

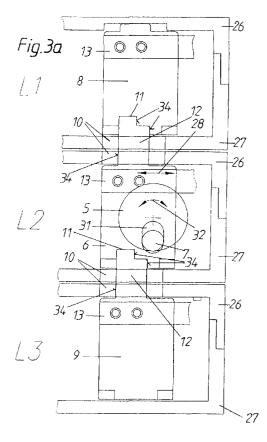
Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 0 890 968 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag:13.01.1999 Patentblatt 1999/02
- (51) Int Cl.⁶: **H01H 71/10**, H01H 71/74


- (21) Anmeldenummer: 98890179.9
- (22) Anmeldetag: 24.06.1998
- (84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

- (30) Priorität: 10.07.1997 AT 1190/97
- (71) Anmelder: Felten & Guilleaume Austria AG 3943 Schrems (AT)
- (72) Erfinder: Polgar, Tibor, Dr. Dipl.-Ing 2344 Maria Enzersdorf (AT)
- (74) Vertreter: Gibler, Ferdinand
 Patentanwalt
 Dipl.-Ing. Dr. Ferdinand Gibler
 Dorotheergasse 7
 1010 Wien (AT)

(54) Einphasiger Schutzschalter

(57)Einphasiger Schutzschalter mit einem Schaltwerk (2), welches zumindest von einem Überlastauslöseelement (1) betätigbar ist, wobei an den Schutzschalter zumindest ein weiterer, vorzugsweise zwei solche einphasigen Schutzschalter, derart ankoppelbar sind, daß bei Überlast an einem Schutzschalter zufolge der Kopplung eine allpolige Trennung hinsichtlich sämtlicher Schutzschalter erfolgt, und wobei gegebenenfalls eine ein Betätigungsorgan (5) und eine diesem zugeordnete Stromskala (33) aufweisende Strombereich-Einstelleinrichtung vorgesehen ist, wobei ein keilförmiges Verstellglied (4) zwischen dem Überlastauslöseelement (1) und einem auf das Schaltwerk (2) einwirkenden Bügel (3) angeordnet ist, das keilförmige Verstellglied (4) vermittels einer elastisch biegsamen Feder (13) mit einem Zwischenführungsstück (6) fest verbunden ist und das Zwischenführungsstück (6) in Arbeitsrichtung des Überlastauslöseelements (1) verschiebbar im Gehäuse des Schutzschalters gelagert ist.

30

40

Beschreibung

Die Erfindung betrifft einen einphasigen Schutzschalter mit einem Schaltwerk, welches zumindest von einem Überlastauslöseelement betätigbar ist, wobei an den Schutzschalter zumindest ein weiterer, vorzugsweise zwei solche einphasigen Schutzschalter, derart ankoppelbar sind, daß bei Überlast an einem Schutzschalter zufolge der Kopplung eine allpolige Trennung hinsichtlich sämtlicher Schutzschalter erfolgt, und wobei gegebenenfalls eine ein Betätigungsorgan und eine diesem zugeordnete Stromskala aufweisende Strombereich-Einstelleinrichtung vorgesehen ist.

Herkömmliche Schutzschalter weisen einen bestimmten, im Zuge der Herstellung durch geeignete Auswahl des Materials und durch geeigneten konstruktiven Aufbau des Überlastauslöseelementes vorgegebenen, im nachhinein nicht mehr veränderbaren Nennstrom auf. Für jeden gewünschten Nennstrom muß daher eine eigene Schutzschalter-Type erzeugt werden.

Bei gattungsgemäßen Schutzschaltern wird nun-wie auch bei Motorschutzschalter bekanntdazu übergegangen, eine Verstellbarkeit des Schutzschalter-Nennstromes vorzusehen. Dies hat den produktionstechnischen Vorteil, daß die Anzahl der Schutzschalter-Typen reduziert werden kann und der im jeweiligen Anwendungsfall notwendige Nennstromwert im vorgegebenen Bereich vom Anwender selbst gewählt werden kann

Ein solcher Schutzschalter wurde bereits durch die EP-B1-338 250 bekannt. Hier ist ein mehrphasiger Schutzschalter beschrieben, dessen einzelne Polstrekken durch Einzelschutzschalter gebildet sind. Jede Polstrecke weist daher eigene Schaltkontakte, eigene, diese Schaltkontakte betätigende Schaltschlösser sowie eigene, die Schaltschlösser betätigende Überlastund Kurzschlußauslöseelemente auf. Die Polstrecken sind dabei auf solche Weise miteinander verkoppelt, daß beim Auslösen eines einzigen Schaltschlosses auch sämtliche anderen Polstrecken ausgelöst werden.

Das Überlastauslöseelement ist durch einen Bimetallstreifen gebildet, dessen erstes Ende im Schutzschalter festgelegt und dessen zweites Ende sich durch Verbiegung des Bimetalles infolge Erwärmung durch den zu überwachenden Strom auf das Schaltschloß zubewegen und dieses bei Berührung auslösen kann.

Um die angesprochene Verstellung des Nennstromes zu erreichen, ist bei jedem Einzelschalter zwischen dem freien Ende des Bimetalles und dem Schaltwerk ein keilförmiges Verstellglied angeordnet. Das freie Ende des Bimetalles muß daher zur Einleitung des Auslösevorganges nicht den gesamten Abstand zwischen seiner Ruhestellung und dem Schaltwerk, sondern nur mehr die Differenz aus diesem Gesamtabstand und der momentan zwischen freiem Bimetallende und Schaltschloß wirksamen Keilstärke zurücklegen. Diese wirksamc Keilstärke wird auf einfache Weise durch transla-

torische Verschiebung des keilförmigen Verstellgliedes erreicht.

Um diese Verschiebung vornehmen zu können, ist gemäß der **EP-B1-338 250** ein einziges, allen Polstrekken gemeinsames Zwischenführungsstück vorgesehen. Die einzelnen Verstellglieder sind an diesem Zwischenführungsstück in Arbeitsrichtung des Bimetallstreifens mithilfe von Gelenken relativ zueinander beweglich aufgehängt.

Das Zwischenführungsstück selbst ist in den Einzelgehäusen quer zur Arbeitsrichtung des Bimetallstreifens verschiebbar gelagert, demzufolge auch die Keiloberflächen etwa quer zur Bimetall-Arbeitrichtung verlaufen.

Die Bewegung des Zwischenführungsstückes erfolgt über ein zentrales Betätigungsorgan, das als zylinderförmiger, in einem das Zwischenführungsstück abdeckenden gemeinsamen Gehäuseteil um seine Längsachse verschwenkbar gelagerten Drehknopf gebildet ist. Dieser weist an seiner dem Zwischenführungsstück zugewandten Stirnseite einen exzentrisch angeordneten Zapfen auf, welcher in ein im Zwischenführungsstück angeordnetes Langloch eingreift.

Eine solche Konstruktion weist einige entscheidende Nachteile auf:

Aufgrund des Verwendens eines gemeinsamen Zwischenführungsstückes für alle drei Polstrecken erfordert der Zusammenbau dieses mehrphasigen Schutzschalters im wesentlichen zwei Arbeitsgänge: Erstens müssen die Einzelschalter aneinander festgelegt werden und zweitens muß das gemeinsame Zwischenführungsstück in diesen Zusammenbau eingesetzt werden.

Da die Verstellglieder, die ja am gemeinsamen Zwischenführungsstück festgelegt sind, im nicht zusammengebauten Zustand noch nicht vorhanden sind, sind die Einzelschalter für sich allein nicht funktionsfähig. Sie können daher nur im Verbund, nicht jedoch zur Absicherung von einzelnen Leitungen eingesetzt werden.

Daneben ist eine separate Überprüfung der einzelnen Polstrecken im noch nicht zusammengebauten Zustand unmöglich. Eine Funktionsüberprüfung der einzelnen Polstrecken kann vielmehr erst im zusammengebauten Zustand durch Beaufschlagung jeweils einer Polstrecke mit einem Teststrom durchgeführt werden. Erweist sich dabei eine Polstrecke als fehlerhaft, muß der Schalter wieder in seine Einzelteile (Einzelschalter und gemeinsames Zwischenführungsstück) zerlegt werden, der fehlerhafte Einzelschalter ersetzt und der Schutzschalter erneut zusammengebaut werden.

Weiters ist die Polanzahl des Schutzschalters durch die Ausgestaltung des gemeinsamen Zwischenführungsstückes begrenzt. Für jede gewünschte Polanzahl müssen daher eigene Zwischenführungsstücke vorgesehen sein.

Die Betätigung des Schaltschlosses durch den Bimetallstreifen selbst bringt folgende Schwierigkeiten mit sich: Das Bimetall wärmt sich bei seiner normalen Funk-

20

40

tion bis zu 250°C auf. Der direkt vom Bimetall berührte, in seiner Form oft komplexe und relativ voluminöse Schaltschloß-Teil muß aus entsprechend temperaturfestem und damit teurerem Kunststoff oder Metall gefertigt werden. Weiterhin ergibt sich durch die Direktbetätigung des Schlosses eine geringe Vibrations- und Schockfestigkeit, weil die Bimetall-Schwingungen direkt auf das Schloß übertragen werden.

Die Aufhängung der keilförmigen Verstellglieder an starr am Zwischenführungsstück festgelegten Gelenken macht es erforderlich, diese Gelenke sehr genau im vorgesehenen Abstand zueinander und zu den Berandungen des Zwischenführungsstückes festzulegen. Jede Fehlpositionierung eines Gelenkes würde unmittelbar eine Veränderung der Ruheposition des an ihm gelagerten Keiles und damit eine ungewollte Veränderung der Ansprechempfindlichkeit der zugehörigen Polstrekke nach sich ziehen. Das Zwischenführungsstück muß daher mit sehr kleinen Toleranzen und damit mit hohem Aufwand verbunden hergestellt werden.

Es ist Aufgabe der Erfindung, einen einphasigen Schutzschalter der eingangs näher erläuterten Art anzugeben, welcher für sich allein vollständig funktionsfähig ist und in beliebiger Anzahl mit gleichartigen einphasigen Schutzschaltern ohne Hinzufügung von weiteren Bauteilen zu einem mehrphasigen Schutzschalter zusammenbaubar ist. Der Schutzschalter soll weiters eine hohe Schock- und Vibrationsfestigkeit aufweisen sowie relativ unkritisch hinsichtlich Ungenauigkeiten bei der Positionierung der Verbindungsstellen von Verstellglied und Zwischenführungsstück sein.

Erfindungsgemäß wird dies dadurch erreicht, daß ein keilförmiges Verstellglied zwischen dem Überlastauslöseelement und einem auf das Schaltwerk einwirkenden Bügel angeordnet ist, daß das keilförmige Verstellglied vermittels einer elastisch biegsamen Feder mit einem Zwischenführungsstück fest verbunden ist und daß das Zwischenführungsstück in Arbeitsrichtung des Überlastauslöseelements verschiebbar im Gehäuse des Schutzschalters gelagert ist.

Jeder erfindungsgemäße einphasige Schutzschalter weist damit sein eigenes Zwischenführungsstück mit daran festgelegtem Verstellglied auf. Er kann daher unabhängig von weiteren Bauteilen betrieben, d.h. für sich allein zur Absicherung einer einzelnen stromführenden Leitung verwendet bzw. in beliebiger Anzahl mit gleichartigen weiteren einphasigen Schutzschaltern gekoppelt und zur Absicherung eines mehrphasigen Leitersystems eingesetzt werden.

Die indirekte Einwirkung des Bimetallstreifens auf das Schaltwerk vermittels eines Bügels bedingt zunächst, daß nur dieser -konstruktiv relativ einfache und wenig Material erfordernde- Bauteil aus einem temperaturfesten Werkstoff gefertigt werden muß. Weiters wirkt sich ein richtig dimensionierter Bügel schwingungsdämpfend aus, wodurch die Vibrationsfestigkeit des Schutzschalters deutlich verbessert wird.

Die zur Verbindung des keilförmigen Verstellgliedes

mit dem Zwischenführungsstück gewählte elastische Feder kann geringfügigen seitlichen Versatz seiner Befestigungstellen am Zwischenführungsstück und am Verstellglied aufnehmen, sodaß derartige Herstellungsungenauigkeiten nicht zu Verschiebungen des Verstellgliedes in seiner Arbeitsrichtung sondern lediglich zu geringfügigen Verdrehungen, welche die zwischen Überlastauslöseelement und dem Bügel wirksame Breite aber nicht verändern, führen. In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, daß das Zwischenführungsstück fest mit dem Zwischenführungsstück eines an den Schutzschalter angekoppelten weiteren Schutzschalters verbindbar ist.

Damit erfolgt eine gleichzeitige Verstellung der Nennströme sämtlicher miteinander verkoppelter einphasiger Schutzschalter, wodurch diese Verstellung einerseits rasch durchführbar ist und andererseits sichergestellt ist, daß sämtliche Einzelschutzschalter auf denselben Nennstromwert eingestellt werden.

In diesem Zusammenhang kann in Weiterbildung der Erfindung vorgesehen sein, daß das Zwischenführungsstück an den einem angekoppelten weiteren Schutzschalter zugewandten Stirnseiten eine Ausnehmung und/oder eine zu dieser Ausnehmung kongruente Anformung aufweist, welche Anformung das Gehäuse des Schutzschalters durchragt.

Diese Konstruktionsweise erlaubt eine formschlüssige und daher ohne jegliche Hilfsmittel wie Kleber, Schrauben od. dgl. auskommende Verbindung der Zwischenführungsstücke von aneinandergekoppelten Schutzschaltern.

Dabei hat es sich als besonders vorteilhaft erweisen, daß die Anformung und die Ausnehmung normal zur Bewegungsrichtung des Zwischenführungsstückes verlaufende Seitenflächen aufweisen.

Bei richtiger Positionierung der Zwischenführungsstücke zweier benachbarter Einzelschutzschalter müssen diese lediglich aneinander angelegt werden, die Verbindung ihrer Zwischenführungsstücke, also das Eingreifen der Anformung des einen in die Ausnehmung des anderen Zwischenführungsstückes erfolgt dabei automatisch. Ein separates Verbinden der Zwischenführungsstücke, welches bei Verwendung von mit Hinterschneidungen versehenen Anformungen und Ausnehmungen notwendig wäre, kann entfallen.

Die Erfindung wird nachstehend anhand der in den Zeichnungen dargestellten bevorzugten Ausführungsformen näher erläutert.

Dabei zeigt:

Fig. 1a einen erfindungsgemäßen einphasigen Schutzschalter im Seitenriß bei abgenommener Oberschale:

Fig. 1b den Schutzschalter nach Fig. 1a im Grundriß:

Fig. 1c die Nennstrom-Verstelleinrichtung des Schutzschalters nach Fig. 1a,b im Seitenriß bei abgenommener Oberschale in größerem Maßstab;

15

Fig. 2 das Zwischenführungsstück mit Betätigungsorgan des Schutzschalters nach Fig. 1,2 im Detail im Grundriß;

Fig.3a die Zwischenführungsstücke dreier miteinander verkoppelter einphasiger Schutzschalter nach Fig. 1,2 im Detail im Grundriß;

Fig.3b,c die Nennstrom-Verstelleinrichtung der in Fig.3a mit L1 und L3 bezeichneten einphasigen Schutzschalter im Seitenriß bei abgenommener Oberschale;

Fig.4a die Zwischenführungsstücke der in Fig.3a mit L1 und L2 bezeichneten einphasigen Schutzschalter im Grundriß in größerem Maßstab und Fig.4b die Zwischenführungsstücke gemäß Fig.4a in derselben Darstellungsart mit einer anderen Weise der Ausbildung ihrer Anformung und Ausnehmung.

Der erfindungsgemäße einphasige Schutzschalter ist, wie am besten aus Fig.la ersichtlich, ähnlich einem herkömmlichen Leitungsschutzschalter aufgebaut.

Er umfaßt im wesentlichen zwei Schraubklemmen 14, 15 zum Anschluß der zu überwachenden Leitung, ein Überlastauslöseelement 1 sowie eine Kurzschlußauslöseeinrichtung 16, daneben ein Schaltwerk 2, das den beweglichen Kontakt 17 von der in Fig. la dargestellten geschlossenen in eine geöffnete Stellung bewegen kann.

Der zu überwachende Strom durchfließt in diesem Schutzschalter ausgehend von der ersten Schraubklemme 14 zunächst das Überlastauslöseelement 1, gelangt über ein bewegliches Leiterseil 19 und den Kontakträger 20 zum beweglichen Kontakt 17, danach über den feststehenden Kontakt 18 zur Kurzschlußauslöseeinrichtung 16 und abschließend zur zweiten Anschlußklemme 15.

Das Schaltwerk 2 ist sowohl von der Kurzschlußauslöseeinrichtung 16 als auch vom Überlastauslöseelement 1 in den nachstehend beschriebenen Weisen betätigbar.

Die Kurzschlußauslöseeinrichtung 16 ist in an sich bekannter Weise durch eine Magnetspule mit beweglichem Anker gebildet, welcher Anker bei entsprechend hohen Kurzschlußströmen auf den Kontaktträger 20 des Schaltwerkes 2 schlägt.

Das Überlastauslöseelement 1 besteht aus einem Bimetallstreifen, der vom zu überwachenden Strom erwärmt wird. Das erste Ende 21 des Bimetallstreifens ist im Gehäuse des Schutzschalters festgelegt, das zweite Ende 22 ist frei beweglich gehalten. Die durch die Erwärmung des Bimetalls hervorgerufene Verbiegung desselben führt daher zu einer Bewegung des zweiten Endes 22 in Richtung des Pfeiles 23. Bei ausreichend starker Erwärmung kommt das freie Ende 22 des Bimetallstreifens bei dieser Bewegung in Berührung mit dem auf den Kontaktträger 20 einwirkenden Bügel 3, nimmt diesen in Bewegungsrichtung mit und löst dadurch ein Ansprechen des Schaltwerkes 2 aus.

Der Kontaktträger 20 ist mittels einer Feder 24 in Richtung geöffneter Stellung des beweglichen Kontaktes 17 vorgespannt. Die erläuterten geringfügigen Auslenkungen des Kontaktträgers 20 durch den Anker der Kurzschlußauslöseeinrichtung 16 bzw. durch das Überlastauslöseelement 1 über den Bügel 3 werden mittels dieser Feder 24 zur vollständigen Verschwenkung des Kontaktträgers 20 in die geöffnete Stellung des beweglichen Kontaktes 17 verstärkt.

Zum Einschalten des Schutzschalters, d.h. zum Zurückverschwenken des Kontaktträgers 20 in die geschlossene Stellung des beweglichen Kontaktes 17 ist ein von außen zugänglicher, händisch bedienbarer Hebel 25 vorgesehen.

Das Gehäuse des erfindungsgemäßen Schutzschalters ist in an sich bekannter Weise zweiteilig, bestehend aus Unterschale 26 und Oberschale 27, ausgeführt (vgl. Fig. 1b).

Die Besonderheit des erfindungsgemäßen Schutzschalters liegt in einer Einrichtung zur Verstellung der Ansprechempfindlichkeit des Überlastauslöseelementes 1. also in einer Nennstrom-Verstelleinrichtung, welche im Detail in Fig. 1c dargestellt ist.

Die wichtigste Komponente dieser Verstelleinrichtung ist das keilförmige Verstellglied 4, welches zwischen dem Überlastauslöseelement 1 -genau genommen zwischen seinem freien Ende 22- und dem auf das Schaltwerk 2 einwirkenden Bügel 3 angeordnet ist. Weiters ist ein Zwischenführungsstück 6 vorgesehen, das im Gehäuse des Schutzschalters in Richtung des Pfeiles 28, also in Arbeitsrichtung des Überlastauslöseelements 1 -symbolisiert durch den Pfeil 23- verschiebbar gelagert ist.

Das keilförmige Verstellglied 4 ist vermittels einer elastisch biegsamen Feder 13, die in einer Führung 29 gehalten ist mit dem Zwischenführungsstück 6 fest verbunden. Die Feder 13 ist bei der in den Zeichnungen dargestellten Ausführungsform der Erfindung sowohl mit dem Verstellglied 4 als auch mit dem Zwischenführungsstück 6 vernietet, was aber nicht einschränkend zu verstehen ist, auch andere Verbindungsarten wie Kleben, Schweißen usw. könnten eingesetzt werden.

Die durch die Verschiebung des Zwischenführungsstückes 6 in Arbeitsrichtung des Überlastauslöseelementes 1, also in Richtung der Pfeile 23, 28 bewirkte Bewegung der Feder 13 wird im Bereich der Führung 29 um etwa 90° umgelenkt, sodaß das Verstellglied 4 in Richtung parallel zum Überlastauslöseelement 1 (symbolisiert durch Pfeil 30) verschoben wird.

Das freie Ende 22 des Überlastauslöseelementes 1 braucht bei dieser Anordnung um den Bügel 3 zu berühren und damit eine Auslösung des Schaltwerkes 2 zu bewirken, nicht den gesamten Abstand zwischen seiner Ruhelage und diesem Bügel 3 zurücklegen. Dieser Abstand wird um die gerade zwischen freiem Ende 22 und Bügel 3 liegende Breite des Verstellgliedes 4 reduziert. Um das freie Ende 22 in seiner Bewegung nicht zu behindern, muß das Verstellglied 4 möglichst leicht

40

45

50

20

35

verschwenkbar sein, was durch möglichst hohe Elastizität der Feder 13 erreicht wird. Die Feder 13 kann dazu als dünnes Band oder als dünnes Seil aus Metall oder Kunststoff gefertigt sein.

Durch die erläuterte Verschiebung des Verstellgliedes 4 kann ihre momentan wirksame Breite und damit der zur Schaltschloßauslösung notwenige Auslenkweg des freien Endes 22 verändert werden. Der Auslenkweg des freien Endes 22 ist abhängig von der gerade herrschenden Stärke des zu überwachenden Stromes, sodaß durch Verschiebung des Verstellgliedes 4 letztendlich die Ansprechstromstärke, also der Nennstrom der Überstromauslöseeinrichtung 1 eingestellt werden kann

Um die erwähnte Verschiebung des Zwischenführungsstückes 6 ausführen zu können, ist ein Betätigungsorgan 5 vorgesehen (vgl. Fig.2). Dieses ist als zylinderförmiger Drehknopf ausgebildet und um seine Längsachse verschwenkbar im Gehäuse des Schutzschalters gelagert.

An seiner dem Zwischenführungsstück 6 zugewandten Stirnseite weist das Betätigungsorgan 5 einen exzentrisch angeordneten Stift 7 auf, welcher in ein im Zwischenführungsstück 6 angeordnetes Langloch 31 eingreift.

Über Stift 7 und Langloch 31 wird die vorzugsweise mittels eines Schraubenziehers auf das Betätigungsorgan 5 aufgebrachte rotationsförmige Einstellbewegung (symolisiert durch Pfeil 32) in die translatorische, in Arbeitsrichtung des Überlastauslöseelementes 1 verlaufende Bewegung des Zwischenführungsstückes 6 umgewandelt.

Damit der tatsächlich eingestellte Nennstromwert von außen ersichtlich ist, ist an der Gehäuseaußenwandung im Bereich des Betätigungsorganes 5 eine diesem zugeordnete Stromskala 33 aufgebracht (vg1. Fig. 1b).

Der bislang beschriebene Schutzschalter ist einphasig, also zur Überwachung lediglich einer einzigen stromführenden Leitung geeignet. In den meisten Anwendungsfällen werden Leitungsschutzschalter aber mehrphasig aufgebaut, sodaß sie gleichzeitig mehrere stromführende Leitungen überwachen können. Im gängigen Drehstromsystem werden zumeist zwei-, dreioder vierphasige Leitungsschutzschalter (zur Überwachung eines aus L und N, L1, L2 und L3 oder L1, L2, L3 und N bestehenden Systems) eingesetzt.

Erfindungsgemäße Schutzschalter sind so gestaltet, daß mehrere solche einphasigen Schutzschalter derart an einander ankoppelbar sind, daß bei Überlast an einem Schutzschalter zufolge der Kopplung eine allpolige Trennung hinsichtlich sämtlicher Schutzschalter erfolgt. Jeder erfindungsgemäße Schutzschalter ist wie oben eingehend beschrieben für sich allein voll funktionsfähig, sodaß durch einfaches Nebeneinanderschichten von Einzelschaltern ein mehrphasiger Schutzschalter gebildet werden kann.

Die Verkopplung der einzelnen Schaltwerke 2 kann im einfachsten Fall dadurch bewirkt werden, daß die zur

händischen Einschaltung vorgesehenen Hebel 25 der einzelnen Schutzschalter miteinander mechanisch verbunden werden. Alternativ dazu ist es auch möglich, die Schaltwerke 2 jeweils mit einem (in den Zeichnungen der Übersicht halber nicht dargestellten) Finger zu versehen, der das Gehäuse seines wie auch das Gehäuse des benachbarten Schutzschalters seitlich durchragt, in das Schaltwerk 2 des benachbarten Schutzschalters eingreift und dieses bei Ansprechen seines Schaltwerkes 2 ebenfalls betätigt. Die angesprochene einfache Nebeneinanderschichtung von einphasigen Schutzschaltern gemäß den Fig.1 und 2 hätte zur Folge, daß jede Polstrecke des dabei entstehenden mehrphasigen Schutzschalters seine eigene, von den aller anderen Polstrecken separate Nennstrom-Einstelleinrichtung aufwiese. Dies ist sicherlich keine denkunmögliche Ausgestaltung eines mehrphasigen Schutzschalters, sie wäre in der Praxis jedoch unpraktisch, weil der Benutzer jede Polstrecke separat justieren müßte.

Erfindungsgemäß ist daher vorgesehen, die Zwischenführungsstücke 6 von miteinander verkoppelten Schutzschalter fest miteinander zu verbinden. Um diese Verbindung realisieren zu können, müssen die Gehäuse der betroffenen Schalter im Bereich der Zwischenführungsstücke 6 zugänglich, also z.B. mit Durchbrechungen 10 versehen sein.

Die Art der Verbindung ist prinzipiell beliebig wählbar: Zwei benachbarte Zwischenführungsstücke 6 können beispielsweise durch Verklebung, Verschweißung, Vernietung oder durch formschlüssig in beide Zwischenführungsstücke 6 eingreifende zusätzliche Bauteile, wie Stifte, aneinander festgelegt werden.

Eine besonders bevorzugte Art der Verbindung ist in den Fig.3,4 an Hand eines dreiphasigen Schutzschalters dargestellt und soll im folgenden näher erläutert werden.

Das Zwischenführungsstück 6 des mittleren Schutzschalters L2 weist an der dem Schutzschalter LI zugewandten Stirnseite eine Anformung 12 auf, welche sich durch eine Durchbrechung 10 der Unterschale 26 hindurcherstreckt und somit das Gehäuse des Schutzschalters L2 durchragt. Die Oberschale 27 des Schutzschalters L1 weist ebenfalls eine Durchbrechung 10 auf, die beim Aneinanderfügen der beiden Schutzschalter L1, L2 über der Durchbrechung 10 des Schutzschalters L2 zu liegen kommt. Die Anformung 12 kann damit auch das Gehäuse des Schutzschalters L1 durchragen und sich in dessen Innenraum hineinerstrecken.

Das Zwischenführungsstück 8 des Schutzschalters L1 weist eine zur Anformung 12 konkruente Ausnehmung 11 auf, in welche die Anformung 12 eingreift, wodurch die Zwischenführungsstücke 6, 8 formschlüssig miteinander verbunden werden.

Durch genau dieselben konstruktiven Maßnahmen -nämlich Anformung 12 am ersten und dazu kongruente Ausnehmung 11 im zweiten Zwischenführungsstücksind die Zwischenführungsstücke 6, 9 der Schutzschalter L2 und L3 miteinander verbunden. Im Unterschied

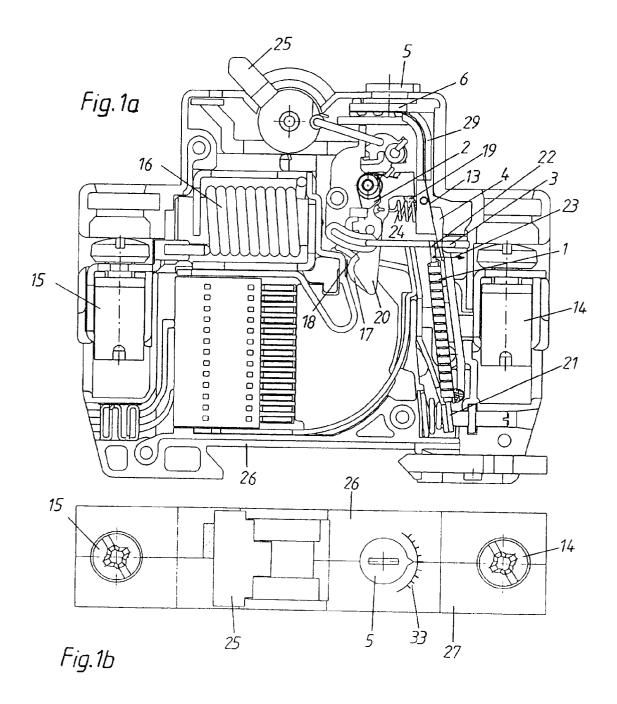
15

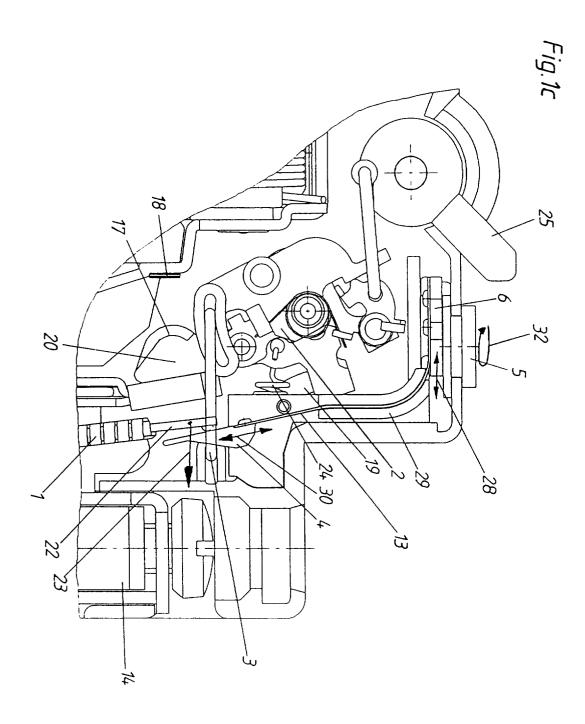
30

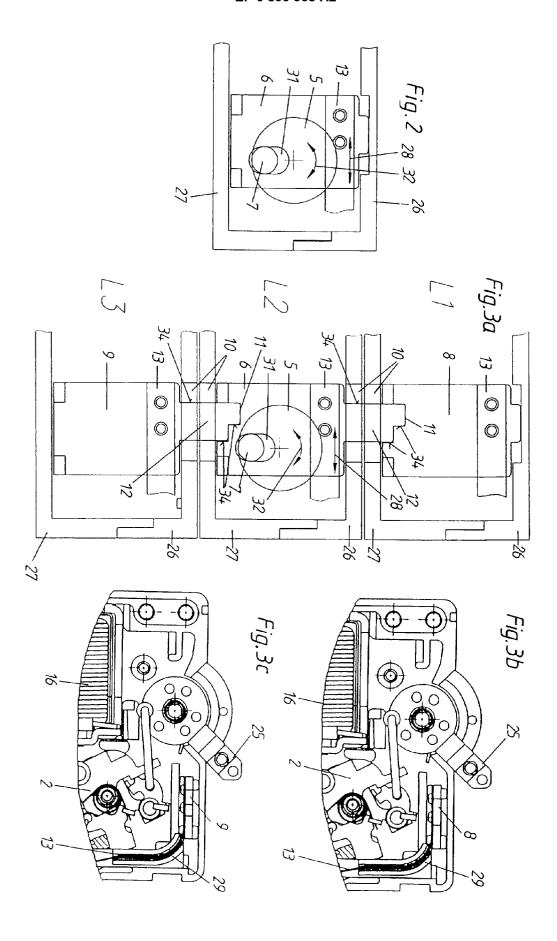
zur Verbindung der Zwischenführungsstücke 6, 8 der Schutzschalter L1, L2 weist hier das Zwischenführungsstück 9 des Schutzschalters L3 die Anformung 12 und das Zwischenführungsstück 6 des Schutzschalters L2 die Ausnehmung 11 auf.

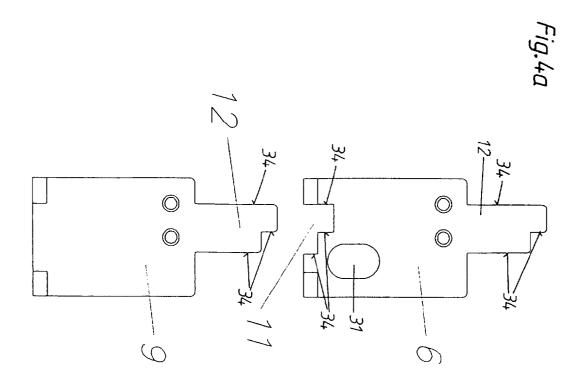
Die Anformungen 12 und die Ausnehmung 11 weisen normal zur Bewegungsrichtung des Zwischenführungsstückes 6 verlaufende Seitenflächen 34 auf (vgl. Fig.4a). Diese Konstruktionsweise hat den entscheidenden Vorteil, daß die Schutzschalter L1, L2, L3 beim Zusammenbau lediglich in der dargestellten Weise aneinander angelegt werden müssen. Die beschriebene formschlüssige Verbindung ihrer Zwischenführungsstücke 6, 8, 9, also das Eingreifen der Anformung 12 des einen in die Ausnehmung 11 des anderen Zwischenführungsstückes erfolgt dabei automatisch.

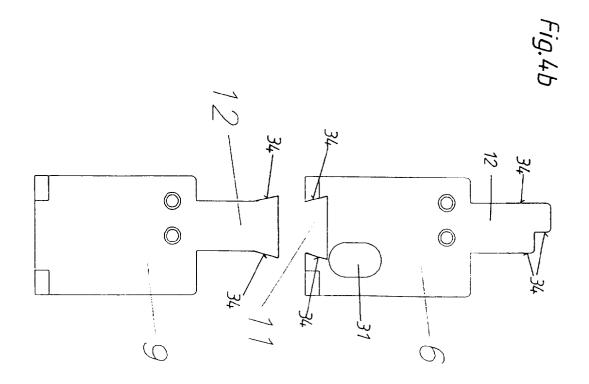
Natürlich ist diese Art der Ausbildung von Anformung 12 und Ausnehmung 11 nicht einschränkend zu verstehen, die Seitenflächen 34 könnten beispielsweise miteinander einen spitzen Winkel bilden, Anformung 12 und Ausnehmung 11 also im Grundriß gesehen dreieckförmig ausgebildet sein. Eine weitere Möglichkeit liegt darin, die Anformung 12 sich mit zunehmenden Abstand von der Stirnseite des Zwischenführungsstückes 6 verbreiternd und die Ausnehmung 11 dementsprechend mit zunehmender Tiefe verbreiternd auszubilden (vgl. Fig.4b). Bei dieser Ausgestaltungsweise ist es allerdings notwendig, die Zwischenführungsstücke 6, 8, 9 in einem gesonderten Arbeitsgang ineinander einzuhängen.


Die feste Verbindung der einzelnen Zwischenführungsstücke 6, 8, 9 bewirkt eine gleichzeitige Verstellung der Nennstrombereiche sämtlicher Schutzschalter L1, L2, L3 bei Verschiebung eines einzigen Zwischenführungsstückes. Damit ist es nicht notwendig, die Nennstrom-Einstelleinrichtungen jedes Schutzschalters L1, L2, L3 mit einem eigenen Betätigungsorgan 5 zu versehen. Diese Betätigungsorgane 5 wurden daher bei den äußeren Schutzschalter L1, L3 des dreiphasigen Schutzschalters der Fig.3 weggelassen. In weiterer Folge wurden in den Zwischenführungsstücken 8, 9 keine Langlöcher 31 eingebracht, sowie keine Stromskalen 33 an der Außenseite ihrer Gehäuse angebracht.


Daneben ist keine abermalige Erhöhung der Polstreckenanzahl vorgesehen, wodurch die äußeren beiden Schutzschalter L1 und L3 nicht mehr mit weiteren Schutzschaltern verkoppelbar sein müssen. Ihre freiliegenden Gehäuseschalen -bei Schutzschalter L1 dessen Unterschale 26 und bei Schutzschalter L3 dessen Oberschale 27- weisen daher keine Durchbrechungen 10 auf, weiters weisen ihre Zwischenführungsstücke 8, 9 nur jeweils entweder eine Anformung 12 (Zwischenführungsstück 9) oder eine Ausnehmung 11 (Zwischenführungsstück 8) auf.


Patentansprüche


- Einphasiger Schutzschalter mit einem Schaltwerk (2), welches zumindest von einem Überlastauslöseelement (1) betätigbar ist, wobei an den Schutzschalter zumindest ein weiterer, vorzugsweise zwei solche einphasigen Schutzschalter, derart ankoppelbar sind, daß bei Überlast an einem Schutzschalter zufolge der Kopplung eine allpolige Trennung hinsichtlich sämtlicher Schutzschalter erfolgt, und wobei gegebenenfalls eine ein Betätigungsorgan (5) und eine diesem zugeordnete Stromskala (33) aufweisende Strombereich-Einstelleinrichtung vorgesehen ist, dadurch gekennzeichnet, daß ein keilförmiges Verstellglied (4) zwischen dem Überlastauslöseelement (1) und einem auf das Schaltwerk (2) einwirkenden Bügel (3) angeordnet ist, daß das keilförmige Verstellglied (4) vermittels einer elastisch biegsamen Feder (13) mit einem Zwischenführungsstück (6) fest verbunden ist und daß das Zwischenführungsstück (6) in Arbeitsrichtung des Überlastauslöseelements (1) verschiebbar im Gehäuse des Schutzschalters gelagert ist.
- Einphasiger Schutzschalter nach Anspruch 1, dadurch gekennzeichnet, daß das Zwischenführungsstück (6) fest mit dem Zwischenführungsstück (8, 9) eines an den Schutzschalter angekoppelten weiteren Schutzschalters verbindbar ist.
- 3. Einphasiger Schutzschalter nach Anspruch 2, dadurch gekennzeichnet, daß das Zwischenführungsstück (6, 8, 9) an den einem angekoppelten weiteren Schutzschalter zugewandten Stirnseiten eine Ausnehmung (11) und/oder eine zu dieser Ausnehmung (11) kongruente Anformung (12) aufweist, welche Anformung (12) das Gehäuse des Schutzschalters durchragt.
- 40 4. Einphasiger Schutzschalter nach Anspruch 3, dadurch gekennzeichnet, daß die Anformung (12) und die Ausnehmung (11) normal zur Bewegungsrichtung des Zwischenführungsstückes (6, 8, 9) verlaufende Seitenflächen (34) aufweisen.


55

