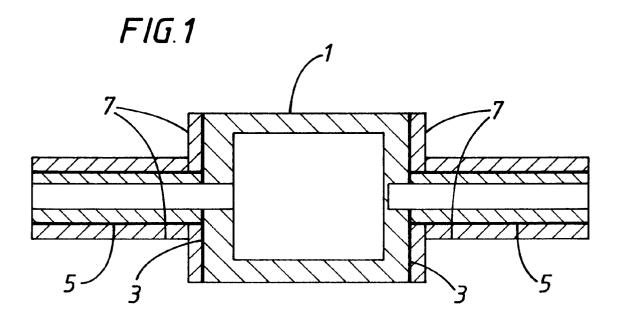
AL LT LV MK RO SI

(30) Priority: **04.04.1997 GB 9707291**

(71) Applicant: GENERAL ELECTRIC COMPANY Schenectady, NY 12345 (US)

(72) Inventors:

 Ning, Changlong Lecister, Leicestershire LE 4US (GB)


- Coxon, G.E.
 Leicestershire LE6 52LR (GB)
- Odell, Edwin C.
 Leicester, Leicestershir LE5 2AD (GB)
- (74) Representative: Goode, Ian Roy et al London Patent Operation General Electric International, Inc. Essex House 12-13 Essex Street London WC2R 3AA (GB)

(54) Ceramic metal halide arc lamp and method of making it

(57) A ceramic metal halide arc lamp comprises an arc tube (1), a metal halide filling and a coating (7) of

zirconium oxide on at least part of the arc tube (1).

The invention also includes a method of making such an arc lamp.

EP 0 869 540 A1

30

Description

This invention relates to a ceramic metal halide arc lamp and to a method of making it.

With ceramic metal halide lamps, a problem exists in providing a suitable colour control and the prevention of wall erosion, voltage rise and short lifetimes. The biggest problem relating to ceramic metal halide (CMH) lamps relates to the stability of the colour temperature of the lamp. In order to provide for this control of the colour temperature in a stable way, it is necessary to increase the vapour pressure of the metal halide in the arc plasma.

A number of ways have been tried to achieve this increase, but while the increase in the vapour pressure which resulted, provided the stability of the colour temperature, all of the previous proposals resulted in significant disadvantages, giving rise to unacceptable lifetimes for the lamp. One proposed method was to increase the amount of metal halide in the arc tube. This unfortunately resulted in increase in the wall erosion of the arc tube which significantly shortened the life of the lamp.

The invention therefore seeks to provide a ceramic metal halide arc lamp and a method of producing it in which it is possible to increase the vapour pressure of the metal halide in the arc plasma during operation while substantially avoiding the above-mentioned disadvantages of currently proposed solutions.

According to a first aspect of the invention a ceramic metal halide arc lamp comprises an arc tube, a metal halide fill and a coating of zirconium oxide on at least part of the arc tube.

Preferably the ceramic used is alumina and the zirconium oxide coating is applied at least to the end plug of the arc tube. The zirconium oxide coating may also be applied to the legs of the arc tube.

According to a second aspect of the invention, a method of making a ceramic metal halide lamp comprises forming a ceramic arc tube and dipping at least part of the arc tube in a zirconium oxide suspension to provide a coating on at least part of the arc tube.

Preferably it is the end plug of the arc tube which is dipped in the zirconium oxide suspension. If desired, both the end plug and the legs of the arc tube can be dipped in the zirconium oxide suspension.

After dipping, the arc tube may be dried out and placed in a furnace at between 400 and 500°C for between 15 and 30 minutes.

The invention will now be described in greater detail, by way of example, with reference to the drawings, in which:-

FIGURE 1 is a schematic sectional view of an alumina arc tube to which a zirconium oxide coating has been applied to the end plug and legs of the arc tube in accordance with one embodiment of the invention.

FIGURE 2 is a graph of first test results on comparison between coated and uncoated arc tubes;

FIGURES 3 and 4 are graphs of second test results on comparison between coated and uncoated arc tubes; and

FIGURE 5 is a table showing measured parameters of a hundred hour test on lamps built in a production line environment.

Referring firstly to Figure 1 of the drawings, there is shown an alumina arc tube 1 having end plugs 3 at each end and legs 5 extending outwardly from the end plugs 3. The arc tube, as can be seen, is provided with a zirconium oxide (Z_rO_2) coating 7 on the exterior of the end plugs 3 and around the legs 5.

In order to achieve the zirconium oxide coating, both ends of the arc tube are dipped into a suspension of the zirconium oxide so that the zirconium oxide is deposited on the end plugs 3 and around the legs 5. In order to get a sufficient thickness of coating, the arc tube may need to be dipped twice.

Once the coating has been carried out, the arc tube is dried off and then is placed in a furnace at a temperature of between 400 and 500°C (in particular 460°C) for a period of between 15 and 30 minutes (preferably 20 minutes). The arc tube is then ready for assembly including the insertion of the fill in known manner.

Tests of the lamp have shown that the zirconium oxide coating reflects back infra-red rays emitted by the arc plasma back into the plasma instead of allowing it to pass out through the end plug and the leg area. This has the effect of increasing the temperature of the inner surface of the arc tube and as a result of this increase in temperature, the vapour pressure of the metal halide in the arc plasma is increased without the need to increase the amount of metal halide in the fill.

Thus the vapour pressure increases sufficiently to provide acceptable control of the colour temperature of the lamp without the necessity of taking any action which would cause a reduction in the life of the lamp.

Tests were carried out on a trial lamp initially uncoated, its colour-power curve being taken for the uncoated arc tube. The arc tube was thereafter coated on its ends with a zirconium oxide film. The arc tube was re-assembled and run for seven hours and the colour power curve was again measured.

Figure 2 shows the results of this test in which the graph 20 represents the uncoated lamp and the graph 21 represents the coated lamp. From this it will be seen that the colour power curve of the bare arc tube did not reach a minimum even at 90 watts while that of the coated arc tube shows a clear minimum at around 80 watts. This indicates that the arc tube temperature was higher and better colour control was possible.

A second test was then carried out with bare and coated arc tubes. In this case the zirconium oxide coating was baked in a furnace at 460°C for twenty minutes. This baking of the coating avoids the so-called oxygen

25

30

defect in which the zirconium oxide is converted into pure zirconium.

Figures 3 and 4 show graphs of the comparison between the coated and uncoated lamps on the basis of the colour power curve (Figure 3) and the lumen output (Figure 4).

Further tests were then carried out on a batch of eight coated lamps produced in a production line environment and the various parameters of the lamps were measured after a hundred hours. The results of the tests appear in the table of Figure 5.

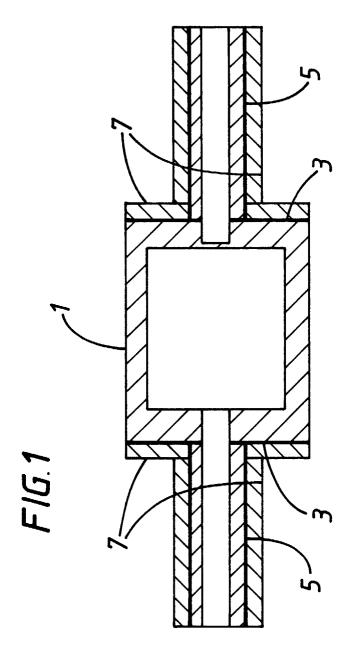
It will be appreciated that the above described lamp has been coated both on the end plugs and the legs which is believed to provide the best result.

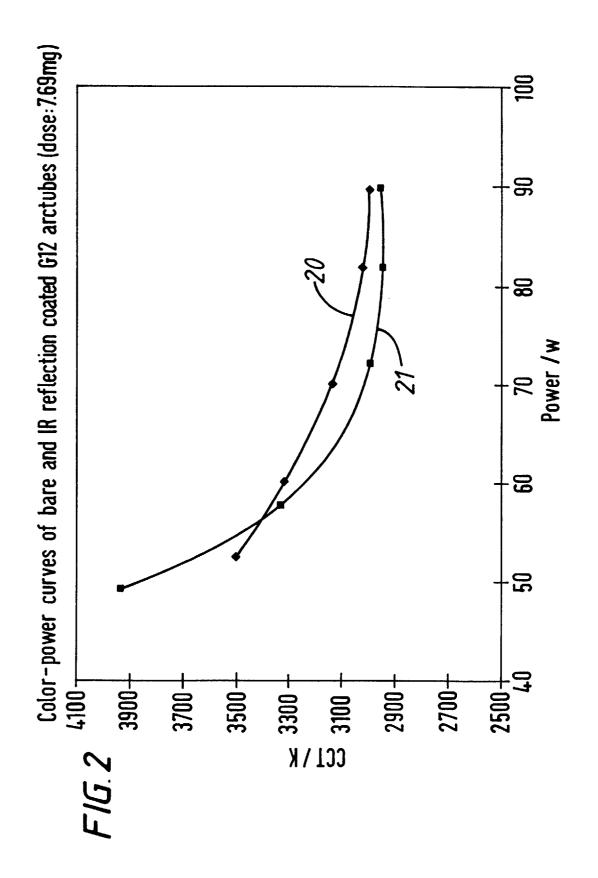
However, it is to be understood that the invention is not limited to this version and substantial gains may be achieved where only the end plugs are coated.

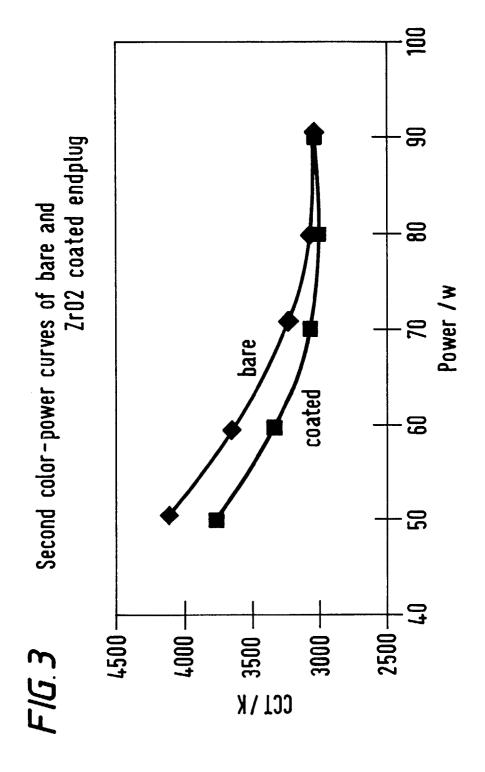
From the above it will be seen that the invention provides an improvement to ceramic metal halide lamps which enables good colour control while maintaining an acceptable life of the lamp.

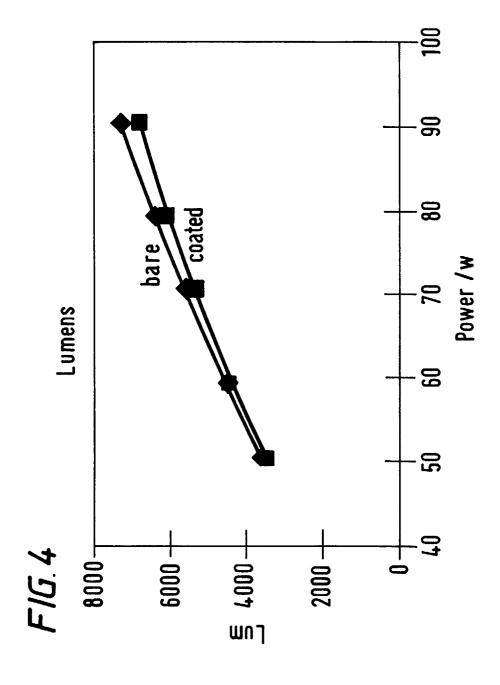
As will be seen, two tests were made with the arc tubes in vertical and horizontal positions.

Claims


- A ceramic metal halide arc lamp comprising an arc tube, a metal halide fill and a coating of zirconium oxide on at least part of the arc tube.
- **2.** A lamp as claimed in claim 1, wherein the ceramic is alumina.
- 3. A lamp as claimed in claim 1 or 2, wherein the zirconium oxide coating is applied to the end plug of the arc tube.
- **4.** A lamp as claimed in claim 3, wherein the zirconium oxide coating is also applied to the legs of the arc tube.
- **5.** A lamp as claimed in any one of claims 1 to 4, wherein the zirconium oxide coating is applied to the arc tube by dipping the arc tube into a suspension of zirconium oxide.
- 6. A method of making a ceramic metal halide lamp comprising forming a ceramic arc tube and dipping at least part of the arc tube in a zirconium oxide suspension to provide a coating on at least part of the arc tube.
- **7.** A method as claimed in claim 6, wherein the arc tube is formed of alumina.
- **8.** A method as claimed in claim 6 or 7, wherein the end plug of the arc tube is dipped in the zirconium


oxide suspension.


- **9.** A method as claimed in claim 8, wherein both the end plug and the legs of the arc tube were dipped in the zirconium oxide suspension.
- **10.** A method as claimed in any one of claims 6 to 9, wherein the arc tube is dipped twice in the zirconium oxide suspension.
- 11. A method as claimed in any one of claims 6 to 10, wherein the arc tube is dried out after dipping and placed in a furnace at between 400 and 500°C for between 15 and 30 minutes.
- **12.** A method as claimed in claim 11 wherein the arc tube is placed in the furnace at 460°C for 20 minutes.


55

3

	7	 $\neg \neg$	 									_			1		_	
			•		Ra		83	83	83	83	98	85	85	98		84	-	
					CCT		3084	3046	3084	3070	2962	3019	2979	3038		3035	46	
15/01/97				7-11-1	mpcd		2.05	0.76	1.88	1.30	2.94	0.65	2.10	0.93				1.86
					у		0.4091	0.4084	0.4080	0.4071	0.4044	0.4060	0.4067	0.4045		0.4068	0.0017	
					×		0.4343	0.4362	0.4338	0.4342	0.4393	0.4366	0.4393	0.4348		0.4361	0.0022	
					V ext		180	177	182	182	194	190	181	186		184	9	
					lm/W		87.3	88.4	6.68	6.78	86.2	82.8	6.38	88.8		87.2	2.2	
					flicker	%	1.8	2.0	1.9	1.8	1.7	1.1	1.6	1.8		1.7	0.3	
ical		220V			lumens		6320	6400	6580	6390	6380	0909	6170	6420		6340	160	
- Vertical		ballast at 2			p.f.		0.804	0.802	0.805	0.802	0.787	0.789	0.803	0.793		0.798	0.007	
lamps	ide)	1	legs		watts		72.4	72.4	73.2	72.7	74.0	73.2	71.8	72.3		72.8	0.7	
\Q_84	etal hal	- reference	coated		amps		0.961	0.960	0.950	0.955	0.933	0.940	996.0	0.950		0.952	0.011	
MH C	.7mg m	hours	zirconia		volts		93.7	94.0	2.36	94.9	100.8	2.86	97.6	0.96		95.8	2.7	
GE 70W CMH CTQ_84 lam	26 pellets (7.7mg metal halide)	at 100	CTQ_84 with zirconia		V min		23.6	23.6	24.2	24.0	24.0	23.5	23.4	23.5		23.7	0.3	
GE 7	26 pe	lamps	CTO		Š		2	3	4	2	9	7	8	6		Ave	ps	

F16.5a

	_	_		_	_									
		Ra		83	83	83	83	98	85	84	85	84	1	
		CCT		2981	2994	3087	3116	3010	3009	3051	2995	3030	49	
16/01/97		mpcd		2.11	1.34	2.49	3.24	0.95	0.88	0.92	1.45			1.98
		ý		0.4035	0.4063	0.4093	0.4075	0.4047	0.4051	0.4072	0.4046	0.406	0.0019	
		×		0.4377	0.4382	0.4342	0.4317	0.4366	0.4368	0.4353	0.4374	0.436	0.0022	
		Vext		199	197	195	196	199	205	194	201	198	4	
		lm/W		87.9	88.1	91.2	89.9	89.9	84.5	88.1	88.4	88.5	2	
		flicker	%	0.3	0.1	0.2	0.2	0.3	0.3	0.5	0.4	0.3	0.1	
zontal		lumens		6420	6490	6740	6650	6590	6160	6420	6530	6500	176	
ps - Horizontal		p.f.		0.78	0.77	0.78	0.79	0.77	0.75	0.78	0.77	0.77	0.01	
lamps		watts		73	73.7	73.9	74	73.3	72.9	72.9	73.9	73.5	0.5	
0 84		amps		0.92	0.92	0.91	0.92	0.91	6.0	0.93	0.91	0.92	0.01	
MH C		volts		102	104	1 04	102	105	108	101	106	5	2.4	
GE 70W CMH CTQ_84 lam		V min		23.6	23.4	24	23.5	23.8	23.6	23.2	24.1	23.7	0.3	
GE		Š		7	က	4	2	9	7	∞	တ	Ave	ps	

F1G.5b

EUROPEAN SEARCH REPORT

Application Number EP 98 30 2182

Category	Citation of document with i of relevant pass		iate.	Relevant to claim	CLASSIFICATION OF THE APPLICATION (int.Cl.6)				
X Y	US 4 281 267 A (JOH 1981 * column 2, line 43 * column 3, line 8 * column 4, line 40 * column 4, line 56	3 - column 2, 1; - column 3, 1;) - column 4, 1;	ine 49 * 2 ne 15 * ine 44 *	2-4	H01J61/35 H01J61/30 H01J61/36				
Y	EP 0 587 238 A (PHI March 1994 * the whole documer		CS NV) 16 2	2-10					
Y	EP 0 602 927 A (GEN * column 6, line 2			5-10					
A	* Cordiiii 6, Trie 2	- COTUMN 7, 111		11,12					
Α	GB 2 036 420 A (THO 25 June 1980 * page 1, line 20 -			1-5					
A	US 3 374 377 A (CO	OK CLARENCE G)	19 March	1-5					
	1968 * column 1, line 24	1 - column 1, 1	ine 28 *		TECHNICAL FIELDS SEARCHED (Int.Cl.6)				
Α	DE 26 34 533 A (GEN 1977 * page 9, paragraph 1 *			5-12	H01J				
X:pai	The present search report has Place of search MUNICH CATEGORY OF CITED DOCUMENTS rticularly relevant if taken alone	Date of complete 16 June T E	on of the search 1998 theory or principle earlier patent docu	underlying the ment, but pub	lished on, or				
Y : par doc A : tec	rticularly relevant if combined with and cument of the same category choological background n-written disclosure	L .							

10