

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 885 668 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

23.12.1998 Patentblatt 1998/52

(21) Anmeldenummer: 98110736.0

(22) Anmeldetag: 12.06.1998

(51) Int. Cl.6: **B21C 47/14**

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Benannte Erstreckungsstaaten:

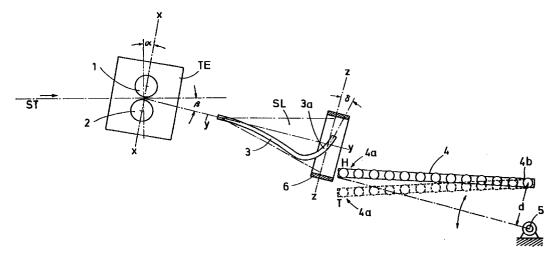
AL LT LV MK RO SI

(30) Priorität: 18.06.1997 DE 19725774

(71) Anmelder:

SMS SCHLOEMANN-SIEMAG AKTIENGESELLSCHAFT 40237 Düsseldorf (DE)

(72) Erfinder: Hauck, Albert 57271 Hilchenbach (DE)


(74) Vertreter:

Valentin, Ekkehard et al Patentanwälte, Müller-Grosse-Pollmeier-Valentin-Gihske, Hammerstrasse 2

57072 Siegen (DE)

(54)Vorrichtung zur Bildung von Schlingen aus einem aus einer Walzdrahtstrasse austretenden Drahtstrang mittels eines rotierenden Schlingenlegers

(57)Eine Vorrichtung zur Bildung von Schlingen aus einem Drahtstrang (ST), der aus einer Walzdrahtstraße austritt. Die Schlingen werden von einem rotierenden Schlingenleger (SL) erzeuat. Der Walzdrahtstraße sind eine Treibeinrichtung (TE), und dieser der Schlingenleger (SL) und ein Rollgang (4) nachgeordnet. Auf diesem Rollgang (4) legt der Schlingenleger (SL) die Schlingen ab. Die Treibeinrichtung (TE) und der Schlingenleger (SL) sind mit vorbestimmten Neigungswinkeln (α, β) fest angeordnet und der Rollgang (4) ist um eine Achse (5) schwenkwinkelverstellbar.

10

25

Beschreibung

Die Erfindung betrifft eine Vorrichtung zur Bildung von Schlingen aus einem, aus einer Walzdrahtstraße austretenden Drahtstrang mittels eines rotierenden 5 Schlingenlegers und deren Ablage auf einen, während des Ablegens transportbewegten Förderer, bei der der Walzdrahtstraße eine Treibeinrichtung, ein Schlingenleger und ein Rollgang, ein Kettenförderer oder dergleichen nachgeordnet sind und Treibeinrichtung und ggfs. auch der Schlingenleger geneigt zur Horizontalen angeordnet sind.

Moderne Drahtwalzstraßen arbeiten mit immer höher werdenden Endgeschwindigkeiten, insb. beim Walzen von Draht mit kleinem Durchmesser. Es werden dabei Endgeschwindigkeiten von mehr als 100 m/s erreicht. Andererseits werden auch immer stärkere Abmessungen gewalzt, bis zu Drahtdurchmessern von über ca. 25 mm.

Diese sehr unterschiedlichen Walzparameter bringen Probleme bei der Ablage der Drahtschlingen des fertig gewalzten Drahtes auf den Förderer mit sich.

Nach dem Stand der Technik ist der Schlingenleger meist mit einem Winkel von etwa 10° zur Horizontalen fest angeordnet und die, diesem vorgeordnete Treibeinrichtung entweder in der Horizontalen oder ebenfalls unter dem gleichen oder einem kleineren Winkel angeordnet.

Um eine einwandfreie Ablage der Schlingen von Drähten mit kleinem Durchmesser unter sehr hohen Geschwindigkeiten einerseits und von großen Drahtdurchmessern mit geringeren Geschwindigkeiten andererseits zu erzielen, wurde bereits ein Schlingenleger vorgeschlagen, dessen Neigung zur Horizontalen veränderbar war. Für hohe Drahtgeschwindigkeiten beträgt der Neigungswinkel dabei z.B. 10° und für niedrige Geschwindigkeiten bis zu 30°. Diese Lösung brachte jedoch die folgenden, erheblichen Nachteile mit sich: Die unterschiedlichen Neigungen bedingen entsprechend veränderte Abstände zu den horizontalen Führungsebenen, d.h. es müssen jeweils entsprechend angepaßte unterschiedliche Umlenkführungen eingesetzt werden. Weiter sind schwenkbare Tragkonstruktionen für die Treibeinrichtung und den Schlingenleger notwendig. Diese Tragkonstruktionen sind nicht nur technisch aufwendig, sondern auch bei hohen Geschwindigkeiten anfällig gegen Schwingungen.

Der Erfindung liegt die Aufgabe zugrunde, diese Vorrichtungen so zu verbessern, daß unter Vermeidung sowohl der schwenkbaren Tragkonstruktionen und der verschiedenen Umlenkführungen, als auch der Schwingungsanfälligkeit der Tragkonstruktionen, die einwandfreie Ablage der Schlingen von Drahtstärken mit kleinen und auch großen Durchmessern ermöglicht wird.

Diese Aufgabe wird dadurch gelöst, daß bei fester Anordnung von Treibeinrichtung und Schlingenleger in einem vorbestimmten Neigungswinkel, die Transportebene des, die Schlingen aufnehmenden Förderers

schwenkwinkelverstellbar zur Horizontalen ausgebildet ist. Die Schwenkachse für die Schwenkwinkelverstellung des Förderers wird zweckmäßig mit Abstand unter dessen, dem Schlingenaufnahmeende abgewandten Ende angeordnet, während der Antrieb der Treibeinrichtung zweckmäßig bspw. über druckregelbare Pneumatik-KolbenZylinder-Aggregate regelbar und die Position der Tragrollen über Stellelemente, wie Stellschrauben einstellbar ist.

Die Erfindung wird anhand des in der Zeichnung dargestellten Ausführungsbeisplels näher erläutert.

Die Zeichnung zeigt die Anordnung von Treibeinrichtung, Schlingenleger und Förderer in schematischer Darstellung.

Hinter dem Ausgang der nicht dargestellten Walzdrahtstraße, aus der der Drahtstrang ST in Richtung des eingezeichneten Pfeiles austritt, ist die Treibeinrichtung TE mit den Treibrollen 1 und 2 angeordnet. Die gemeinsame Achsebene x-x liegt dabei in einem Winkel α zur Vertikalen. Hinter der Treibeinrichtung TE ist der Schlingenleger SL angeordnet. Die Rotationsachse y-y des Legerohres 3 verläuft dabei in einem Winkel ß zur Horizontalen, während der Legearm 3a des Legerohres 3 in einem Winkel δ zur Rotationsebene z-z des Legearms liegt. Der Förderer, hier ein Rollgang 4, ist um die Schwenkachse 5, die sich mit einem Abstand d unterhalb des, dem Schlingenaufnahmeende 4a abgewandten Endes 4b des Rollgangs 4 befindet, in einer vertikalen Ebene zwischen einer oberen Hoch-Position H, die in vollen Linien angedeutet ist und einer Tief-Position T, die in unterbrochenen Linien angedeutet ist, schwenkbar.

Die Treibrollen 1, 2 drehen vor Einlauf des Anfangs des Drahtstranges mit etwas höheren Drehzahlen als die der erwarteten Geschwindigkeit des Drahtes entsprechende, und ihr Öffnungsspalt ist geringfügig größer bemessen als der Drahtdurchmesser. Die Treibrollen 1, 2 werden, wenn der Anfang des Drahtes diese passiert hat und durch die nicht dargestellte Führung hinter den Treibrollen 1, 2 nach unten gelenkt wurde, geschlossen. Die geneigte Anordnung der gemeinsamen Achsebene der Treibrollen 1, 2 bewirkt neben dem Treib- auch einen Biegeeffekt auf den Draht. Dieser Biegeeffekt ist bei Draht mit großem Durchmesser größer, weil der Hebelarm, mit dem die Treibrollen 1, 2 auf den in einer waagerechten Ebene einlaufenden Draht wirken, größer ist, d.h. das Biegemoment vergrö-Bert sich mit steigendem Drahtdurchmesser. Dies erleichtert die Umlenkung des Drahtes und vermindert die dabei entstehenden Reibungsverluste. Neben der beschriebenen Umlenkarbeit müssen die Treibrollen 1, 2 auch die Enden von Drähten mit großem Durchmesser, nachdem diese die Drahtstraße verlassen haben, antreiben und zur Kompensation der Arbeit im Legerohr 3 beschleunigen. Dies wird durch die geneigte Anordnung der Treibrollen 1, 2 unterstützt.

Die Schlingen werden zunächst im Legearm 3a des Legerohres 3 gebildet, der auch den Durchmesser der

55

30

Schlinge bestimmt. Der Austritt der Schlingen in einem Winkel β zur Rotationsebene bewirkt eine Bewegung der austretenden Schlingen in Richtung der Rotationsachse y-y des Legearms 3a, die bei hohen Geschwindigkeiten des Drahtes bis zu 5 m/s erreicht. Diese Geschwindigkeiten werden bei Drähten mit kleinem Durchmesser erreicht. Diese weisen im walzwarmen Zustand eine geringe Stabilität auf. Um trotz dieser geringen Stabilität eine einwandfreie Ablage der Schlingen auf dem Rollgang 4 zu erreichen, wird dieser in die mit T bezeichnete Tief-Position abgesenkt. In dieser bremst der Rollgang 4 die aufgelegten Schlingen nur in einem geringen Maße ab, weshalb es nicht zur Verformung des Drahtes kommt.

Beim Legen der Schlingen von Drähten mit größerem Durchmesser ist deren Bewegungsgeschwindigkeit in Richtung der Rotationsachse y-y des Legearms 3a gering. Die Schlingen weisen wegen des größeren Drahtdurchmessers eine höhere Steifigkeit auf. Der Rollgang 4 wird deshalb in diesem Fall in die Hoch-Position H geschwenkt. Damit werden die Schlingen, unmittelbar nachdem sie den Legearm 3a verlassen haben, erheblich stärker abgebremst und damit das rechtzeitige Auflegen auf dem Rollgang 4 gewährleistet.

Die Lage der Schwenkachse 5 des Rollgangs 4 ist 25 so gewählt, daß beim Heben bzw. Senken die Position der ersten Rollgangsrolle 4a stets im günstigsten Abstand vom Legearm 3a bzw. dessen festen Führungsring 6 bleibt.

Patentansprüche

 Vorrichtung zur Bildung von Schlingen aus einem, aus einer Walzdrahtstraße austretenden Drahtstrang mittels eines rotierenden Schlingenlegers und zu deren Ablage auf einen während des Ablegens transportbewegten Förderer, bei der der Walzdrahtstraße eine Treibeinrichtung, ein Schlingenleger und ein Rollgang, ein Kettenförderer oder dergl. nachgeordnet und der Schlingenleger und ggfs. auch die Treibeinrichtung geneigt zur Horizontalen angeordnet sind,

dadurch gekennzeichnet,

daß bei fester Anordnung von Treibeinrichtung (TE) und Schlingenleger (SL) in einem vorbestimmten Neigungswinkel, der die Schlingen aufnehmende Förderer (4) schwenkwinkelverstellbar zur Horizontalen ausgebildet ist.

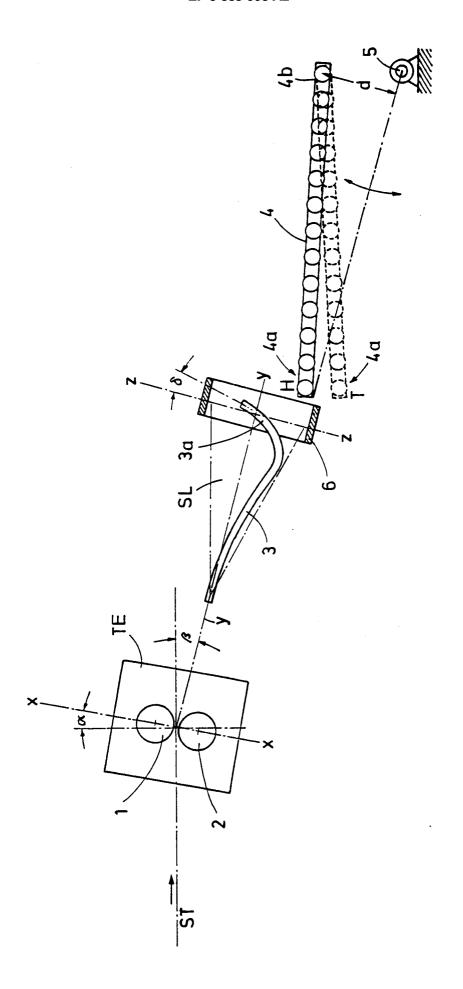
 Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Schwenkachse (5) für die Winkelverstellung des Förderers (4) im Abstand (d) unterdessen, dem Schlingenaufnahmeende (4a) abgewandten Ende (4b) angeordnet ist.

3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet,

daß der Antrieb der Treibeinrichtung (TE) regelbar ist

 Vorrichtung nach Anspruch 3, dadurch gekennzeichnet,

daß bei Antrieb beider Treibrollen (1, 2) der Treibeinrichtung (TR) deren Anpressung über druckregelbare Pneumatik-Kolben-Zylinder-Aggregate bewirkt wird.


5. Vorrichtung nach den Ansprüchen 3 und/oder 4, dadurch gekennzeichnet,

daß die Position der Treibrollen (1, 2) der Treibeinrichtung (TR) über Stellelemente, wie Stellschrauben einstellbar ist.

3

50

55

