Technical Field
[0001] This invention relates to a field emission display as defined in the pre-characterized
part of claim 1. It also relates to a method of driving an emitting panel of such
display.
Background of the Invention
[0002] Flat panel displays are widely used in a variety of applications, including computer
displays. One type of device suited for such flat panel displays is the field emission
display.
[0003] Field emission displays typically include a generally planar emitter beneath a display
screen. The emitting panel is a substrate having an array of surface discontinuities
projecting from an upper surface. In many cases, the surface discontinuities are conical
projections, or "emitters" integral to the substrate. Typically, the emitters are
grouped into emitter sets where the bases of the emitters in the emitter sets are
commonly connected. A conductive extraction grid is positioned above the emitters
and driven with a voltage of about 30V-120V. The emitter sets are then selectively
activated to produce an electric field extending from the extraction grid to the emitters
by providing a current path between the bases of the emitters and ground. In response
to the electric field, the emitter sets emit electrons.
[0004] The display screen is mounted directly above the extraction grid, and it is coated
with a transparent conductive material to form an anode biased to about 1-2kV. The
anode attracts the emitted electrons, causing the electrons to pass through the extraction
grid. A cathodoluminescent layer covers the anode and faces the extraction grid to
intercept the electrons as they travel toward the 1-2kV potential of the anode. The
electrons strike the cathodoluminescent layer causing the cathodoluminescent layer
to emit light at the impact site. The emitted light then passes through the anode
and display screen where it is visible to a viewer.
[0005] The brightness of the light produced in response to the emitted electrons depends,
in part, upon the rate at which electrons strike the cathodoluminescent layer, which
in turn depends upon the amount of current available to provide electrons to the emitter
sets. The brightness of each area can then be controlled by controlling the current
flow to the respective emitter set. Thus, by selectively controlling the current flow
to the emitter sets, the light from each area of the display can be controlled and
an image can be produced. The light emitted from each of the areas thus becomes all
or part of a picture element or "pixel."
[0006] One problem in such field emission displays is consistent control of current to the
emitters, especially where driving circuits are integrated into the same substrate
as the emitters. Such integrated driving circuits typically include field effect transistors
driven by external signals to selectively couple the emitters to ground.
[0007] The high impedance of such transistors permits little current leakage through the
transistors. Consequently, current leaking into or out of substrate may cause charge
accumulation that is not dispersed by the integrated driving circuit. Such charge
accumulation can have detrimental effects on the operation of the field emission display.
For example, where the integrated transistors are intended to be OFF, charge buildup
can affect the biasing of the transistors to allow current to bleed through the transistor
channel. Such current bleeding through the transistors may provide electrons to the
emitters and cause unwanted emission of light.
[0008] In accordance with the pre-characterizing part of claim 1, EP-A-0 496 572 discloses
a field emission display having a structure substantially as that outlined hereinabove.
The object of the present invention is to avoid the disadvantages of the prior art
display device.
[0009] This is achieved in accordance with the features of claim 1.
Summary of the Invention
[0010] The field emission display according to the invention includes an emitter panel formed
from a substrate having several emitters on an upper surface of the substrate. An
insulative layer surrounds the emitters and supports an extraction grid. The extraction
grid is a conductive layer that encircles the emitters and provides a grid voltage
to establish an electric field between the extraction grid and the emitters. If the
voltage differential between the emitters and the extraction grid is sufficiently
high, the resulting electric field causes the emitters to emit electrons.
[0011] A transparent plate covered by a transparent conductive coating forms an anode. The
anode is positioned above the emitters and a positive voltage on the order of 1-2
kV is applied to the anode to cause it to attract the emitted electrons. A cathodoluminescent
layer covers the transparent conductive anode such that electrons traveling toward
the anode strike the cathodoluminescent layer. In response, the cathodoluminescent
layer emits light that passes through the transparent plate to be viewed by an observer.
[0012] Control of current to the emitters is achieved by driving circuitry integrated into
the same substrate that carries the emitters. The integrated driving circuitry includes
multiple transistors integrated into the substrate and covered by an insulative layer.
[0013] A charge shield covers the insulative layer above the integrated driving circuit
to provide a protective barrier for the driving circuit. A passivation layer covers
the charge shield to protect and insulate the charge shield. The charge shield provides
a conductive ground plane between the passivation layer and the insulative layer to
bleed charges to ground, thus preventing the charges from affecting the integrated
driving circuitry. Additionally, the charge shield forms a conductive plane that terminates
electric field within the passivation layer. By terminating the electric fields, the
charge shield reduces the effects of transient changes in surface charge that may
otherwise couple to the integrated driving circuitry.
Brief Description of the Figures
[0014] Figure 1 is a side elevational view in cross-section of a portion of a conventional
field emission display with no charge shield.
[0015] Figure 2 is a partial schematic, partial diagrammatic view of the portion of the
field emission display of Figure 1.
[0016] Figure 3 is a side elevational view in cross-section of a portion of a field emission
display according to the invention, including a charge shield.
Detailed Description of the Invention
[0017] As shown in Figure 1, a portion of a conventional field emission display 100 includes
a section of an emitting panel 102 beneath a screen 104. The emitting panel 102 is
formed on a substrate 106 of single crystal, p-type silicon with a pair of emitters
108 projecting upwardly from the upper surface of the substrate 106. The emitters
108 are known electron emitting structures for field emission displays and are fabricated
according to conventional fabrication techniques. One skilled in the art will understand
that although only two emitters 108 are shown for clarity of presentation, the number
of emitters 108 typically will be much larger than two.
[0018] Beneath the emitters 108, a first n+ region 110 is formed in the substrate 106 within
an n-region 112. The n regions 110, 112 allow electrical connection to the bases of
the emitters 108, as will be described below. An insulative layer 114 of a dielectric
material is deposited on the substrate 106. The insulative layer 114 is formed with
apertures 113 that surround respective emitters 108. The upper surface of the insulative
layer 114 carries a conductive extraction grid 116. The insulative layer 114 and extraction
grid 116 are formed according to known fabrication techniques. A passivation layer
120 covers the extraction grid 116 to protect and electrically insulate the extraction
grid 116. Within the passivation layer 120 is a conductive line 118 that connects
the extraction grid 116 to a grid voltage V
G.
[0019] As is typical, the screen 104 is above the emitters 108 and the grid 116. The screen
104 includes a glass plate 150 with its inner surface coated with a conductive, transparent
material to form an anode 152. A cathodoluminescent layer 154 coats the exposed surface
of the anode 152.
[0020] In operation, the extraction grid 116 is biased at a grid voltage V
G of about 30-120V, and the anode 152 is biased at a high voltage V
A, such as 1-2 kV. If the emitters 108 are connected to voltage much lower than the
grid voltage, such as ground, the voltage difference between the grid 116 and the
emitters 108 produces a sufficiently intense electric field between the emitters 108
and the extraction grid to cause the emitters 108 to emit electrons according to the
Fowler-Nordheim equation. The emitted electrons are attracted by the high anode voltage
V
A and travel toward the anode 152 where they strike the cathodoluminescent layer 154
causing the cathodoluminescent layer 154 to emit light around the impact site. The
emitted light passes through the transparent anode 152 and the glass plate 150 where
it is visible to an observer.
[0021] The intensity of light emitted by the cathodoluminescent layer 154 depends upon the
rate at which electrons emitted by the emitters 108 strike the cathodoluminescent
layer 154. The rate at which the emitters 108 emit electrons is controlled, in turn,
by controlling current flow to the emitters 108. Thus, the intensity of the emitted
light can be controlled by controlling the current flow to the emitters 108.
[0022] Current flow to the emitters 108 is controlled by a driving circuit 109 integrated
into the substrate 106. The driving circuit 109 is embedded in the substrate 106 beneath
the insulative layer 114 which is, in turn, covered by a passivation layer 164 to
provide additional protection for the driving circuit 109. The passivation layer 164
is a conventionally formed insulative protective layer.
[0023] As will be explained below, the n+ region 110 and n- region 112 beneath the emitters
108, in addition to providing a conductive path to the emitters 108, also form a transistor
drain and thus are part of the driving circuit 109. To the right of the n- region
112, a portion of a poly layer 123 covering the substrate 106 extends to a second
n+ region 124 to form a gate 125 of a field effect transistor 126 positioned over
an insulative layer 122. The drain of the transistor 126 is formed by the n-type regions
110, 112 and is directly connected to the bases of the emitters 108. The source of
the transistor 126 is formed by the second n+ region 124, and is connected to conventional
current limiting circuitry (not shown), such as a resistor. A gate voltage is applied
to the gate 125 through a conductive line 128 embedded in the insulative layer 114
and a conductive via 130. The equivalent circuit for the transistor 126 and emitters
108 is presented in Figure 2.
[0024] Returning to Figure 1, the conductive line 128 extends from the first via 130 to
a second via 132 which connects the conductive line 128 to a third n+ region 134.
A second section of the poly layer 123 extends from the third n+ region 134 to a fourth
n+ region 138. As with the first portion forming the gate 125, the second section
of the poly layer 123 forms the gate 136 of a second field effect transistor 140 positioned
over an insulative layer 137. The third n+ region 134 is the source of the second
transistor 140 and the fourth n+ region 138 is the drain. A buried isolation region
149 of p+ type material electrically isolates the second n+ region 124 from the third
n+ region 134 such that the source of the first transistor 126 is electrically isolated
from the source of the second transistor 140. The source of the second transistor
140 is electrically connected through the conductive trace 128 and the vias 130, 132
to the gate 125 of the first transistor 126. The coupling of the transistors 126,
140 is apparent in the circuit diagram of Figure 2.
[0025] Returning again to Figure 1, an externally supplied row voltage V
R, is applied to the gate 136 of the second transistor 140 through a conductive via
142 and a second embedded line 144. The fourth n+ region 138, which is the drain of
the second transistor 140, is connected to an image signal V
I by a third embedded line 146.
[0026] As can be seen from Figure 2, when the row voltage V
R is high, transistor 140 will be ON and will provide the image signal V
I to the gate of the first transistor 126. The magnitude of current flowing to the
emitters 108 then corresponds to the amplitude of the image signal V
I applied to the drain of the second transistor 140.
[0027] If the row voltage V
R is low, the second transistor 140 is OFF, and the initially transferred image signal
V
I voltage is retained at the source of the second transistor 140 causing the voltage
to be continuously applied to the gate of the first transistor 126. If the gate voltage
is sufficiently high, the first transistor 126 will continuously provide current to
the emitters 108, causing light to be emitted. If the gate voltage is low, the first
transistor 126 will be OFF and no light will be emitted. Thus, when the row voltage
V
R is high, the intensity of light emission is controlled by the image signal V
I; and, when the row voltage V
R is low, light is emitted at a level corresponding to the voltage of the image signal
V
I immediately before the row voltage V
R went low. In typical applications, the image signal V
I is a sample of a video image signal.
[0028] The above discussion neglects possible effects on the transistors 126, 140 of electrons
emitted from the emitters 108 and effects of the high anode voltage V
A. Electrons emitted from the emitters 108 can strike the passivation layer 164 and
charge the passivation layer negatively. If the electron secondary emission coefficient
of the passivation layer 164 is greater than one for the electron impact energy, then
the passivation layer can charge positively. The electrons can also cause electron
impact ionization of particles either in the gap between the anode 152 and extraction
grid 116 or at the surface of the anode 152. These ions will then be collected on
the passivation layer 120 and 164 and cause it to charge positively. Hence, the electrons
may directly or indirectly cause a charge to build up on the passivation layer 164.
This charge generates an electric field which can affect the operation of the driving
circuit 109.
[0029] Additionally, as a consequence of the charge buildup, an electric field E
1 is produced within the passivation layer 164 and insulative layer 114. The electric
field E
1 can cause migration of charges, such as free electrons or ion impurities, through
the insulative layer 114. These charges may cause charge leakage into or out of the
substrate 106, especially at regions of the substrate 106 that are uncovered by a
metal layer. For example, a portion of the third n+ region at 134 left uncovered by
the via 132 is exposed to charge drift through the insulative layer 114.
[0030] The electric field E
1 is particularly problematic at the third n+ region 134 when the transistor 140 is
intended to be OFF. In this condition, the second transistor 140 presents a very high
impedance. Consequently, there is no path to bleed current quickly away from the third
n+ region 134. If charge leaks into the n+ region 134, the voltage of the third n+
region 134 may vary, raising the gate voltage of the first transistor 126. In response,
the first transistor 126 may no longer be truly OFF, and may allow some current to
flow to the emitters 108, thereby causing light to be emitted.
[0031] Even if charge leakage into the third n+ region 134 does not cause unwanted light
emission, the resulting increase in voltage of the n+ region 134 can be detrimental.
For example, during extended operation, the voltage may cause aging or breakdown of
the integrated components.
[0032] An additional effect of surface charge on the passivation layer 164 arises when the
surface charge varies dynamically. Transient conditions, such as an increase in electrons
due to activation of a local emitter set 108, can cause dynamic changes in the surface
charge density. Such variations in surface charge density can cause electric field
variations in the passivation layer 164 and insulative layer 114 which will affect
the integrated driving circuit 109. In response, the voltage at the gate of the transistor
126 may vary, causing variations in current flow to the emitters 108.
[0033] The present invention, as embodied in the portion of a field emission display 200
shown in Figure 3, addresses the problem of electric fields in the insulative layer
114 and charge leakage into the substrate 106. Several elements of Figure 3 correspond
directly to the elements of the display 100 of Figure 1 and are numbered identically.
For example, the screen 104, extraction grid 116, emitters 108 and driving circuit
109 are identical to those of the conventional display of Figure 1.
[0034] The display 200 of Figure 3 differs from the prior art display 100 of Figure 1 primarily
in the use of a charge shield 162 between the passivation layer 164 and the insulative
layer 114. The charge shield 162 is formed according to conventional integrated circuit
fabrication techniques from a conductive material, such as a metallization layer,
deposited atop the insulative layer 114. The addition of the charge shield 162 does
not change the interconnection of the elements. Therefore, the equivalent circuit
of Figure 2 applies equally to the displays of Figures 1 and 3.
[0035] The charge shield 162 is connected to ground and thus provides a continuous ground
plane beneath the surface charge buildup on the passivation layer 164. The ground
plane of the charge shield 162 terminates the electric field E
2 caused by charge buildup on the surface of the passivation layer 164. Thus, although
the electric field E
2 may be high, the electric field E
3 in the insulative layer 114 between the substrate 106 and the charge shield 162 is
very small.
[0036] Because the charge shield 162 blocks the electric field E
2, any charge drift within the passivation layer 164 caused by the electric field E
2 will be bled to ground. Within the insulative layer 114 beneath the charge shield
162, the charge shift will be minimal due to the low intensity of the electric field
E
3 between the charge shield 162 and the substrate 106.
[0037] In addition to reducing the effects of charge drift, the charge shield 162 also reduces
the effects of dynamic changes in the surface charge by terminating the electric field
E
2. Dynamic variations in surface charge within the passivation layer 164 will affect
only the electric field E
2, while the electric field E
3 in the insulative layer 114 will be substantially unaffected. Consequently, effects
of changes in the electric field E
2 will be directed to the ground plane of the charge shield 162, not the driving circuit
109.
[0038] From the foregoing, it will be appreciated that, although an exemplary embodiment
of the invention has been described herein for purposes of illustration, various modifications
may be made without deviating from the scope of the invention. For example, various
alternative driving circuits for controlling emitter currents may benefit from the
effects of the charge shield 162. Moreover, although the preferred embodiment has
been described as including the passivation layer 164, in some applications the passivation
layer 164 may be eliminated. The exposed conductor will then provide a path for removal
of any charge on the surface. Also, although the charge shield 162 has been described
as being connected to ground in the preferred embodiment, the charge shield 162 may
also be connected to a different voltage. Accordingly, the invention is not limited
except as by the appended claims.
1. A field emission display, comprising:
an emitter (108) carried by a substrate (106);
an integrated electronic driving circuit (109) within or on the substrate (106) and
coupled to activate the emitter (108);
an anode (152) positioned above the emitter (108) and the driving circuit (109) and
spaced apart from the driving circuit (109); and
a cathodoluminescent layer (154) covering a portion of the anode (152) intermediate
the anode (152) and the emitter (108);
characterized by
a charge shield (162) covering the driving circuit (109) intermediate the driving
circuit (109) and the anode (152).
2. The field emission display of claim 1, further including an insulative layer (114)
intermediate the driving circuit (109) and the charge shield (162) to electrically
isolate the charge shield (162) from the driving circuit (109).
3. The field emission display of claim 1, further including an insulative passivation
layer (164) overlaying the charge shield (162), the passivation layer (164) being
positioned between the charge shield (162) and the cathodoluminescent layer (154).
4. The field emission display of claim 1 wherein the charge shield (162) is a layer of
conductive material.
5. The field emission display of claim 4 wherein the anode (152) is connected to a first
voltage (VA), and wherein the charge shield (162) is electrically coupled to a second voltage,
below the first voltage (VA).
6. The field emission display of claim 5, further including an insulative passivation
layer (164) overlying the charge shield (162) between the charge shield (162) and
the cathodoluminescent layer (154).
7. The field emission display of any of claims 1 to 6, having a plurality of emitters
(108) and a grid (116),
wherein said substrate (106) comprises a first type of material;
a conductive layer (144) covers a section of the substrate (106) to provide signals
to the section of the substrate (106), the conductive layer (144) including a gap
therein to define an exposed section of the substrate;
a layer (134, 138) of a second type of material is provided within the substrate (106),
at least a portion of the layer (134, 138) of the second type being within the exposed
section of the substrate (106);
an insulative layer (114) covers the portion of the layer (134, 138) of a second type
within the exposed portion; and
said conductive charge shield (162) covers the insulative layer (114) above the exposed
portion and electrically isolated from the layer (134, 138) of the second type of
material by the insulative layer (114).
8. The field emission display of claim 7, further including an electrical contact extending
between the charge shield (162) and a section of the substrate (106) to maintain the
charge shield (162) and the section of the substrate (106) at substantially the same
voltage.
9. The field emission display of claim 1, wherein a grid, is provided and said anode
is spaced apart from the emitters and grid, the grid being biased to a grid voltage
comprising:
said substrate (106) of a first type of material;
said integrated electronic driving circuit having a region of a second type of material
within the substrate, at least a portion of the region of the second type being uncoated
by metal;
an insulative layer (114) covering the uncoated portion of the region of the second
type; and
a conductive layer (144) covering the insulative layer above the uncoated portion
and connected to a voltage below the grid voltage to terminate electric fields induced
in the insulative layer (114) in response to electrons emitted by the emitters (108).
10. The field emission display of claim 9, further including an insulative passivation
layer (164) overlying the charge shield (162) between the charge shied (162) and the
anode (152).
11. The field emission display of claim 9, further including an electrical contact extending
between the charge shield (162) and a section of the substrate to maintain the charge
shield (162) and the section of the substrate at substantially the same voltage.
12. A method of driving an integrated control circuit of an electron emitting panel (109)
of a field emission display having an anode (152) spaced apart from the emitting panel
and the driving circuitry (109) comprising the steps of positioning a conductive charge
shield (162) between the anode (152) and the driving circuit (109), with the charge
shield (162) electrically isolated from the driving circuit (109) and the anode (152).
1. Feldemissionsanzeige, aufweisend:
einen von einem Substrat (106) getragenen Emitter (108);
eine integrierte elektronische Ansteuerschaltung (109), die innerhalb oder auf dem
Substrat (106) vorgesehen ist und zum Aktivieren des Emitters (108) gekoppelt ist;
eine Anode (152), die über dem Emitter (108) und der Ansteuerschaltung (109) positioniert
ist und von der Ansteuerschaltung (109) beabstandet ist; und
eine Kathodenlumineszenzschicht (154), die einen Bereich der Anode (152) zwischen
der Anode (152) und dem Emitter (108) bedeckt;
gekennzeichnet durch
eine Ladungsabschirmung (162), die die Ansteuerschaltung (109) zwischen der Ansteuerschaltung
(109) und der Anode (152) bedeckt.
2. Feldemissionsanzeige nach Anspruch 1,
weiterhin mit einer isolierschicht (114) zwischen der Ansteuerschaltung (109) und
der Ladungsabschirmung (162) zum elektrischen Isolieren der Ladungsabschirmung (162)
von der Ansteuerschaltung (109).
3. Feldemissionsanzeige nach Anspruch 1,
weiterhin mit einer isolierenden Passivierungsschicht (164), die über der Ladungsabschirmung
(162) liegt, wobei die Passivierungsschicht (164) zwischen der Ladungsabschirmung
(162) und der Kathodenlumineszenzschicht (154) angeordnet ist.
4. Feldemissionsanzeige nach Anspruch 1,
wobei die Ladungsabschirmung (162) eine Schicht aus leitfähigem Material ist.
5. Feldemissionsanzeige nach Anspruch 4,
wobei die Anode (152) an eine erste Spannung (VA) angeschlossen ist und wobei die Ladungsabschirmung (162) mit einer zweiten Spannung
elektrisch gekoppelt ist, die niedriger ist als die erste Spannung (VA).
6. Feldemissionsanzeige nach Anspruch 5,
weiterhin mit einer isolierenden Passivierungsschicht (164), die über der Ladungsabschirmung
(162) zwischen der Ladungsabschirmung (162) und der Kathodenlumineszenzschicht (154)
liegt.
7. Feldemissionsanzeige nach einem der Ansprüche 1 bis 6,
mit einer Mehrzahl von Emittern (108) und einem Gitter (116),
wobei das Substrat (106) einen ersten Material-Typ aufweist;
wobei eine leitfähige Schicht (144) einen Bereich des Substrats (106) bedeckt, um
dem Bereich des Substrats (106) Signale zuzuführen, wobei in der leitfähigen Schicht
(144) ein Spalt vorhanden ist, um einen freiliegenden Bereich des Substrats zu definieren;
wobei eine Schicht (134, 138) eines zweiten Material-Typs in dem Substrat (106) vorgesehen
ist, wobei zumindest ein Teil der Schicht (134, 138) des zweiten Typs innerhalb des
freiliegenden Bereichs des Substrats (106) angeordnet ist;
wobei eine isolierende Schicht (114) den Teil der Schicht (134, 138) eines zweiten
Typs innerhalb des freiliegenden Bereichs bedeckt; und
wobei die leitfähige Ladungsabschirmung (162) die isolierende Schicht (114) über dem
freiliegenden Bereich bedeckt und von der Schicht (134, 138) des zweiten Material-Typs
durch die isolierende Schicht (114) elektrisch isoliert ist.
8. Feldemissionsanzeige nach Anspruch 7,
weiterhin mit einem elektrischen Kontakt, der sich zwischen der Ladungsabschirmung
(162) und einem Bereich des Substrats (106) erstreckt, um die Ladungsabschirmung (162)
und den Bereich des Substrats (106) im Wesentlichen auf der gleichen Spannung zu halten.
9. Feldemissionsanzeige nach Anspruch 1,
wobei ein Gitter vorgesehen ist und die Anode von den Emittern und dem Gitter beabstandet
ist, wobei das Gitter auf eine Gitterspannung vorgespannt ist, aufweisend:
das Substrat (106) eines ersten Material-Typs;
die integrierte elektronische Ansteuerschaltung, die eine Region eines zweiten Material-Typs
in dem Substrat aufweist, wobei zumindest ein Teil der Region des zweiten Typs nicht
von Metall bedeckt ist;
eine Isolierschicht (114), die den unbedeckten Teil der Region des zweiten Typs bedeckt;
und
eine leitfähige Schicht (144), die die Isolierschicht über dem unbedeckten Teil bedeckt
und an eine Spannung unterhalb der Gitterspannung angeschlossen ist, um elektrische
Felder abzuschließen, die in der Isolierschicht (114) ansprechend auf von den Emittern
(108) emittierten Elektronen induziert werden.
10. Feldemissionsanzeige nach Anspruch 9,
weiterhin mit einer isolierenden Passivierungsschicht (164), die über der Ladungsabschirmung
(162) zwischen der Ladungsabschirmung (162) und der Anode (152) liegt.
11. Feldemissionsanzeige nach Anspruch 9,
weiterhin mit einem elektrischen Kontakt, der sich zwischen der Ladungsabschirmung
(162) und einem Bereich des Substrats erstreckt, um die Ladungsabschirmung (162) und
den Bereich des Substrats im Wesentlichen auf der gleichen Spannung zu halten.
12. Verfahren zum Ansteuern einer integrierten Steuerschaltung eines Elektronenemissionsfeldes
einer Feldemissionsanzeige, die eine von dem Emissionsfeld und der Ansteuerschaltungseinrichtung
(109) beabstandete Anode aufweist, wobei das Verfahren folgende Schritte aufweist:
Positionieren einer leitfähigen Ladungsabschirmung (162) zwischen der Anode (152)
und der Ansteuerschaltung (109), wobei die Ladungsabschirmung (162) von der Ansteuerschaltung
(109) und der Anode (152) elektrisch isoliert ist.
1. Affichage d'émission par champ, comprenant :
un émetteur (108) transporté par un substrat (106) ;
un circuit conducteur électronique intégré (109) dans ou sur le substrat (106) et
accouplé afin d'activer l'émetteur (108);
une anode (152) positionnée sur l'émetteur (108) et le circuit conducteur (109) et
espacée du circuit conducteur ( 109) ; et
une couche cathodoluminescente (154) recouvrant une portion de l'anode (152) entre
l'anode (152) et l'émetteur (108); caractérisé par
un écran de charge recouvrant le circuit conducteur (109) entre le circuit conducteur
(109) et l'anode (152).
2. Affichage d'émission par champ selon la revendication 1, comprenant en outre une couche
isolante (114) entre le circuit conducteur (109) et l'écran de charge (162) afin d'isoler
électriquement l'écran de charge (162) du circuit conducteur (109).
3. Affichage d'émission par champ selon la revendication 1, comprenant en outre une couche
de passivation d'isolation (164) recouvrant l'écran de charge (162), la couche de
passivation (164) étant positionnée entre l'écran de charge (162) et la couche cathodoluminescente
(154).
4. Affichage d'émission par champ selon la revendication 1, dans lequel l'écran de charge
(162) est une couche de matériau conducteur.
5. Affichage d'émission par champ selon la revendication 4, dans lequel l'anode (152)
est reliée à une première tension (VA) et dans lequel l'écran de charge (162) est accouplé électriquement à une seconde
tension inférieure à la première tension (VA).
6. Affichage d'émission par champ selon la revendication 5, comprenant en outre une couche
de passivation d'isolation (164) recouvrant l'écran de charge (162) entre l'écran
de charge (162) et la couche cathodoluminescente (154).
7. Affichage d'émission par champ selon l'une quelconque des revendications 1 à 6, ayant
une pluralité d'émetteurs (108) et une grille (116), dans lequel ledit substrat (106)
comprend un premier type de matériau ;
une couche conductrice (144) recouvre une section du substrat (106) afin de fournir
des signaux à la section de substrat (106), la couche conductrice (144) comprenant
un interstice afin de définir une section exposée du substrat ;
une couche (134, 138) d'un second type de matériau est fournie dans le substrat (106),
au moins une portion de la couche (134, 138) du second type étant dans la section
exposée du substrat (106);
une couche d'isolation (114) recouvre la portion de la couche (134, 138) du second
type dans la portion exposée ; et
ledit écran de charge conductrice (162) recouvre la couche d'isolation (114) au-dessus
de la portion exposée et isolée électriquement de la couche (134, 138) du second type
de matériau par la couche d'isolation.
8. Affichage d'émission par champ selon la revendication 7, comprenant en outre un contact
électrique s'étendant entre l'écran de charge (162) et une section du substrat (106)
pour maintenir l'écran de charge (162) et la section du substrat (106) substantiellement
à la même tension.
9. Affichage d'émission par champ selon la revendication 1, dans lequel une grille est
fournie et ladite anode est espacée des émetteurs et de la grille, la grille étant
polarisée à une tension de grille, comprenant :
ledit substrat (106) d'un premier type de matériau ;
ledit circuit électronique intégré conducteur ayant une région du second type de matériel
dans le substrat, au moins une portion de la région du second type étant non-recouverte
par du métal ;
une couche d'isolation (114) recouvrant la portion non-recouverte de la région du
second type ; et
une couche conductrice (114) recouvrant la couche d'isolation au-dessus de la portion
non-recouverte et reliée à une tension inférieure de la tension de la grille afin
de raccorder les champs électriques induits dans la couche isolante (114) en réponse
aux électrons émis par les émetteurs (108).
10. Affichage d'émission par champ selon la revendication 9, comprenant en outre une couche
d'isolation de passivation (164) recouvrant l'écran de charge (162) entre l'écran
de charge (162) et l'anode (152).
11. Affichage d'émission par champ selon la revendication 9, comprenant en outre un contact
électrique s'étendant entre l'écran de charge (162) et une section du substrat pour
maintenir l'écran de charge (162) et la section du substrat à la même tension substantielle.
12. Procédé de pilotage d'un circuit de contrôle intégré électronique d'un panneau d'émission
d'un affichage d'émission par champ ayant une anode (152) espacée du panneau d'émission
et de la circuiterie conductrice (109) comprenant les étapes de positionnement d'un
écran de charge conductrice (162) entre l'anode (152) et le circuit conducteur (109)
avec l'écran de charge (162) isolé électroniquement du circuit conducteur (109) et
de l'anode (152).