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Description
[0001] This application claims the benefit of U.S. Provisional Application No. 60/053630, filed July 24, 1997.

Background of the Invention

[0002] In many of the predictive and analytical problems of theoretical and applied engineering, it is necessary to
solve one or more of the equations of physics that describe a physical field. The field variable that is sought may be,
for example, a measure of mechanical deformation, acoustic pressure, an electrostatic or electromagnetic potential,
or an electromagnetic field intensity.

[0003] The equations that describe these and other fields are differential equations, integral equations, or equations
that combine aspects of both, which can be solved exactly, if at all, only by the techniques of calculus. Typically, bound-
ary conditions (and also initial conditions, if time evolution is part of the problem to be solved) must be specified in
order to provide a complete definition of the problem that is to be solved. In practical situations, these boundary con-
ditions often involve specifying the field variable, its derivatives, functions of either or both of these, or a combination
of some or all of the preceding, on complicated two- or three-dimensional surfaces. As a consequence of the complexity
of both the governing physical equations and the boundary conditions, most practical problems are too complex to
solve by hand calculations.

[0004] Numerical modeling techniques are aimed at providing approximate solutions to these equations that can be
performed with the help of a digital computer. Many different numerical modeling techniques are available. One such
technique, which has proven extremely fruitful in numerous fields of application, is the so-called finite element method
(FEM).

[0005] As we describe more fully hereafter, the traditional practice of the FEM calls for the spatial region of interest
to be subdivided into a plurality of perfectly juxtaposed cells (i.e., cells that are juxtaposed without overlaps or interstitial
voids), which are referred to as elements. Discrete nodes are defined on the inter-element boundaries and, typically,
also within the element interiors. The network of elements and nodes is referred to as a mesh.

[0006] The FEM does not seek an exact solution to the physical field equation. Instead, it assumes that within each
element, the field can be described, to an adequate approximation, by a finite linear combination of simple functions,
such as polynomials, that are chosen, inter alia, for convenient analytical properties. The coefficients of the respective
polynomials in such a linear combination are referred to as degrees of freedom (DOF). The polynomials are normalized
in such a way that the DOF are equal to, or otherwise relate to, the values of the field variable at the nodes. Between
the nodes, the polynomials interpolate the values of the field variable in a continuous fashion.

[0007] The polynomials themselves are known a priori. Therefore, the problem is solved, within a given element, by
specifying the values of the DOF for that element. The DOF are not determined directly from the field equation. Instead,
a mathematical condition is derived from the field equation. In essence, this condition demands that a certain measure
of error (i.e., between the approximate and exact solutions) must be small. Once this condition has been fully defined,
it can be expressed as a set of linear equations, in which the unknowns are the DOF. Linear equations are well-suited
to be solved by a digital computer, because all that is required is a large number of repetitive, mechanical manipulations
of stored quantities.

[0008] The linear equations belonging to a given element are not solved in isolation. Instead, the sets of equations
belonging to all of the elements are assembled into a single matrix system. Suitable modifications are made to these
system equations to account for the boundary conditions. Then the matrix system is solved automatically by standard
methods.

[0009] Special challenges arise when attempting to obtain a mathematical solution, either exact or approximate, to
any problem involving scattering and/or radiation, e.g., of acoustic or electromagnetic waves, from an object located
in an unbounded region (that is, in open or free space). The mathematical solution to all such problems must satisfy
a so-called "radiation condition" (known as the Sommerfeld condition in acoustics and as the Silver-Muller condition
in electromagnetism). The condition states that all waves "at infinity" are only traveling outward toward infinity, not
inward from infinity. Thus, all the energy in the problem resides in the radiated or scattered waves, which are traveling
outward after their interaction with the object; conversely, no energy is created at infinity. Note that the radiation condition
is a condition that exists "at infinity," not at a finite distance. Much of the history of computational methods for such
problems has been focused on how to obtain approximate, numerical solutions that satisfy the radiation condition to
an acceptable accuracy, while not being prohibitively expensive.

[0010] We note that the FEM, because of its extraordinary versatility in handling objects of virtually any geometric
shape and material properties, is generally the method of choice for modeling the finite part of the problem, i.e., the
object and, sometimes, a finite part of the open region surrounding the object. (The Finite Difference Time Domain
method is occasionally used for small problems.) The challenge is how to model the remainder of the infinite region,
including the radiation condition at infinity. The methods have generally fallen into three classes.
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[0011] The first class uses boundary integral equation methods (BIEM). Here, an integral equation that satisfies the
radiation condition exactly can be applied directly on the outer surface of the object. Its advantage, which seems
compelling at first sight, is that the infinite exterior domain is replaced, with no loss in physical approximation, by a
(relatively) small surface, which greatly reduces the computational size of the problem. However, it has a severe dis-
advantage. The matrices in the resulting discretization of the integral equation are fully populated, making the compu-
tational cost prohibitively expensive except for only small-scale problems. (Small-scale means the dimensions of the
object are small relative to the relevant wavelengths.)

[0012] The second class uses exact solutions to the wave equation in open regions, often expressed as infinite series
of known functions, e.g., wave functions or multipoles. These are joined to the solutions in the finite region in a manner
that approximately establishes continuity along, e.g., a closed boundary surrounding the object. This approach suffers
from the same disadvantage as the BIEM, namely, that the resulting discretized equations are fully populated, hence
prohibitively expensive.

[0013] The third class, which has comprised most of the research in recent years, is to construct an artificial boundary
surrounding the object, then apply a so-called absorbing (or non-reflecting) boundary condition (ABC) that will make
the boundary appear as transparent as possible to all outward traveling waves, i.e., the radiated or scattered fields.
There have been many variations on this approach. The primary advantage here is that the resulting discretized equa-
tions have sparse matrices. This property, by itself, would keep the cost low. However, the disadvantage is that all
ABCs, which are applied to a boundary at a finite distance, can only be approximations to the exact radiation condition
at infinity. As a consequence, spurious (non-realistic) waves are reflected from the artificial boundary, which then prop-
agate throughout the entire finite region, contaminating the solution everywhere. This effect can be mitigated by moving
the artificial boundary farther away from the object, but this only increases the size of the finite region and hence the
cost.

[0014] An alternative to these approaches is the use of so-called infinite elements, which are finite elements that
cover a semi-infinite sector of space. (We note that the term "finite" in the name "finite element method" means non-
infinitesimal; it does not mean non-infinite. It is therefore semantically correct to say "infinite finite element," as was
done in the early 1970s, but it is now universally called an "infinite element."

[0015] Infinite elements have been used to great advantage to solve problems in acoustics. Such uses for infinite
elements are described, for example, in the article by D. S. Burnett, "A Three-Dimensional Acoustic Infinite Element
Based on a Prolate Spheroidal Multipole Expansion," J. Acoust. Soc. Am. 96 (1994) 2798-2816 (BURNETT 1994).
Also pertinent in this regard are U.S. Patent No. 5,604,891 and U.S. Patent No. 5,604,893, both assigned to the as-
signee hereof. Also pertinent in this regard is the currently pending U.S. Patent Application Serial No. 08/812,472, also
assigned to the assignee hereof.

[0016] These acoustic infinite elements have been highly acclaimed by leaders in the academic community as well
as by commercial code developers because they have exhibited both high accuracy and extraordinary speed of com-
putation (over 400 times faster than other state-of-the-art methods).

[0017] To use these infinite elements, one constructs (similar to the third class of methods above) an artificial bound-
ary surrounding the object. However, instead of using ABCs, one constructs a single layer of infinite elements around
the entire artificial boundary. This single layer covers the entire infinite region outside the artificial boundary. Most
important to the invention is the fact that because each element extends all the way to infinity, the essential radiation
condition can now be applied exactly "at" infinity. This is primarily what accounts for the high accuracy of these infinite
elements. This high accuracy, in turn, accounts for the extremely high computational speeds because the infinite ele-
ments can be placed extiraordinarily close to the object (typically less than half a wavelength), resulting in a much
smaller finite computational region (than required with ABCs). Below, we describe an electromagnetic infinite element.
We are unaware of any prior use of infinite elements in electromagnetism.

[0018] Acentral challengeto developingan EM infinite element is related to the vector nature of EMfields (as opposed
to the simpler scalar nature of acoustic fields). Thus, an EM field is characterized by two coupled vector fields, i.e., the
electric field and the magnetic field. Although all the classical field theories permit the representation of (scalar or
vector) fields as spatial derivatives of potential functions, in the case of EM the only known representation for general
applications (i.e., inhomogeneous and/or anisotropic physical properties) involves a vector-valued potential function,
known as the vector potential. The lack of a suitable scalar-valued potential has been a deterrent to the development
of an EM infinite element.

[0019] Accordingto one aspect of the present invention, there is provided a method as defined in claim 1 or amachine
as defined in claim 2.

Summary of the Invention

[0020] In developing our new EM infinite element, we recognized that most practical EM radiation and scattering
problems (e.g., wireless telecommunication, radar) are in the atmosphere (air), for which the EM properties are homo-
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geneous and isotropic in the open regions surrounding objects. Infinite elements are only used in such open regions.
For these regions there does exist (though apparently it is not generally well known) a representation of general EM
fields in terms of two independent scalar potential functions, each of which must satisfy the acoustic wave equation
and the acoustic (Sommerfeld) radiation condition. This is the key to our invention. It enables us to apply our previously
developed (see BURNETT 1994) acoustic infinite elements, essentially unchanged, to the EM realm.

[0021] More specifically, our invention makes use of a pair of scalar EM potential functions IT' and IT", referred to as
the Debye potentials. The electromagnetic field may be resolved into a TE component and a TM component, in which
the radial direction is defined as the longitudinal direction. E" and H" are, respectively, the electric and magnetic field
intensities of the TE field component, and E' and H' are the corresponding field intensities of the TM field component.
The potential functions IT and IT" are defined such that E' and H' are derived, via simple expressions, from IT', and E"
and H" are derived via similar expressions from IT". A mathematical derivation of the Debye potentials IT' and IT" can
be found in the book by L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, 1994.
[0022] In addition to providing a new, electromagnetic infinite element, we have shown, for the first time, how sub-
stantial computational efficiencies can be achieved by partitioning the problem space into a finite region and an un-
bounded region that is homogeneous and isotropic. By taking full advantage of the simple physical description of the
unbounded region, such a partitioning makes it possible, by FEM techniques, to provide accurate solutions at and
beyond the bounding surface without introducing numerical artifacts that would otherwise contaminate the solution
within the bounding surface.

[0023] In typical applications of our invention, the structure of interest is modeled by constructing a smooth, closed
bounding surface about the structure. We have developed a detailed infinite element formulation assuming that this
bounding surface is a sphere. However, we believe that this formulation can be extended to geometries in which the
bounding surface is a more general surface, such as a spheroid or ellipsoid. It is advantageous for the bounding surface
to closely circumscribe the structure. Preferably, the distance of closest approach between the bounding surface and
the structure is less than about one-half wavelength of the electromagnetic field (at the oscillation frequency pertinent
to the problem being calculated).

[0024] Within the bounding surface, FEM modeling is carried out using finite (but not infinite) elements. Numerous
commercial application programs are available for carrying out modeling of that kind.

[0025] The entire unbounded region lying outside the bounding surface is modeled using the inventive infinite ele-
ment. At the bounding surface, it will be possible to couple the two modeling techniques without discontinuities. This
is desirable because discontinuities tend to generate, as a computational artifact, spurious numerical waves that con-
taminate the calculated solution.

[0026] Such a combination of modeling technologies is particularly advantageous because it offers significant im-
provements in both computational speed and accuracy. Because of higher speed, it is possible, in turn, to incorporate
more realistic physical modeling, which will lead to solutions having greater fidelity to real-world phenomena.

[0027] Practical applications of the invention include modeling of interactions between a radiation source and a body.
One such source-body system consists of a wireless communication device (as the radiation source) and a human
body (or a portion thereof, such as a human head). One significant problem in this field is the prediction of the rate
(often of interest is the rate per unit mass) at which thermal energy is deposited in living tissue as the result of absorption
of electromagnetic radiation from the communication device. When using the inventive method to solve such a problem,
the emissive device and the absorptive body may both be included within the bounding surface. Alternatively, the
emissive device may be treated as a pure radiation source, and included within an infinite element, exterior to the
bounding surface. We believe that the use of our invention will lead to greater accuracy in predicting doses, and dose
rates, of absorbed energy.

[0028] Other exemplary source-body systems include electric power lines, antennas, wireless or wired communica-
tion devices, electronic circuits, and other sources of electromagnetic radiation, paired with electronic devices of various
kinds whose proper operation might be impaired by excessive environmental electromagnetic interference. Such sen-
sitive devices include communication devices, as well as heart pacemakers, hearing aids, and other medical devices.
We believe that the use of our invention will lead to greater accuracy in modeling the fields external to the emissive
devices, as well as greater accuracy in modeling the sensitivity patterns of the potentially impaired devices. Thus, we
believe that the use of our invention will lead to greater accuracy in studies of the electromagnetic compatibility of such
systems of devices.

[0029] The invention can also be applied in antenna design, for calculating the transmission patterns and sensitivity
patterns of antennas and antenna arrays.

[0030] The invention can also be applied for predicting the scattering of electromagnetic waves from structures.
Thus, it is useful for calculating radar signatures of objects. In addition, the invention is useful for predicting patterns
of scattering of communication transmissions from structures. For this reason, it is useful for optimizing the siting, as
well as the design, of communication antennas such as those associated with cellular base stations.

[0031] It should be noted in this regard that the invention will have at least some useful applications even in the
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indoor environment. We believe that even indoors, the infinite element will provide useful estimates of the scattered
field around an object, provided sufficient clear space surrounds the object. Generally, a radius of about ten wavelengths
around the object is believed to be sufficient for such purpose. For design of, e.g., indoor wireless systems, the infinite
element technology is usefully coupled to a conventional design code such as a ray-tracing code.

Overview of the Finite Element Method

[0032] The finite element method (FEM) is a method, performed with the help of a computer, for predicting the be-
havior of a physical system by obtaining numerical solutions to mathematical equations that describe the system and
its loading conditions. The use of the FEM may be thought of as comprising three phases: preprocessing, solution,
and postprocessing. These phases are now discussed in further detail with reference to FIG. 1.

[0033] In the preprocessing phase, the physical domain of the problem is partitioned into a pattern of subdomains
of simple geometry, referred to as "elements". The resulting pattern is referred to as a "mesh". In addition, problem
data such as physical properties, loads, and boundary conditions are specified. This procedure is represented as step
10 of the figure.

[0034] The solution phase comprises steps 20-50 in the figure. In the first of these four steps, numerical values are
computed for the coefficients in the "element matrix equation" associated with each element in the mesh. The element
matrix equation, the derivation of which is indicated in box 15 of the figure, is a set of numerically computable mathe-
matical formulas that are derived theoretically and implemented into the computer code that forms the FEM program.
[0035] During the use of the FEM program, the code for these formulas is accessed by each element in the mesh,
and numerical values are computed for the coefficients in the formulas usingthe geometric and physical data associated
with each element.

[0036] We are providing, for the first time, a set of such formulas (i.e., the element matrix equation) that is specific
to an electromagnetic infinite element.

[0037] The procedure used in the derivation of the element matrix equation, which is described in detail below, em-
bodies the following general ideas. The unknown field variable, for which the finite-element analysis is seeking a so-
lution, is represented approximately within each element as a finite sum of known functions, referred to as "shape"
functions. These shape functions are usually chosen to be polynomials. There are unknown parameters in this repre-
sentation, referred to as "degrees of freedom (DOF)", that become the new unknowns which the finite-element analysis
will find values for. The DOF are often the values that the unknown field variable takes at specific points in the element,
referred to as "nodes". The purpose of this representation is that when values for the DOF are subsequently computed
in step 50, a solution will then be known everywhere, continuously, throughout each element. This is possible because
at that stage, both the shape functions and the parameters will be known, and these, together, define the complete
solution.

[0038] The representation of the unknown field variable in terms of shape functions is then inserted into the governing
physics equations (which are, typically, differential or integral equations) that express the physical laws to which the
physical system is subject. These calculus equations reduce to a system of linear algebraic equations which, when
written in matrix form, is the element matrix equation. The expressions for the coefficients in this matrix equation are
manipulated using calculus and algebra until they are in a form that can be numerically evaluated by the computer.
These numerical coefficients are the output of step 20.

[0039] In step 30, the element matrix equations from all the elements are combined together (i.e., they are said to
be "assembled") into one large "system matrix equation." The matrices associated with elements that touch each other
in the mesh will partially overlap, thereby establishing continuity in the field variable from element to element. Since
the overlap is partial, the system matrix grows larger and larger as element equations are assembled, resulting in one
very large system matrix.

[0040] The system matrix equation is then modified (step 40) to take account of the boundary and loading conditions.
The system matrix equation is then solved (step 50), using conventional techniques of numerical analysis. Although
there may be thousands, or even hundreds of thousands, of unknown DOF, the solution of this matrix equation is
generally a very tractable problem. That is because the matrix elements tend to assume non-zero values only within
a relatively narrow band along the matrix diagonal. A well-known measure of the width of this band (and thus, of the
time required for solution) is the "rms half-bandwidth" B, .

[0041] Inthe postprocessing phase, the solution to the system matrix equation is displayed in an appropriate, mean-
ingful form (step 60). In this phase, other useful information may be derived from the solution and likewise displayed.
Below, we present a detailed description of the derivation of the element matrix equation for the inventive electromag-
netic infinite element.

[0042] Structural finite element codes have a wide range of useful applications. By simulating the field in and around
a structure and its interaction with the radiating structure, the design of the structure can be more quickly and efficiently
modified (as compared to the current expensive, repeated prototyping procedures) to improve or optimize the radiative
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behavior, e.g., to reduce the overall radiation or to alter the directivity pattern. Important applications include reduction
of environmental noise from electromagnetic interference from machinery, appliances, electronics, etc. Terminal equip-
ment for telecommunications systems (speakerphones, loudspeakers, public phone booths, cellular phones, etc.) can
be better designed to meet emissions standards. There are also military applications to radar and radar countermeas-
ures.

Apparatus for Practicing the Finite Element Method

[0043] WithreferencetoFIG. 2, we now describe apparatus useful for practicing the FEM in general and our inventive
method in particular.

[0044] A mesh generator 100 executes the preprocessing phase 10 of FIG. 1. It is common practice to use for the
mesh generator, a programmed, general-purpose digital computer. Descriptions of the physical system to be modeled
may be input to the mesh generator directly from a user terminal 102, or they may be input from a data storage device
105, such as a magnetic disk or a digital memory. The mesh generator will typically call upon a stored library 107 of
elements (i.e., of nodal patterns arranged within sectors of triangular and/or quadrilateral cross-section). The mesh
and other output data of the mesh generator are stored in memory device 110, which is typically a magnetic disk and
also optionally a digital computer memory.

[0045] The solution phase (steps 20-50 of FIG. 1) is also typically carried out in a programmed computer, represented
in the figure as element 115. As noted, an intermediate step of the solution phase is the evaluation of the coefficients
of the element matrix equations. These coefficients are stored in a digital memory, denoted element 120 in the figure.
[0046] It is a general property of the solution phase that as the frequency increases, the computation time increases
exponentially. For this reason, it will often be advantageous to use, for computer element 115, a parallel processor,
such as a massively parallel processor or a scalable parallel processor.

[0047] Instep 300fFIG. 1, the element matrix coefficients are assembled into a system matrix equation. The memory
element for storing the system matrix coefficients is denoted element 125 in FIG. 2.

[0048] The result of the solution phase is a description of the values assumed by a field variable throughout the
mesh. This information is typically subjected to post-processing in a processing element denoted 130 in the figure,
and output to a storage device 135 or display device 140.

Brief Description of the Drawing

[0049] FIG. 1 is a flowchart illustrating the basic steps in the use and operation of a finite element code.

[0050] FIG. 2 is a block diagram of exemplary apparatus for practicing the finite element method.

[0051] FIG. 3depicts a body of arbitrary shape circumscribed by a bounding sphere, in accordance with the invention
in one embodiment.

[0052] FIG. 4 depicts a spherical infinite element, in accordance with the invention in one embodiment.

[0053] FIG. 5 depicts the base of the infinite element of FIG. 4, together with 6,0 coordinate lines illustrative of a
spherical problem geometry.

[0054] FIG. 6 illustrates a local node numbering convention for the particular case of a quadratic Lagrange quadri-
lateral in the angular directions and a quadrupole in the radial direction.

[0055] FIG. 7 depicts a portion of a bounding surface, separating the exterior and interior regions of an illustrative
modeling problem. A finite element is shown within the bounding surface.

Detailed Description

Electromagnetic Field Quantities

[0056] The electromagnetic field quantities are listed below:

Quantity Symbol Sl units

Electric field intensity E=E(xt) | V/im

Electric flux density D =D(x(t) | C/m2
Magnetic field intensity | H=H(x(1) | A/m
Magnetic flux density B=B(x,1) | Wb/m2
Current density J=J(x, 1) [ A/m2
Volume charge density | p =p(x,1) | C/m3
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[0057] The field quantities are related by the following constitutive laws for a simple medium:

- electrical permittivity:

-D=¢E
- magnetic permeability:

B=pH
- electrical conductivity (Ohm's law):

J=0cE

Here ¢ is the permittivity,  is the permeability, and ¢ denotes the conductivity of the medium. Denoting by ¢, the
permittivity of free space,

1
g = ——

-9
o =555 107 F/m,

and by y,, the permeability of free space,
w, =47 107 H/m,
we introduce the dielectric constant e, and relative permeability |,
e=¢geg, Bo= R
[0058] E and H obey Maxwell's time-harmonic (el®t), source-free equations:

VXE=-jouH

V X H=jwe E.

Representation of Electromagnetic Field by Two Scalar (Debye) Potentials

[0059] The E-type (TM)andH-Type (TE) electromagnetic field decomposition in source-free, homogeneous, isotropic
regions in spherical coordinates is expressible in terms of vector operations on scalar potentials. This has been shown
in Sections 2.5 and 2.6 of the book by Felsen and Marcuvitz, cited above.

[0060] Define the longitudinal direction as the radial direction .

[0061] Express the electric field E(r) as the sum of an E-type (TM) component E'(r) and an H-type (TE) component
E"(r), and similarly for the magnetic field H(r):

E(n=E'(n) + E"(r), H(r) = H'(r) + H"(r). (1)

In terms of the Debye potentials IT' and IT", it can be shown that:

E'(n=V XV X[MI'(n], E"(r) = -jopn V X [r I1"(r)], (2)
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and,
H'(r) = joe V X [r IT'(n)], H'(r) = V X V X [rT1"(r)] (3)
[0062] Moreover, it can be shown that IT' and IT" satisfy the Helmholtz equation:
(V2 + k%) () = 0 (4)
and
(V2 + k%) () = 0 (5)

These equations, together with appropriate boundary and continuity conditions, uniquely specify the E- and H-type
scalar (Debye) potentials for the electromagnetic field.

Multipole Expansion for Each Debye Potential

[0063] Consider an arbitrary structure or group of structures, composed of dielectric, conducting, permeable mate-
rials, surrounded by unbounded free space. Consider a time-harmonic (ei®!) electromagnetic (EM) field that permeates
the structure(s) and fills the unbounded space. Such afield could be caused by known sources inside the structure(s)
that produce a radiated field, as well as by sources outside the structure(s) that produce a known incident field that
scatters from the structure(s). Let S be a sphere of minimum radius rg that just circumscribes the structure(s) (FIG. 3).
[0064] The scattered and/or radiated scalar potential IT in the free space exterior to S satisfying the scalar Helmholtz
equation can be represented by the following multipole expansion in spherical coordinates r,6,¢:

e K = F,(0,0;k)
r ZO g (6)

n=

M=

Equation (6) has the following properties:

(i) The series converges absolutely and uniformly in r, ® and ¢ in any region r = ry + € > r5. The series may be
differentiated term by term with respect to r, 8 and ¢ any number of times and the resulting series all converge
absolutely and uniformly.

(i) The functions F,(6,9;k), n > 0, may be determined from F(6,9;k) by the two-term recursion formula

2jknFn = n(n-1)Fn_1 + LFn_1, n=1,2,...,
where
2
1 90 ,. .0 1 d
L= ?ne a—e (Slnea—e) + Slnze a¢2

is the Laplace-Beltrami operator for the sphere, i.e., the angular part of the Laplacian in spherical coordinates.
Therefore IT is determined in r>ry by Fo(8,9;k), where IFy2 is the radiation pattern.

[0065] Since Eq. (6) is valid only outside a circumscribing sphere, then infinite elements based on Eq. (6) must lie
completely outside a circumscribing sphere. The region between the structure(s) and the sphere must therefore be
filled with finite-size EM elements.
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Infinite Element For Each Debye Potential

Element Geometry

[0066] A spherical infinite element is shown in FIG. 4. One face of the element, the "base", must attach to, and
conform to the shape of, a sphere of radius ry surrounding the structure, called the "infinite element sphere". The base
may be a curvilinear quadrilateral (as shown in the figure) or triangle; it need not conform to the 6,9 coordinate lines
(shown as dashed lines in FIG. 5). This permits one to construct a completely general 2-D mesh on the sphere, com-
prising curvilinear quadilaterals and triangles of any shape and orientation. Any type of FE representation may be used
over the base, e.g., Lagrange, serendipity or hierarchic polynomials of any degree. (The quadratic Lagrange nodal
pattern shown here, and in later figures, is for illustrative purposes.) Thus, it will be straightforward to achieve the
necessary continuity between the infinite elements and, e.g., finite elements along the spherical interface that joins the
two technologies.

[0067] The side faces of the element are the loci of radial lines emanating from the sides of the base. A multipole of
order

a, dm .
m(ITec [ —+ -+ +—|e7Ik]
r m

requires m layers of nodes that are on concentric spheres of radii 1y, r5, ..., r,. The nodal pattern is identical on each
sphere. The value m=2 corresponds 1o a dipole, m=3 to a quadrupole (as shown in FIG. 4), m=4 to an octupole, etc.
A "variable-multipole" element contains a variable number of layers of nodes, permitting the analyst to refine the mesh
radially in the infinite region by increasing the multipole order,Am, analogous to p-extension for finite-size elements.
[0068] Finally, there is an outer spherical face, S, at radius r, that recedes to infinity in the theoretical development.
Thus, in deriving the element matrix equation, the element begins with a finite size, ry < rS/r\, so that the Sommerfeld
radiation condition can be applied to the outer face, and then the limit is taken as Tsoo,

[0069] Conventional &n coordinates (illustrated in FIG. 5 for a quadrilateral) are defined over the element cross
section, i.e., on spheres, by the mapping

8= T 8yxIEM),  0E M= dvxZ(En),
v=1 v=1 (7)

where n is the number of nodes in the quadrilateral or triangle, 8, ¢,, are the spherical angular coordinates of the vth
node, and x7 (&) are interpolation polynomials.

Governing Physics Equations

[0070] Each Debye potential, IT;, i = 1,2 satisfies the 3-D Helmholtz equation,

VPI+k2TI=0 @)

where k is the wavenumber (= ®/c), ¢ is sound speed (= 1@), £ is permittivity, i is permeability, and IT is the complex-
valued amplitude of either of the Debye potentials for a scattered and/or radiated field:
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[Iscat =l _ minc if scattering
[T={pqrad =[qtotal if radiation
rpscat+rad  _pptotal  _pyinc  jf both (9)

To ensure uniqueness of the solution, the potential must satisfy the Sommerfeld radiation condition at the outer "bound-
ary" at infinity:

a—H+jkII=o 1 , I—eo

or r (10)

where the lower case o, read "little 0", means "faster than," in reference to the rate at which the expression approaches
Zero.

Finite Element Representation of the Debye Potential: General expression; DOF numbering

[0071] The scattered and/or radiated potential is represented as follows,

N
IIEn.0)=3 y;(E,n,0) I
,-5 ! J (11)

where

v &m0 =y (En) wL(r) v=1,2,..n; p=12,...m;nXm=N (12)

[0072] Here \ug‘ (&,m) are "angular" shape functions that interpolate I over spherical surfaces concentric to the infinite
element surface, and y" (r) are "radial" shape functions that interpolate IT along radial lines. Interelement CO-continuity
is established by enforcing the interpolation property:

\V?(%V.,T]V.) = va' (13)

v (r) =38, (14)

[0073] Our current local node numbering convention is to begin with the nodes on the base of the element and then
proceed radially outward, a layer of nodes at a time. This is summarized in Table 1, which relates the nodal (DOF)
index j to the radial index p and angular index v, where N = mXn.

[0074] FIG. 6illustrates the pattern for the particular case of a quadratic Lagrange quadrilateral (n = 9) in the angular
directions and a quadrupole (m = 3) in the radial direction (N= mXn = 27). However, it is trivial to change this pattern
to any other numbering pattern.

Angular shape functions

[0075] The functions \u(j (&m) are conventional 2-D polynomials (serendipity, Lagrange or hierarchic).

10
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[0076] For example, for the quadratic Lagrange quadrilateral elements depicted in FIGS. 4-6, the angular shape
functions are

v (Em) = 1,(8)1,.(n) v=1,2,..9

((0e=1,2,8), o' =1,2,3) (15)
where
1 . 2, 1
T, (u) = éu(u-1), To(U) = 1-U7; 14(u) = éu(u+1) (16)

Radial shape functions

[0077] The functions \VL’L (r) use a truncated form of the radial part of the multipole expansion in Eq. (6), namely, an
mth order multipole expansion:

. m h ’
f(r)=g KT e =1,2,..m (m>2
Wy, (1) uél (kn)® 3 (m>2) a7

The phase factor elk™u does not need to be included; if omitted, it will simply appear in each hyy in Eq. (8) below. The
factors k¥ in the denominators are also not necessary; they are included only to make the h,, nondimensional. The
cosfficients h,,» are determined by the requirement of interelement CO-continuity. Applying Eq. (14) to Eq. (17) yields
m sets of m linear algebraic equations, [h][S]=[l], where Sij = (krj)'I and [I] is the identity matrix. Therefore,

h1=1s]". (18)

This procedure defines m layers of nodes (with n nodes on each layer) lying on spheres of radiiry, 1o, ..., 1, (see FIG. 6).
[0078] To illustrate, consider a dipole element (m = 2),

-jk(r=r,) hy, + hy,

wh(n)=e kr  (kr)? h=1.2 (19)
Inverting a 2X2 [S | matrix yields
hj= L1 [~k Krfr
r,—n kr% —kzrlr% 20)

[0079] This procedure is the one that we have currently been using. However, a hierarchic formulation would have
the usual advantages of ease of mesh refinement (by p-extension), improved numerical conditioning and elimination
of all nodes exterior to the infinite element sphere. To convert to a hierarchic formulation, the angular directions would
employ the standard 2-D hierarchic shape functions for quadrilaterals and triangles. The radial direction would use the
mapping { = 1-2r,/r, which linearly maps the interval 1/r&[1/ry,0) to the interval {& [- 1,1), and then employ the standard
1-D hierarchic shape functions in {, excluding the linear function that is unity at infinity, i.e., at { = 1.

11
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Reluctivity, Permittivity, and Radiation Damping Matrices: Formal Expressions

[0080] '/I'\he element matrices are derived by starting with a finite-size element, i.e., with the outer face on a sphere
of radius r (See FIG. 4), and then taking the limit as r—e. Thus, applying the well-known Galerkin weighted residual
method to Eq. (8) over a single element yields

lim [ [ [(vW?I+02eM)y;dv=0 i=1,2,. N

using k2 = @2e/v, where v(= 1/u) is the reluctivity, or specific reluctance. Thus, H = vB is the inverse constitutive relation
to B = pH, where B is the magnetic induction and H is the magnetic intensity.

[0081] The first integral is converted into a surface integral and another volume integral using the identity
\uiVZH = V-(y, VII)-Vy;-VII and the divergence theorem. For the two volume integrals, substitute Eq. (11) for I1,
which will create the reluctivity and permittivity matrices. Th/q surface integral, which is over the entire boundary of the
element, is split into two integrals: one over the outer face, S(®), and the other over the remaining faces. For the outer
face integral, substitute in the Sommerfeld radiation condition, which will create the radiation damping matrix. The
second integral is zero for virtually all practical applications (see e.g., BURNETT 1994), although it is straightforward
to evaluate, if necessary; it will therefore be assumed to be zero for this development.

[0082] Carrying out the above operations transforms Eq. (21) to the following element matrix equation:

((KI+jolCl-o’[M] {IT} = {0} (22)

where the reluctivity, permittivity and radiation damping matrices are, respectively,

r—>o0 \10

My=lim [ [ [eywy;dv
Ty
Cj=eclim | [wiw;ds. (23)

r—)oosiﬁ)

Transformation of integrals; final expressions

[0083] The remaining mathematics transform the integrals in Eq. (23) to expressions that can be numerically eval-
uated. Following is a brief description of the principal steps.

[0084] Transformtheintegralsin Eq. (23) to spherical coordinates r,0,9. The differential volume and surface elements
are dV = r2sin8drded¢ and dS = r2sin6d8d¢. Since the base, intermediate nodal layers, and outer face conform to
concentric spheres and the side faces are the loci of radial lines, the element is a right cylinder in r,6,¢-space (or r,&,
n-space). Hence, the integration limits for the volume integrals can be separated into angular limits and radial limits,
and the angular integration is carried out over the "spherical cross section" o(®) of the element, i.e., any concentric
spherical surface inside the element and bounded by the side faces. There is only one spherical crogs section in r,6,
¢-space because the 6,¢ coordinates of the boundary of the cross section are independent of r. Hence, S(©) is equivalent
to 6(®) in the surface integration for ;. _ _
[0085] All the 3-D integrals separate into products of 2-D "angular" integrals, AS?V and 1-D "radial" integrals, Rﬂ)'u'
The 2-D surface integral for Cij separates in a similar manner.

[0086] Develop final expressions for the angular integrals. Transform the 6,¢ coordinates to local &, coordinates
using the coordinate mapping in Eq. (7). The resulting well-defined integrals can be numerically integrated using Gauss

12
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rules in the conventional FE manner. The integrals are:

AW = | [ y$y¥sinesdEdn

G(e)
a, a a, o
AS}% - J- a\Vv a\llv sin@ + a\l’v aWV 1 Jdédn
) 00 996 d9 Jd sinB (24)

where

111
_[ J' ... d&dn= J-—l j—l - dedn for quadrilaterals

o) J‘Ol Jol-'ﬂ .- d&dn for triangles 5)

[0087] Develop final expressions for the radial integrals. Substitute Eq. (17) into each of the radial integrals and radial
function and perform various algebraic operations. Some of the integrals become well-defined Fourier sine or cosine
transforms, which can be evaluated by standard algorithms available in many mathematics software packages. The
other integrals, as well as the radial function, result in undefined oscillatory terms, which are treated in the next step.
[0088] Form final expression for element matrix equation. All the above expressions, including both the well-defined
integrals and the undefined oscillatory terms, are substituted into Eq. (22), the element matrix equation, yielding:

[K] + jo[C] - o°[M] = [K”] - 0 [M"]

+ undefined oscillatory terms (26)
where [K*] and [M*] comprise all the well-defined integrals.
[0089] The reluctivity and permittivity matrices consist of two types of terms: those that are independent of the location
of the outer face (the "well-defined" integrals) and those that do depend on its location and therefore oscillate as the
face recedes to infinity. The damping matrix, which represents application of the Sommerfeld radiation condition to the
outer face, is completely oscillatory. However, we have found that the radiation condition exactly cancels the oscillatory

terms in the reluctivity and permittivity matrices.
[0090] The final form of the element matrix equation for the electromagnetic infinite element is

(K- M) {11} = {0} (27)

where

7 =erfAl} R (28)

13
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The angular integrals, A\(/i?v ,i=1,2, are given in Eq. (24). The radial integrals are

(1) iy, -zt
Ryp=Lyy “z‘bze’ ‘*‘BZ]bBHIB

2m
RH; =Lyy X cplp

B=2
1 ; . 2m-2 :
RL’ZFLMLE;_‘ ‘%Cze 264 Bgl cp+2lp| (29)

where

)ejk(rH'HH)

Lu'u = (1/K (30)
(A factor k is introduced into the integrals (and canceled by the 1/k in Lu'u) to make them dimensionless.)
[0091] Other quantities used to evaluate Eq. (29) are defined below:
j2kr
- ed
Ig= B>1
= (kr)P = (31)
g = kr, (32)
B-1
bg= Y a,ya
nydp,p-y
y=1 (33)
B-1
cp = X hyyhypg-y
y=1 (34)
The hy,, are defined by Eq. (18). Note that
huO = hu,m+1 =0,

and

14
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huoc =0 for o>m.

aua = —Jhua - (a'—l)hu,a_l u = 1, 2, rsy m
=0fora>m+1 o=1,2,..,m+l1 35)

[0092] The radial integrals in Eq. (29) are identical for every infinite element in a mesh (because they are independent
of angular variables and are along identical radial paths, i.e., radial lines emanating from the same sphere), so they
only need to be evaluated once for a given problem; their computational cost is totally insignificant. Hence, the numerical
integration required to generate [K*] and [M*] for each infinite element involves only the evaluation of the 2-D angular
integrals, making these 3-D elements as cheap to generate as 2-D elements. In addition, since the frequency depend-
ence of the element is contained only in the radial integrals, element generation during a frequency sweep is essentially
free after the first frequency.

Combining Two Infinite Elements for Complete Electromagnetic Field

[0093] Egq. (27) applies to each Debye potential. The matrices [K*] and [M>] are identical for both potentials. The
only difference is the vector {I1}. For IT' it lists the nodal values of IT'; for IT" it lists the nodal values of IT". Therefore,
as in standard FE practice, one combines the nodal values of IT' and IT" into a new vector of twice the length, the terms
being ordered in any convenient fashion. The matrices [K*] and [M*>] similarly double in size, with the row/column
ordering of terms dictated by the ordering chosen for {[1}. This could be illustrated by modifying FIG. 6 to show two
degrees of freedom at each node, one belonging to IT' and T1".

Coupling of Exterior Infinite Elements to Interior Finite Elements

[0094] FIG. 7 shows a portion of the spherical surface separating the exterior and interior regions. Inside the surface
is shown a finite element, one face of which is on the surface. In the infinite element the independent field variables
are the two Debye potentials. In the finite element the independent field variables are a vector function and a scalar
function. All of these fields exist on both sides of the surface. Since the surface is a mathematical construct, not an
actual discontinuity, and since the constitutive properties are continuous across the surface (being the properties of
free space), then all of these fields must be continuous across the surface.

[0095] The steps in the process for establishing this continuity are as follows. Consider first the interior element.

¢ Using a Galerkin formulation and applying the divergence theorem will yield a surface integral over the boundary
of the element, with the vector and scalar functions in the integrand.

* Use, e.g., Egs. (1)-(3) to relate these variables to the Debye potentials.

¢ Substitute for the Debye potentials their finite element expansions used in the infinite elements, namely, Eq. (11).
This will yield a matrix/vector product. The terms in the matrix are integrals that are known (can be computed).
The terms in the vector are the nodal values of the Debye potentials. The latter, of course, are unknown. Note that
the matrix equation for the interior element now also contains degrees of freedom associated with the adjacent
exterior element.

¢ Move this matrix/vector product to the "left hand side" of the element matrix equation. The matrix will be off the
main diagonal because it couples the nodal degrees of freedom in the interior finite element to the nodal degrees
of freedom in the exterior infinite element. This is the "coupling matrix".

[0096] This procedure could be repeated, starting with the exterior infinite element. The resulting coupling matrix will
be the transpose of the one derived for the interior matrix equation, so repeating the procedure is not necessary. The
pair of coupling matrices will appear symmetrically positioned on either side of the main diagonal, thus preserving
symmeitry in the assembled system equations, which is a manifestation of the self-adjointness of the governing partial
differential equations on both sides of the spherical surface.
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Claims
1. A method for operating a digital computer, having at least one digital memory and at least one data processing

element, to simulate the electromagnetic behavior of a body surrounded by a spatial region, the body having an
outer surface, and the body subjected to given driving conditions, comprising:
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a) subdividing at least the spatial region into a pattern of elements, said pattern to be referred to as a mesh,
and storing said mesh in the memory;

b) for each element of the mesh, computing a set of element matrix coefficients, and storing said coefficients
in the memory;

¢) assembling all of the element matrix coefficients into a system matrix, and storing the system matrix in the
memory;

d) in the data processing element, solving the system matrix equation, thereby to create a description of the
values assumed within the mesh by one or more electromagnetic field variables; and

e) recording the description in a data-storage device, wherein:

the subdividing step comprises constructing a closed bounding surface about the body such that at least
part of the spatial region, said part to be referred to as the external region, lies outside the bounding surface;
within the external region, the one or more electromagnetic field variables comprise at least one scalar
electromagnetic potential; and

the subdividing step further comprises filling the external region with elements, to be referred to as infinite
elements, wherein: (i) each infinite element is bounded by a base, at least three side faces, and an outer
face; (ii) each respective base lies on the bounding surface; and (iii) the outer face recedes 1o an infinite
radius.

2. A machine for simulating the electromagnetic behavior of a body surrounded by a spatial region, the body having
an outer surface, and the body subjected to given driving conditions, comprising:

a) means for subdividing at least the spatial region into a pattern of elements, said pattern to be referred to
as a mesh;

b) a digital memory element for storing the mesh;

¢) digital processing means for computing a set of element matrix coefficients for each element of the mesh;
d) a digital memory element for storing the element matrix coefficients, assembled from all of the elements,
as a system matrix;

e) digital processing means for solving the system matrix, thereby to create a description of the values assumed
by at least one electromagnetic field variable within the mesh; and

f) means for recording the resulting description of the at least one electromagnetic field variable, wherein:

the subdividing means comprise means for constructing a closed bounding surface about the body such
that at least part of the spatial region, said part to be referred to as the external region, lies outside the
bounding surface;

within the external region, the one or more electromagnetic field variables comprise at least one scalar
electromagnetic potential, and

the subdividing means further comprise means for filling the external region with elements, to be referred
to as infinite elements, wherein: (i) each infinite element is bounded by a base, at least three side faces,
and an outer face; (ii) each respective base lies on the bounding surface; and (iii) the outer face recedes
to an infinite radius.

3. The method of claim 1, wherein the subdividing step further comprises:

a) constructing a geometrical representation of the body; and
b) subdividing the body representation into finite elements; or

the machine of claim 2, wherein the subdividing means further comprise:

a) means for constructing a geometrical representation of the body; and
b) means for subdividing the body representation into finite elements.

16



10

15

20

25

30

35

40

45

50

55

10.

11.

EP 0 899 671 A1

The method of claim 1, wherein the step of computing element matrix coefficients is carried out in such a manner
as to satisfy the Sommerfeld radiation condition, or the machine of claim 2, wherein the means for computing
element matrix coefficients are constrained to satisfy the Sommefeld radiation condition.

The method of claim 1, wherein the step of computing element matrix coefficients comprises applying the Helmholiz
equation to an approximation of a multipole expansion of an electromagnetic field variable, or the machine of claim
2, wherein the means for computing element matrix coefficients comprise means for applying the Helmholtz equa-
tion to an approximation of a multipole expansion for an electromagnetic field variable.

The method of claim 1, further comprising, before solving the system matrix equation, adding to said equation
loads and boundary conditions subject to which the body is to be driven.

The method of claim 1, further comprising, after solving the system matrix equation, displaying a graphical image
that conveys information resulting from the solving step, or the machine of claim 2, further comprising means for
displaying a graphical image that conveys information resulting from solving the system matrix.

The method of claim 1, wherein, within the external region, the one or more electromagnetic field variables comprise
at least one Debye potential, or the machine of claim 2, wherein, within the external region, the one or more
electromagnetic field variables comprise at least one Debye potential.

The method of claim 1, wherein, within the external region, the one or more electromagnetic field variables comprise
a Debye potential for a TE field component and a Debye potential for a TM field component, or the machine of
claim 2, wherein, within the external region, the one or more electromagnetic field variables comprise a Debye
potential for a TE field component and a Debye potential for a TM field component.

The method of claim | wherein the method is carried out an electromagnetic oscillation frequency having a corre-
sponding wavelength, and the bounding surface is constructed to have a distance of closest approach to the body
of less than about one-half said wavelength, or the machine of claim 2, wherein the simulation is to be carried out
at an electromagnetic oscillation frequency having a corresponding wavelength, and the means for constructing
a bounding surface are adapted to bring the bounding surface, at its closest approach, within a distance from the
body that is less than one-half said wavelength.

The method of claim 1, wherein the bounding surface is a sphere, or the machine of claim 2, wherein the bounding
surface is a sphere.
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