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Description 

[0001]  This  application  claims  the  benefit  of  U.S.  Provisional  Application  No.  60/053630,  filed  July  24,  1997. 

5  Background  of  the  Invention 

[0002]  In  many  of  the  predictive  and  analytical  problems  of  theoretical  and  applied  engineering,  it  is  necessary  to 
solve  one  or  more  of  the  equations  of  physics  that  describe  a  physical  field.  The  field  variable  that  is  sought  may  be, 
for  example,  a  measure  of  mechanical  deformation,  acoustic  pressure,  an  electrostatic  or  electromagnetic  potential, 

10  or  an  electromagnetic  field  intensity. 
[0003]  The  equations  that  describe  these  and  other  fields  are  differential  equations,  integral  equations,  or  equations 
that  combine  aspects  of  both,  which  can  be  solved  exactly,  if  at  all,  only  by  the  techniques  of  calculus.  Typically,  bound- 
ary  conditions  (and  also  initial  conditions,  if  time  evolution  is  part  of  the  problem  to  be  solved)  must  be  specified  in 
order  to  provide  a  complete  definition  of  the  problem  that  is  to  be  solved.  In  practical  situations,  these  boundary  con- 

's  ditions  often  involve  specifying  the  field  variable,  its  derivatives,  functions  of  either  or  both  of  these,  or  a  combination 
of  some  or  all  of  the  preceding,  on  complicated  two-  or  three-dimensional  surfaces.  As  a  consequence  of  the  complexity 
of  both  the  governing  physical  equations  and  the  boundary  conditions,  most  practical  problems  are  too  complex  to 
solve  by  hand  calculations. 
[0004]  Numerical  modeling  techniques  are  aimed  at  providing  approximate  solutions  to  these  equations  that  can  be 

20  performed  with  the  help  of  a  digital  computer.  Many  different  numerical  modeling  techniques  are  available.  One  such 
technique,  which  has  proven  extremely  fruitful  in  numerous  fields  of  application,  is  the  so-called  finite  element  method 
(FEM). 
[0005]  As  we  describe  more  fully  hereafter,  the  traditional  practice  of  the  FEM  calls  for  the  spatial  region  of  interest 
to  be  subdivided  into  a  plurality  of  perfectly  juxtaposed  cells  (i.e.,  cells  that  are  juxtaposed  without  overlaps  or  interstitial 

25  voids),  which  are  referred  to  as  elements.  Discrete  nodes  are  defined  on  the  inter-element  boundaries  and,  typically, 
also  within  the  element  interiors.  The  network  of  elements  and  nodes  is  referred  to  as  a  mesh. 
[0006]  The  FEM  does  not  seek  an  exact  solution  to  the  physical  field  equation.  Instead,  it  assumes  that  within  each 
element,  the  field  can  be  described,  to  an  adequate  approximation,  by  a  finite  linear  combination  of  simple  functions, 
such  as  polynomials,  that  are  chosen,  inter  alia,  for  convenient  analytical  properties.  The  coefficients  of  the  respective 

30  polynomials  in  such  a  linear  combination  are  referred  to  as  degrees  of  freedom  (DOF).  The  polynomials  are  normalized 
in  such  a  way  that  the  DOF  are  equal  to,  or  otherwise  relate  to,  the  values  of  the  field  variable  at  the  nodes.  Between 
the  nodes,  the  polynomials  interpolate  the  values  of  the  field  variable  in  a  continuous  fashion. 
[0007]  The  polynomials  themselves  are  known  a  priori.  Therefore,  the  problem  is  solved,  within  a  given  element,  by 
specifying  the  values  of  the  DOF  for  that  element.  The  DOF  are  not  determined  directly  from  the  field  equation.  Instead, 

35  a  mathematical  condition  is  derived  from  the  field  equation.  In  essence,  this  condition  demands  that  a  certain  measure 
of  error  (i.e.,  between  the  approximate  and  exact  solutions)  must  be  small.  Once  this  condition  has  been  fully  defined, 
it  can  be  expressed  as  a  set  of  linear  equations,  in  which  the  unknowns  are  the  DOF.  Linear  equations  are  well-suited 
to  be  solved  by  a  digital  computer,  because  all  that  is  required  is  a  large  number  of  repetitive,  mechanical  manipulations 
of  stored  quantities. 

40  [0008]  The  linear  equations  belonging  to  a  given  element  are  not  solved  in  isolation.  Instead,  the  sets  of  equations 
belonging  to  all  of  the  elements  are  assembled  into  a  single  matrix  system.  Suitable  modifications  are  made  to  these 
system  equations  to  account  for  the  boundary  conditions.  Then  the  matrix  system  is  solved  automatically  by  standard 
methods. 
[0009]  Special  challenges  arise  when  attempting  to  obtain  a  mathematical  solution,  either  exact  or  approximate,  to 

45  any  problem  involving  scattering  and/or  radiation,  e.g.,  of  acoustic  or  electromagnetic  waves,  from  an  object  located 
in  an  unbounded  region  (that  is,  in  open  or  free  space).  The  mathematical  solution  to  all  such  problems  must  satisfy 
a  so-called  "radiation  condition"  (known  as  the  Sommerfeld  condition  in  acoustics  and  as  the  Silver-Muller  condition 
in  electromagnetism).  The  condition  states  that  all  waves  "at  infinity"  are  only  traveling  outward  toward  infinity,  not 
inward  from  infinity.  Thus,  all  the  energy  in  the  problem  resides  in  the  radiated  or  scattered  waves,  which  are  traveling 

so  outward  after  their  interaction  with  the  object;  conversely,  no  energy  is  created  at  infinity.  Note  that  the  radiation  condition 
is  a  condition  that  exists  "at  infinity,"  not  at  a  finite  distance.  Much  of  the  history  of  computational  methods  for  such 
problems  has  been  focused  on  how  to  obtain  approximate,  numerical  solutions  that  satisfy  the  radiation  condition  to 
an  acceptable  accuracy,  while  not  being  prohibitively  expensive. 
[0010]  We  note  that  the  FEM,  because  of  its  extraordinary  versatility  in  handling  objects  of  virtually  any  geometric 

55  shape  and  material  properties,  is  generally  the  method  of  choice  for  modeling  the  finite  part  of  the  problem,  i.e.,  the 
object  and,  sometimes,  a  finite  part  of  the  open  region  surrounding  the  object.  (The  Finite  Difference  Time  Domain 
method  is  occasionally  used  for  small  problems.)  The  challenge  is  how  to  model  the  remainder  of  the  infinite  region, 
including  the  radiation  condition  at  infinity.  The  methods  have  generally  fallen  into  three  classes. 
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[0011]  The  first  class  uses  boundary  integral  equation  methods  (BIEM).  Here,  an  integral  equation  that  satisfies  the 
radiation  condition  exactly  can  be  applied  directly  on  the  outer  surface  of  the  object.  Its  advantage,  which  seems 
compelling  at  first  sight,  is  that  the  infinite  exterior  domain  is  replaced,  with  no  loss  in  physical  approximation,  by  a 
(relatively)  small  surface,  which  greatly  reduces  the  computational  size  of  the  problem.  However,  it  has  a  severe  dis- 

5  advantage.  The  matrices  in  the  resulting  discretization  of  the  integral  equation  are  fully  populated,  making  the  compu- 
tational  cost  prohibitively  expensive  except  for  only  small-scale  problems.  (Small-scale  means  the  dimensions  of  the 
object  are  small  relative  to  the  relevant  wavelengths.) 
[0012]  The  second  class  uses  exact  solutions  to  the  wave  equation  in  open  regions,  often  expressed  as  infinite  series 
of  known  functions,  e.g.,  wave  functions  or  multipoles.  These  are  joined  to  the  solutions  in  the  finite  region  in  a  manner 

10  that  approximately  establishes  continuity  along,  e.g.,  a  closed  boundary  surrounding  the  object.  This  approach  suffers 
from  the  same  disadvantage  as  the  BIEM,  namely,  that  the  resulting  discretized  equations  are  fully  populated,  hence 
prohibitively  expensive. 
[0013]  The  third  class,  which  has  comprised  most  of  the  research  in  recent  years,  is  to  construct  an  artificial  boundary 
surrounding  the  object,  then  apply  a  so-called  absorbing  (or  non-reflecting)  boundary  condition  (ABC)  that  will  make 

is  the  boundary  appear  as  transparent  as  possible  to  all  outward  traveling  waves,  i.e.,  the  radiated  or  scattered  fields. 
There  have  been  many  variations  on  this  approach.  The  primary  advantage  here  is  that  the  resulting  discretized  equa- 
tions  have  sparse  matrices.  This  property,  by  itself,  would  keep  the  cost  low.  However,  the  disadvantage  is  that  all 
ABCs,  which  are  applied  to  a  boundary  at  a  finite  distance,  can  only  be  approximations  to  the  exact  radiation  condition 
at  infinity.  As  a  consequence,  spurious  (non-realistic)  waves  are  reflected  from  the  artificial  boundary,  which  then  prop- 

20  agate  throughout  the  entire  finite  region,  contaminating  the  solution  everywhere.  This  effect  can  be  mitigated  by  moving 
the  artificial  boundary  farther  away  from  the  object,  but  this  only  increases  the  size  of  the  finite  region  and  hence  the 
cost. 
[0014]  An  alternative  to  these  approaches  is  the  use  of  so-called  infinite  elements,  which  are  finite  elements  that 
cover  a  semi-infinite  sector  of  space.  (We  note  that  the  term  "finite"  in  the  name  "finite  element  method"  means  non- 

25  infinitesimal;  it  does  not  mean  non-infinite.  It  is  therefore  semantically  correct  to  say  "infinite  finite  element,"  as  was 
done  in  the  early  1970s,  but  it  is  now  universally  called  an  "infinite  element." 
[0015]  Infinite  elements  have  been  used  to  great  advantage  to  solve  problems  in  acoustics.  Such  uses  for  infinite 
elements  are  described,  for  example,  in  the  article  by  D.  S.  Burnett,  "A  Three-Dimensional  Acoustic  Infinite  Element 
Based  on  a  Prolate  Spheroidal  Multipole  Expansion,"  J.  Acoust.  Soc.  Am.  96  (1994)  2798-2816  (BURNETT  1994). 

30  Also  pertinent  in  this  regard  are  U.S.  Patent  No.  5,604,891  and  U.S.  Patent  No.  5,604,893,  both  assigned  to  the  as- 
signee  hereof.  Also  pertinent  in  this  regard  is  the  currently  pending  U.S.  Patent  Application  Serial  No.  08/81  2,472,  also 
assigned  to  the  assignee  hereof. 
[0016]  These  acoustic  infinite  elements  have  been  highly  acclaimed  by  leaders  in  the  academic  community  as  well 
as  by  commercial  code  developers  because  they  have  exhibited  both  high  accuracy  and  extraordinary  speed  of  com- 

35  putation  (over  400  times  faster  than  other  state-of-the-art  methods). 
[0017]  To  use  these  infinite  elements,  one  constructs  (similar  to  the  third  class  of  methods  above)  an  artificial  bound- 
ary  surrounding  the  object.  However,  instead  of  using  ABCs,  one  constructs  a  single  layer  of  infinite  elements  around 
the  entire  artificial  boundary.  This  single  layer  covers  the  entire  infinite  region  outside  the  artificial  boundary.  Most 
important  to  the  invention  is  the  fact  that  because  each  element  extends  all  the  way  to  infinity,  the  essential  radiation 

40  condition  can  now  be  applied  exactly  "at"  infinity.  This  is  primarily  what  accounts  for  the  high  accuracy  of  these  infinite 
elements.  This  high  accuracy,  in  turn,  accounts  for  the  extremely  high  computational  speeds  because  the  infinite  ele- 
ments  can  be  placed  extraordinarily  close  to  the  object  (typically  less  than  half  a  wavelength),  resulting  in  a  much 
smaller  finite  computational  region  (than  required  with  ABCs).  Below,  we  describe  an  electromagnetic  infinite  element. 
We  are  unaware  of  any  prior  use  of  infinite  elements  in  electromagnetism. 

45  [001  8]  A  central  challenge  to  developing  an  EM  infinite  element  is  related  to  the  vector  nature  of  EM  fields  (as  opposed 
to  the  simpler  scalar  nature  of  acoustic  fields).  Thus,  an  EM  field  is  characterized  by  two  coupled  vector  fields,  i.e.,  the 
electric  field  and  the  magnetic  field.  Although  all  the  classical  field  theories  permit  the  representation  of  (scalar  or 
vector)  fields  as  spatial  derivatives  of  potential  functions,  in  the  case  of  EM  the  only  known  representation  for  general 
applications  (i.e.,  inhomogeneous  and/or  anisotropic  physical  properties)  involves  a  vector-valued  potential  function, 

so  known  as  the  vector  potential.  The  lack  of  a  suitable  scalar-valued  potential  has  been  a  deterrent  to  the  development 
of  an  EM  infinite  element. 
[001  9]  According  to  one  aspect  of  the  present  invention,  there  is  provided  a  method  as  defined  in  claim  1  or  a  machine 
as  defined  in  claim  2. 

55  Summary  of  the  Invention 

[0020]  In  developing  our  new  EM  infinite  element,  we  recognized  that  most  practical  EM  radiation  and  scattering 
problems  (e.g.,  wireless  telecommunication,  radar)  are  in  the  atmosphere  (air),  for  which  the  EM  properties  are  homo- 
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geneous  and  isotropic  in  the  open  regions  surrounding  objects.  Infinite  elements  are  only  used  in  such  open  regions. 
For  these  regions  there  does  exist  (though  apparently  it  is  not  generally  well  known)  a  representation  of  general  EM 
fields  in  terms  of  two  independent  scalar  potential  functions,  each  of  which  must  satisfy  the  acoustic  wave  equation 
and  the  acoustic  (Sommerfeld)  radiation  condition.  This  is  the  key  to  our  invention.  It  enables  us  to  apply  our  previously 

5  developed  (see  BURNETT  1994)  acoustic  infinite  elements,  essentially  unchanged,  to  the  EM  realm. 
[0021]  More  specifically,  our  invention  makes  use  of  a  pair  of  scalar  EM  potential  functions  FT  and  n",  referred  to  as 
the  Debye  potentials.  The  electromagnetic  field  may  be  resolved  into  a  TE  component  and  a  TM  component,  in  which 
the  radial  direction  is  defined  as  the  longitudinal  direction.  E"  and  H"  are,  respectively,  the  electric  and  magnetic  field 
intensities  of  the  TE  field  component,  and  E'  and  H'  are  the  corresponding  field  intensities  of  the  TM  field  component. 

10  The  potential  functions  FT  and  n"  are  defined  such  that  E'  and  H'  are  derived,  via  simple  expressions,  from  IT,  and  E" 
and  H"  are  derived  via  similar  expressions  from  n".  A  mathematical  derivation  of  the  Debye  potentials  FT  and  n"  can 
be  found  in  the  book  by  L.  B.  Felsen  and  N.  Marcuvitz,  Radiation  and  Scattering  of  Waves,  IEEE  Press,  1994. 
[0022]  In  addition  to  providing  a  new,  electromagnetic  infinite  element,  we  have  shown,  for  the  first  time,  how  sub- 
stantial  computational  efficiencies  can  be  achieved  by  partitioning  the  problem  space  into  a  finite  region  and  an  un- 

15  bounded  region  that  is  homogeneous  and  isotropic.  By  taking  full  advantage  of  the  simple  physical  description  of  the 
unbounded  region,  such  a  partitioning  makes  it  possible,  by  FEM  techniques,  to  provide  accurate  solutions  at  and 
beyond  the  bounding  surface  without  introducing  numerical  artifacts  that  would  otherwise  contaminate  the  solution 
within  the  bounding  surface. 
[0023]  In  typical  applications  of  our  invention,  the  structure  of  interest  is  modeled  by  constructing  a  smooth,  closed 

20  bounding  surface  about  the  structure.  We  have  developed  a  detailed  infinite  element  formulation  assuming  that  this 
bounding  surface  is  a  sphere.  However,  we  believe  that  this  formulation  can  be  extended  to  geometries  in  which  the 
bounding  surface  is  a  more  general  surface,  such  as  a  spheroid  or  ellipsoid.  It  is  advantageous  for  the  bounding  surface 
to  closely  circumscribe  the  structure.  Preferably,  the  distance  of  closest  approach  between  the  bounding  surface  and 
the  structure  is  less  than  about  one-half  wavelength  of  the  electromagnetic  field  (at  the  oscillation  frequency  pertinent 

25  to  the  problem  being  calculated). 
[0024]  Within  the  bounding  surface,  FEM  modeling  is  carried  out  using  finite  (but  not  infinite)  elements.  Numerous 
commercial  application  programs  are  available  for  carrying  out  modeling  of  that  kind. 
[0025]  The  entire  unbounded  region  lying  outside  the  bounding  surface  is  modeled  using  the  inventive  infinite  ele- 
ment.  At  the  bounding  surface,  it  will  be  possible  to  couple  the  two  modeling  techniques  without  discontinuities.  This 

30  is  desirable  because  discontinuities  tend  to  generate,  as  a  computational  artifact,  spurious  numerical  waves  that  con- 
taminate  the  calculated  solution. 
[0026]  Such  a  combination  of  modeling  technologies  is  particularly  advantageous  because  it  offers  significant  im- 
provements  in  both  computational  speed  and  accuracy.  Because  of  higher  speed,  it  is  possible,  in  turn,  to  incorporate 
more  realistic  physical  modeling,  which  will  lead  to  solutions  having  greater  fidelity  to  real-world  phenomena. 

35  [0027]  Practical  applications  of  the  invention  include  modeling  of  interactions  between  a  radiation  source  and  a  body. 
One  such  source-body  system  consists  of  a  wireless  communication  device  (as  the  radiation  source)  and  a  human 
body  (or  a  portion  thereof,  such  as  a  human  head).  One  significant  problem  in  this  field  is  the  prediction  of  the  rate 
(often  of  interest  is  the  rate  per  unit  mass)  at  which  thermal  energy  is  deposited  in  living  tissue  as  the  result  of  absorption 
of  electromagnetic  radiation  from  the  communication  device.  When  using  the  inventive  method  to  solve  such  a  problem, 

40  the  emissive  device  and  the  absorptive  body  may  both  be  included  within  the  bounding  surface.  Alternatively,  the 
emissive  device  may  be  treated  as  a  pure  radiation  source,  and  included  within  an  infinite  element,  exterior  to  the 
bounding  surface.  We  believe  that  the  use  of  our  invention  will  lead  to  greater  accuracy  in  predicting  doses,  and  dose 
rates,  of  absorbed  energy. 
[0028]  Other  exemplary  source-body  systems  include  electric  power  lines,  antennas,  wireless  or  wired  communica- 

45  tion  devices,  electronic  circuits,  and  other  sources  of  electromagnetic  radiation,  paired  with  electronic  devices  of  various 
kinds  whose  proper  operation  might  be  impaired  by  excessive  environmental  electromagnetic  interference.  Such  sen- 
sitive  devices  include  communication  devices,  as  well  as  heart  pacemakers,  hearing  aids,  and  other  medical  devices. 
We  believe  that  the  use  of  our  invention  will  lead  to  greater  accuracy  in  modeling  the  fields  external  to  the  emissive 
devices,  as  well  as  greater  accuracy  in  modeling  the  sensitivity  patterns  of  the  potentially  impaired  devices.  Thus,  we 

so  believe  that  the  use  of  our  invention  will  lead  to  greater  accuracy  in  studies  of  the  electromagnetic  compatibility  of  such 
systems  of  devices. 
[0029]  The  invention  can  also  be  applied  in  antenna  design,  for  calculating  the  transmission  patterns  and  sensitivity 
patterns  of  antennas  and  antenna  arrays. 
[0030]  The  invention  can  also  be  applied  for  predicting  the  scattering  of  electromagnetic  waves  from  structures. 

55  Thus,  it  is  useful  for  calculating  radar  signatures  of  objects.  In  addition,  the  invention  is  useful  for  predicting  patterns 
of  scattering  of  communication  transmissions  from  structures.  For  this  reason,  it  is  useful  for  optimizing  the  siting,  as 
well  as  the  design,  of  communication  antennas  such  as  those  associated  with  cellular  base  stations. 
[0031]  It  should  be  noted  in  this  regard  that  the  invention  will  have  at  least  some  useful  applications  even  in  the 
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indoor  environment.  We  believe  that  even  indoors,  the  infinite  element  will  provide  useful  estimates  of  the  scattered 
field  around  an  object,  provided  sufficient  clear  space  surrounds  the  object.  Generally,  a  radius  of  about  ten  wavelengths 
around  the  object  is  believed  to  be  sufficient  for  such  purpose.  For  design  of,  e.g.,  indoor  wireless  systems,  the  infinite 
element  technology  is  usefully  coupled  to  a  conventional  design  code  such  as  a  ray-tracing  code. 

5 
Overview  of  the  Finite  Element  Method 

[0032]  The  finite  element  method  (FEM)  is  a  method,  performed  with  the  help  of  a  computer,  for  predicting  the  be- 
havior  of  a  physical  system  by  obtaining  numerical  solutions  to  mathematical  equations  that  describe  the  system  and 

10  its  loading  conditions.  The  use  of  the  FEM  may  be  thought  of  as  comprising  three  phases:  preprocessing,  solution, 
and  postprocessing.  These  phases  are  now  discussed  in  further  detail  with  reference  to  FIG.  1  . 
[0033]  In  the  preprocessing  phase,  the  physical  domain  of  the  problem  is  partitioned  into  a  pattern  of  subdomains 
of  simple  geometry,  referred  to  as  "elements".  The  resulting  pattern  is  referred  to  as  a  "mesh".  In  addition,  problem 
data  such  as  physical  properties,  loads,  and  boundary  conditions  are  specified.  This  procedure  is  represented  as  step 

is  10  of  the  figure. 
[0034]  The  solution  phase  comprises  steps  20-50  in  the  figure.  In  the  first  of  these  four  steps,  numerical  values  are 
computed  for  the  coefficients  in  the  "element  matrix  equation"  associated  with  each  element  in  the  mesh.  The  element 
matrix  equation,  the  derivation  of  which  is  indicated  in  box  15  of  the  figure,  is  a  set  of  numerically  computable  mathe- 
matical  formulas  that  are  derived  theoretically  and  implemented  into  the  computer  code  that  forms  the  FEM  program. 

20  [0035]  During  the  use  of  the  FEM  program,  the  code  for  these  formulas  is  accessed  by  each  element  in  the  mesh, 
and  numerical  values  are  computed  for  the  coefficients  in  the  formulas  using  the  geometric  and  physical  data  associated 
with  each  element. 
[0036]  We  are  providing,  for  the  first  time,  a  set  of  such  formulas  (i.e.,  the  element  matrix  equation)  that  is  specific 
to  an  electromagnetic  infinite  element. 

25  [0037]  The  procedure  used  in  the  derivation  of  the  element  matrix  equation,  which  is  described  in  detail  below,  em- 
bodies  the  following  general  ideas.  The  unknown  field  variable,  for  which  the  finite-element  analysis  is  seeking  a  so- 
lution,  is  represented  approximately  within  each  element  as  a  finite  sum  of  known  functions,  referred  to  as  "shape" 
functions.  These  shape  functions  are  usually  chosen  to  be  polynomials.  There  are  unknown  parameters  in  this  repre- 
sentation,  referred  to  as  "degrees  of  freedom  (DOF)",  that  become  the  new  unknowns  which  the  finite-element  analysis 

30  will  find  values  for.  The  DOF  are  often  the  values  that  the  unknown  field  variable  takes  at  specific  points  in  the  element, 
referred  to  as  "nodes".  The  purpose  of  this  representation  is  that  when  values  for  the  DOF  are  subsequently  computed 
in  step  50,  a  solution  will  then  be  known  everywhere,  continuously,  throughout  each  element.  This  is  possible  because 
at  that  stage,  both  the  shape  functions  and  the  parameters  will  be  known,  and  these,  together,  define  the  complete 
solution. 

35  [0038]  The  representation  of  the  unknown  field  variable  in  terms  of  shape  functions  is  then  inserted  into  the  governing 
physics  equations  (which  are,  typically,  differential  or  integral  equations)  that  express  the  physical  laws  to  which  the 
physical  system  is  subject.  These  calculus  equations  reduce  to  a  system  of  linear  algebraic  equations  which,  when 
written  in  matrix  form,  is  the  element  matrix  equation.  The  expressions  for  the  coefficients  in  this  matrix  equation  are 
manipulated  using  calculus  and  algebra  until  they  are  in  a  form  that  can  be  numerically  evaluated  by  the  computer. 

40  These  numerical  coefficients  are  the  output  of  step  20. 
[0039]  In  step  30,  the  element  matrix  equations  from  all  the  elements  are  combined  together  (i.e.,  they  are  said  to 
be  "assembled")  into  one  large  "system  matrix  equation."  The  matrices  associated  with  elements  that  touch  each  other 
in  the  mesh  will  partially  overlap,  thereby  establishing  continuity  in  the  field  variable  from  element  to  element.  Since 
the  overlap  is  partial,  the  system  matrix  grows  larger  and  larger  as  element  equations  are  assembled,  resulting  in  one 

45  very  large  system  matrix. 
[0040]  The  system  matrix  equation  is  then  modified  (step  40)  to  take  account  of  the  boundary  and  loading  conditions. 
The  system  matrix  equation  is  then  solved  (step  50),  using  conventional  techniques  of  numerical  analysis.  Although 
there  may  be  thousands,  or  even  hundreds  of  thousands,  of  unknown  DOF,  the  solution  of  this  matrix  equation  is 
generally  a  very  tractable  problem.  That  is  because  the  matrix  elements  tend  to  assume  non-zero  values  only  within 

so  a  relatively  narrow  band  along  the  matrix  diagonal.  A  well-known  measure  of  the  width  of  this  band  (and  thus,  of  the 
time  required  for  solution)  is  the  "rms  half-bandwidth"  Brms. 
[0041]  In  the  postprocessing  phase,  the  solution  to  the  system  matrix  equation  is  displayed  in  an  appropriate,  mean- 
ingful  form  (step  60).  In  this  phase,  other  useful  information  may  be  derived  from  the  solution  and  likewise  displayed. 
Below,  we  present  a  detailed  description  of  the  derivation  of  the  element  matrix  equation  for  the  inventive  electromag- 

55  netic  infinite  element. 
[0042]  Structural  finite  element  codes  have  a  wide  range  of  useful  applications.  By  simulating  the  field  in  and  around 
a  structure  and  its  interaction  with  the  radiating  structure,  the  design  of  the  structure  can  be  more  quickly  and  efficiently 
modified  (as  compared  to  the  current  expensive,  repeated  prototyping  procedures)  to  improve  or  optimize  the  radiative 
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behavior,  e.g.,  to  reduce  the  overall  radiation  or  to  alter  the  directivity  pattern.  Important  applications  include  reduction 
of  environmental  noise  from  electromagnetic  interference  from  machinery,  appliances,  electronics,  etc.  Terminal  equip- 
ment  for  telecommunications  systems  (speakerphones,  loudspeakers,  public  phone  booths,  cellular  phones,  etc.)  can 
be  better  designed  to  meet  emissions  standards.  There  are  also  military  applications  to  radar  and  radar  countermeas- 

5  ures. 

Apparatus  for  Practicing  the  Finite  Element  Method 

[0043]  With  reference  to  FIG.  2,  we  now  describe  apparatus  useful  for  practicing  the  FEM  in  general  and  our  inventive 
10  method  in  particular. 

[0044]  A  mesh  generator  100  executes  the  preprocessing  phase  10  of  FIG.  1.  It  is  common  practice  to  use  for  the 
mesh  generator,  a  programmed,  general-purpose  digital  computer.  Descriptions  of  the  physical  system  to  be  modeled 
may  be  input  to  the  mesh  generator  directly  from  a  user  terminal  1  02,  or  they  may  be  input  from  a  data  storage  device 
105,  such  as  a  magnetic  disk  or  a  digital  memory.  The  mesh  generator  will  typically  call  upon  a  stored  library  107  of 

is  elements  (i.e.,  of  nodal  patterns  arranged  within  sectors  of  triangular  and/or  quadrilateral  cross-section).  The  mesh 
and  other  output  data  of  the  mesh  generator  are  stored  in  memory  device  110,  which  is  typically  a  magnetic  disk  and 
also  optionally  a  digital  computer  memory. 
[0045]  The  solution  phase  (steps  20-50  of  FIG.  1)  is  also  typically  carried  out  in  a  programmed  computer,  represented 
in  the  figure  as  element  115.  As  noted,  an  intermediate  step  of  the  solution  phase  is  the  evaluation  of  the  coefficients 

20  of  the  element  matrix  equations.  These  coefficients  are  stored  in  a  digital  memory,  denoted  element  120  in  the  figure. 
[0046]  It  is  a  general  property  of  the  solution  phase  that  as  the  frequency  increases,  the  computation  time  increases 
exponentially.  For  this  reason,  it  will  often  be  advantageous  to  use,  for  computer  element  115,  a  parallel  processor, 
such  as  a  massively  parallel  processor  or  a  scalable  parallel  processor. 
[0047]  In  step  30  of  FIG.  1  ,  the  element  matrix  coefficients  are  assembled  into  a  system  matrix  equation.  The  memory 

25  element  for  storing  the  system  matrix  coefficients  is  denoted  element  125  in  FIG.  2. 
[0048]  The  result  of  the  solution  phase  is  a  description  of  the  values  assumed  by  a  field  variable  throughout  the 
mesh.  This  information  is  typically  subjected  to  post-processing  in  a  processing  element  denoted  130  in  the  figure, 
and  output  to  a  storage  device  135  or  display  device  140. 

30  Brief  Description  of  the  Drawing 

[0049]  FIG.  1  is  a  flowchart  illustrating  the  basic  steps  in  the  use  and  operation  of  a  finite  element  code. 
[0050]  FIG.  2  is  a  block  diagram  of  exemplary  apparatus  for  practicing  the  finite  element  method. 
[0051]  FIG.  3  depicts  a  body  of  arbitrary  shape  circumscribed  by  a  bounding  sphere,  in  accordance  with  the  invention 

35  in  one  embodiment. 
[0052]  FIG.  4  depicts  a  spherical  infinite  element,  in  accordance  with  the  invention  in  one  embodiment. 
[0053]  FIG.  5  depicts  the  base  of  the  infinite  element  of  FIG.  4,  together  with  6,c|>  coordinate  lines  illustrative  of  a 
spherical  problem  geometry. 
[0054]  FIG.  6  illustrates  a  local  node  numbering  convention  for  the  particular  case  of  a  quadratic  Lagrange  quadri- 

40  lateral  in  the  angular  directions  and  a  quadrupole  in  the  radial  direction. 
[0055]  FIG.  7  depicts  a  portion  of  a  bounding  surface,  separating  the  exterior  and  interior  regions  of  an  illustrative 
modeling  problem.  A  finite  element  is  shown  within  the  bounding  surface. 

Detailed  Description 
45 

Electromagnetic  Field  Quantities 

[0056]  The  electromagnetic  field  quantities  are  listed  below: 

Quantity  Symbol  SI  units 

Electric  field  intensity  E  =  E(x,  t)  V/m 
Electric  flux  density  D  =  D(x(  t)  C/m2 
Magnetic  field  intensity  H  =  H(x(  t)  A/m 
Magnetic  flux  density  B  =  B(x,  t)  Wb/m2 
Current  density  J  =  J(x,  t)  A/m2 
Volume  charge  density  p  =  p(x,  t)  C/m3 
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[0057]  The  field  quantities  are  related  by  the  following  constitutive  laws  for  a  simple  medium: 

electrical  permittivity: 

5 
-D  =  e  E 

magnetic  permeability: 

10 
B=  u,  H 

electrical  conductivity  (Ohm's  law): 

15 
J  =  a  E 

Here  e  is  the  permittivity,  \i  is  the  permeability,  and  o  denotes  the  conductivity  of  the  medium.  Denoting  by  e0  the 
permittivity  of  free  space, 

20 

£o  =  3ib10"9F/m< 

and  by  u.0  the  permeability  of  free  space, 
25 

u,0  =  4ti  10"7  H/m, 

we  introduce  the  dielectric  constant  er  and  relative  permeability  u,r, 
30 

e  =  ere0  u.  =  u ^ .  

[0058]  E  and  H  obey  Maxwell's  time-harmonic  (ei051),  source-free  equations: 
35 

V  X  E  =  -  jcou.  H 

V  X  H  =  jcoe  E. 40  ' 

Representation  of  Electromagnetic  Field  by  Two  Scalar  (Debye)  Potentials 

[0059]  The  E-type  (TM)  and  H-Type  (TE)  electromagnetic  field  decomposition  in  source-free,  homogeneous,  isotropic 
45  regions  in  spherical  coordinates  is  expressible  in  terms  of  vector  operations  on  scalar  potentials.  This  has  been  shown 

in  Sections  2.5  and  2.6  of  the  book  by  Felsen  and  Marcuvitz,  cited  above. 
[0060]  Define  the  longitudinal  direction  as  the  radial  direction  r. 
[0061]  Express  the  electric  field  E(r)  as  the  sum  of  an  E-type  (TM)  component  E'(r)  and  an  H-type  (TE)  component 
E"(r),  and  similarly  for  the  magnetic  field  H(r): 

50 

E(r)  =  E'(r)  +  E"(r),  H(r)  =  H'(r)  +  H"(r).  (1) 

In  terms  of  the  Debye  potentials  IT  and  n",  it  can  be  shown  that: 
55 

E'(r)  =  V  X  V  X  [rn'(r)],  E"(r)  =  -jcou.  V  X  [r  n"(r)],  (2) 
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and, 

H'(r)  =  jcoe  V  X  [r  n'(r)],  H"(r)  =  V  X  V  X  [rn"(r)]  (3) 

[0062]  Moreover,  it  can  be  shown  that  FT  and  n"  satisfy  the  Helmholtz  equation: 

(V2  +  k2  )n'(r)  =  0  (4) 

and 

(V2  +  k2)  n"(r)  =  0  (5) 

These  equations,  together  with  appropriate  boundary  and  continuity  conditions,  uniquely  specify  the  E-  and  H-type 
scalar  (Debye)  potentials  for  the  electromagnetic  field. 

Multipole  Expansion  for  Each  Debye  Potential 

[0063]  Consider  an  arbitrary  structure  or  group  of  structures,  composed  of  dielectric,  conducting,  permeable  mate- 
rials,  surrounded  by  unbounded  free  space.  Consider  a  time-harmonic  (ei051)  electromagnetic  (EM)  field  that  permeates 
the  structure(s)  and  fills  the  unbounded  space.  Such  a  field  could  be  caused  by  known  sources  inside  the  structure(s) 
that  produce  a  radiated  field,  as  well  as  by  sources  outside  the  structure(s)  that  produce  a  known  incident  field  that 
scatters  from  the  structure(s).  Let  S  be  a  sphere  of  minimum  radius  r0  that  just  circumscribes  the  structure(s)  (FIG.  3). 
[0064]  The  scattered  and/or  radiated  scalar  potential  n  in  the  free  space  exterior  to  S  satisfying  the  scalar  Helmholtz 
equation  can  be  represented  by  the  following  multipole  expansion  in  spherical  coordinates  r,6,c|>: 

e- j*   ~  Fn(e,<t>;k) 

r  „To  rn  (6) 

Equation  (6)  has  the  following  properties: 

(i)  The  series  converges  absolutely  and  uniformly  in  r,  6  and  $  in  any  region  r  >  r0  +  e  >  r0.  The  series  may  be 
differentiated  term  by  term  with  respect  to  r,  6  and  $  any  number  of  times  and  the  resulting  series  all  converge 
absolutely  and  uniformly. 
(ii)  The  functions  Fn(6,c|>;k),  n  >  0,  may  be  determined  from  F0(6,cj);  k)  by  the  two-term  recursion  formula 

^ k n F ^ n f n - ^ F ^   +  LFn_1  ,  n=1,2,...  , 

where 

1  a  ..  „  a  .  1  a2 
L  =  sTrea-e(sinea-e)  +  - ^ e - 2  

is  the  Laplace-Beltrami  operator  for  the  sphere,  i.e.,  the  angular  part  of  the  Laplacian  in  spherical  coordinates. 
Therefore  n  is  determined  in  r>r0  by  F0(9,cj);k),  where  IF0I2  is  the  radiation  pattern. 

[0065]  Since  Eq.  (6)  is  valid  only  outside  a  circumscribing  sphere,  then  infinite  elements  based  on  Eq.  (6)  must  lie 
completely  outside  a  circumscribing  sphere.  The  region  between  the  structure(s)  and  the  sphere  must  therefore  be 
filled  with  finite-size  EM  elements. 
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Infinite  Element  For  Each  Debye  Potential 

Element  Geometry 

[0066]  A  spherical  infinite  element  is  shown  in  FIG.  4.  One  face  of  the  element,  the  "base",  must  attach  to,  and 
conform  to  the  shape  of,  a  sphere  of  radius  r,  surrounding  the  structure,  called  the  "infinite  element  sphere".  The  base 
may  be  a  curvilinear  quadrilateral  (as  shown  in  the  figure)  or  triangle;  it  need  not  conform  to  the  6,c|>  coordinate  lines 
(shown  as  dashed  lines  in  FIG.  5).  This  permits  one  to  construct  a  completely  general  2-D  mesh  on  the  sphere,  com- 
prising  curvilinear  quadilaterals  and  triangles  of  any  shape  and  orientation.  Any  type  of  FE  representation  may  be  used 
over  the  base,  e.g.,  Lagrange,  serendipity  or  hierarchic  polynomials  of  any  degree.  (The  quadratic  Lagrange  nodal 
pattern  shown  here,  and  in  later  figures,  is  for  illustrative  purposes.)  Thus,  it  will  be  straightforward  to  achieve  the 
necessary  continuity  between  the  infinite  elements  and,  e.g.,  finite  elements  along  the  spherical  interface  that  joins  the 
two  technologies. 
[0067]  The  side  faces  of  the  element  are  the  loci  of  radial  lines  emanating  from  the  sides  of  the  base.  A  multipole  of 
order 

m[ r i c  
r 

•  ■  + -jkr  i 

requires  m  layers  of  nodes  that  are  on  concentric  spheres  of  radii  r-,,  r2,  rm.  The  nodal  pattern  is  identical  on  each 
sphere.  The  value  m=2  corresponds  to  a  dipole,  m=3  to  a  quadrupole  (as  shown  in  FIG.  4),  m=4  to  an  octupole,  etc. 
A  "variable-multipole"  element  contains  a  variable  number  of  layers  of  nodes,  permitting  the  analyst  to  refine  the  mesh 
radially  in  the  infinite  region  by  increasing  the  mujtjpole  order,  m,  analogous  to  p-extension  for  finite-size  elements. 
[0068]  Finally,  there  is  an  outer  spherical  face,  S,  at  radius  r,  that  recedes  to  infinity  in  the  theoretical  development. 
Thus,  in  deriving  the  element  matrix  equation,  the  element  begins  with  a  finite  size,  n,  <  r  <  r,  so  that  the  Sommerfeld 
radiation  condition  can  be  applied  to  the  outer  face,  and  then  the  limit  is  taken  as  r->°°. 
[0069]  Conventional  ,̂ri  coordinates  (illustrated  in  FIG.  5  for  a  quadrilateral)  are  defined  over  the  element  cross 
section,  i.e.,  on  spheres,  by  the  mapping 

e (S , r i )=   x   e v x ? ( $ , r i ) ,   <k$, t i )=  I   <t>vXv(^,T|), 
v=l  v=l  ( ' )  

where  n  is  the  number  of  nodes  in  the  quadrilateral  or  triangle,  6V  §v  are  the  spherical  angular  coordinates  of  the  vth 
node,  and  %"  (̂ ,ri)  are  interpolation  polynomials. 

Governing  Physics  Equations 

[0070]  Each  Debye  potential,  11;,  i  =  1  ,2  satisfies  the  3-D  Helmholtz  equation, 

v2n+k2n=o (8) 

where  k  is  the  wavenumber  (=  co/c),  c  is  sound  speed  (=  1  -yeu.),  e  is  permittivity,  u.  is  permeability,  and  n  is  the  complex- 
valued  amplitude  of  either  of  the  Debye  potentials  for  a  scattered  and/or  radiated  field: 
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nscat  =ntotal  _ninc  i f sca t t e r ing  
n  =  ^nrad  =ntotal  if  radiation 

pjscat  +  rad  _ritotal  _ninc  if  both (9) 

To  ensure  uniqueness  of  the  solution,  the  potential  must  satisfy  the  Sommerfeld  radiation  condition  at  the  outer  "bound- 
ary"  at  infinity: 

a n  
9 r  

+ j k n = o  
(10) 

where  the  lowercase  o,  read  "little  o",  means  "faster  than,"  in  reference  to  the  rate  at  which  the  expression  approaches 
zero. 

Finite  Element  Representation  of  the  Debye  Potential:  General  expression;  DOF  numbering 

[0071]  The  scattered  and/or  radiated  potential  is  represented  as  follows, 

N 
n ( ^ - n , r ) = X ¥ j ( ^ ^ . r ) n j  

j=i  ( i i )  

where 

Vj  (̂ 1T  0  =  v|/"( ,̂r|)  y^r) v=1,2,...,n;  u,=1,2,...,m;  nXm  =  N (12) 

[0072]  Here  \|/"  (̂ ,ri)  are  "angular"  shape  functions  that  interpolate  n  over  spherical  surfaces  concentric  to  the  infinite 
element  surface,  and  \|/̂   (r)  are  "radial"  shape  functions  that  interpolate  n  along  radial  lines.  Interelement  C°-continuity 
is  established  by  enforcing  the  interpolation  property: 

V"  Gv,Tlv.)  =  5VV,  (13) 

nil 

(13) 

(14) 

[0073]  Our  current  local  node  numbering  convention  is  to  begin  with  the  nodes  on  the  base  of  the  element  and  then 
proceed  radially  outward,  a  layer  of  nodes  at  a  time.  This  is  summarized  in  Table  1,  which  relates  the  nodal  (DOF) 
index  j  to  the  radial  index  u.  and  angular  index  v,  where  N  =  mXn. 
[0074]  FIG.  6  illustrates  the  pattern  for  the  particular  case  of  a  quadratic  Lagrange  quadrilateral  (n  =  9)  in  the  angular 
directions  and  a  quadrupole  (m  =  3)  in  the  radial  direction  (N=  mXn  =  27).  However,  it  is  trivial  to  change  this  pattern 
to  any  other  numbering  pattern. 

Angular  shape  functions 

[0075]  The  functions  \|/"  (£,t|)  are  conventional  2-D  polynomials  (serendipity,  Lagrange  or  hierarchic). 

10 
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[0076]  For  example,  for  the  quadratic  Lagrange  quadrilateral  elements  depicted  in  FIGS.  4-6,  the  angular  shape 
functions  are 

Vvf^1!)  =  *„(5)Vh)  v=1,2,...,9 

((a  =  1,2,3),  a'  =  1,2,3)  (15) 

where 

x^u)  =  ±u(u-1);  x2(u)  =  1-u2;  x3(u)  =  ±u(u+1)  (16) 

Radial  shape  functions 

[0077]  The  functions  \|/  (r)  use  a  truncated  form  of  the  radial  part  of  the  multipole  expansion  in  Eq.  (6),  namely,  an 
mth  order  multipole  expansion: 

^ - • - " ' - ' ■ ' i , ^   n -   '•*•■■•«  <m->2>  
( I7 )  

The  phase  factor  eikr̂   does  not  need  to  be  included;  if  omitted,  it  will  simply  appear  in  each  h^.  in  Eq.  (8)  below.  The 
factors  in  the  denominators  are  also  not  necessary;  they  are  included  only  to  make  the  h^.  nondimensional.  The 
coefficients  h^.  are  determined  by  the  requirement  of  interelement  C°-continuity  Applying  Eq.  (14)  to  Eq.  (17)  yields 
m  sets  of  m  linear  algebraic  equations,  [h][S]=[l],  where  Ŝ   =  (krj)"'  and  [I]  is  the  identity  matrix.  Therefore, 

[h]  =  [S]"1.  (18) 

This  procedure  defines  m  layers  of  nodes  (with  n  nodes  on  each  layer)  lying  on  spheres  of  radii  r-,,  r2,  rm  (see  FIG.  6). 
[0078]  To  illustrate,  consider  a  dipole  element  (m  =  2), 

^ ( r ) = e - j k ( r - r ^  
kr  (kr)2 

| i = l , 2  
(19) 

Inverting  a  2X2  [S  ]  matrix  yields 

[h]  =  
r 2 - r ,  

- k r ?  k2 r? r2  
krl  - k 2 r i r !  (20) 

[0079]  This  procedure  is  the  one  that  we  have  currently  been  using.  However,  a  hierarchic  formulation  would  have 
the  usual  advantages  of  ease  of  mesh  refinement  (by  p-extension),  improved  numerical  conditioning  and  elimination 
of  all  nodes  exterior  to  the  infinite  element  sphere.  To  convert  to  a  hierarchic  formulation,  the  angular  directions  would 
employ  the  standard  2-D  hierarchic  shape  functions  for  quadrilaterals  and  triangles.  The  radial  direction  would  use  the 
mapping  £  =  1-2r-,/r,  which  linearly  maps  the  interval  1/rE[1/r-|,0)  to  the  interval  [-1,1),  and  then  employ  the  standard 
1-D  hierarchic  shape  functions  in  excluding  the  linear  function  that  is  unity  at  infinity,  i.e.,  at  £  =  1  . 
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Reluctivity,  Permittivity,  and  Radiation  Damping  Matrices:  Formal  Expressions 

[0080]  The  element  matrices  are  derived  by  starting  with  a  finite-size  element,  i.e.,  with  the  outer  face  on  a  sphere 
of  radius  r  (See  FIG.  4),  and  then  taking  the  limit  as  r->°°.  Thus,  applying  the  well-known  Galerkin  weighted  residual 
method  to  Eq.  (8)  over  a  single  element  yields 

lim  J /   J ( v V 2 n   +  co2en)v | / i dV=0   i = l , 2   N 
r  —  ̂  oc (21) 

using  k2  =  cĉ e/v,  where  v(=  1/u,)  is  the  reluctivity,  or  specific  reluctance.  Thus,  H  =  vB  is  the  inverse  constitutive  relation 
to  B  =  u.H,  where  B  is  the  magnetic  induction  and  H  is  the  magnetic  intensity. 
[0081]  The  first  integral  is  converted  into  a  surface  integral  and  another  volume  integral  using  the  identity 
\|/.V  n  =  V-(\|/1  Vn)-V\|/|-Vn  and  the  divergence  theorem.  For  the  two  volume  integrals,  substitute  Eq.  (11)  for  n, 
which  will  create  the  reluctivity  and  permittivity  matrices.  The  surface  integral,  which  is  over  the  entire  boundary  of  the 
element,  is  split  into  two  integrals:  one  over  the  outer  face,  S<e),  and  the  other  over  the  remaining  faces.  For  the  outer 
face  integral,  substitute  in  the  Sommerfeld  radiation  condition,  which  will  create  the  radiation  damping  matrix.  The 
second  integral  is  zero  for  virtually  all  practical  applications  (see  e.g.,  BURNETT  1994),  although  it  is  straightforward 
to  evaluate,  if  necessary;  it  will  therefore  be  assumed  to  be  zero  for  this  development. 
[0082]  Carrying  out  the  above  operations  transforms  Eq.  (21  )  to  the  following  element  matrix  equation: 

([K]+jco[C]-co2[M]  {n}  =  {0}  (22) 

where  the  reluctivity,  permittivity  and  radiation  damping  matrices  are,  respectively, 

Kjj  =  lim  J  J  /  v V \ | / r V y j d V  

Mjj  =  l imJ  J  J e ^ j i j / j d V  

C j j = e c l i m   J  J\j/j\j/jdS.  ^  

?-»<x.g<e> 

Transformation  of  integrals;  final  expressions 

[0083]  The  remaining  mathematics  transform  the  integrals  in  Eq.  (23)  to  expressions  that  can  be  numerically  eval- 
uated.  Following  is  a  brief  description  of  the  principal  steps. 
[0084]  Transform  the  integrals  in  Eq.  (23)  to  spherical  coordinates  r,8,4).  The  differential  volume  and  surface  elements 
are  dV  =  r2sin6drd6dc|>  and  dS  =  r2sin6d6dc|>.  Since  the  base,  intermediate  nodal  layers,  and  outer  face  conform  to 
concentric  spheres  and  the  side  faces  are  the  loci  of  radial  lines,  the  element  is  a  right  cylinder  in  r,6,c|>-space  (or  r,̂ , 
ri-space).  Hence,  the  integration  limits  for  the  volume  integrals  can  be  separated  into  angular  limits  and  radial  limits, 
and  the  angular  integration  is  carried  out  over  the  "spherical  cross  section"  o<e)  of  the  element,  i.e.,  any  concentric 
spherical  surface  inside  the  element  and  bounded  by  the  side  faces.  There  is  only  one  spherical  cross  section  in  r,6, 
c|>-space  because  the  9,ct)  coordinates  of  the  boundary  of  the  cross  section  are  independent  of  r.  Hence,  S<e)  is  equivalent 
to  o<e)  in  the  surface  integration  for  Cjj. 
[0085]  All  the  3-D  integrals  separate  into  products  of  2-D  "angular"  integrals,  Aj*v  and  1-D  "radial"  integrals,  R(l*  . 
The  2-D  surface  integral  for  Ĉ   separates  in  a  similar  manner. 
[0086]  Develop  final  expressions  for  the  angular  integrals.  Transform  the  6,c|>  coordinates  to  local  ,̂ri  coordinates 
using  the  coordinate  mapping  in  Eq.  (7).  The  resulting  well-defined  integrals  can  be  numerically  integrated  using  Gauss 
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rules  in  the  conventional  FE  manner.  The  integrals  are: 

AVU=  J  J \ | # V v S i n e J d 5 < m  
T<«> 

A v 2 v = j   /  d ^ _ d ^ _   .  a <   9yy  i 
ae  ae  

sm  
a^  a<j>  s ine  

Jd^dT] 
(24) 

where 

J  J  ■ ■ ■ d l - d T l -  
4'  4  

4'  4 '  

i 
i 
- n  

d^dT) 

•  d ^ d r |  

for  quadrilaterals 
for  triangles 

(25) 

[0087]  Develop  final  expressions  for  the  radial  integrals.  Substitute  Eq.  (17)  into  each  of  the  radial  integrals  and  radial 
function  and  perform  various  algebraic  operations.  Some  of  the  integrals  become  well-defined  Fourier  sine  or  cosine 
transforms,  which  can  be  evaluated  by  standard  algorithms  available  in  many  mathematics  software  packages.  The 
other  integrals,  as  well  as  the  radial  function,  result  in  undefined  oscillatory  terms,  which  are  treated  in  the  next  step. 
[0088]  Form  final  expression  for  element  matrix  equation.  All  the  above  expressions,  including  both  the  well-defined 
integrals  and  the  undefined  oscillatory  terms,  are  substituted  into  Eq.  (22),  the  element  matrix  equation,  yielding: 

[K]  +  jco[C]  -  co2[M]  =  [K°°]  -  co2[M°°] 

+  undefined  oscillatory  terms  (26) 

where  [K°°]  and  [M°°]  comprise  all  the  well-defined  integrals. 
[0089]  The  reluctivity  and  permittivity  matrices  consist  of  two  types  of  terms:  those  that  are  independent  of  the  location 
of  the  outer  face  (the  "well-defined"  integrals)  and  those  that  do  depend  on  its  location  and  therefore  oscillate  as  the 
face  recedes  to  infinity.  The  damping  matrix,  which  represents  application  of  the  Sommerfeld  radiation  condition  to  the 
outer  face,  is  completely  oscillatory.  However,  we  have  found  that  the  radiation  condition  exactly  cancels  the  oscillatory 
terms  in  the  reluctivity  and  permittivity  matrices. 
[0090]  The  final  form  of  the  element  matrix  equation  for  the  electromagnetic  infinite  element  is 

([K  ]-co  [M  ]){n}  =  {0} (27) 

where 

(28) 
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The  angular  integrals,  A*'?  ,  i  =  1  ,2,  are  given  in  Eq.  (24).  The  radial  integrals  are 
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h,,„  =  0  for  com. 

a | i a  =  ~jhna  -  ( a - l ) h  

=  0  for  a > m +   1 
H,a-  1 H  =  1,2,   m  

a  =  1 ,2 ,   m+  1 (35) 

[0092]  The  radial  integrals  in  Eq.  (29)  are  identical  for  every  infinite  element  in  a  mesh  (because  they  are  independent 
of  angular  variables  and  are  along  identical  radial  paths,  i.e.,  radial  lines  emanating  from  the  same  sphere),  so  they 
only  need  to  be  evaluated  once  for  a  given  problem;  their  computational  cost  is  totally  insignificant.  Hence,  the  numerical 
integration  required  to  generate  [K°°]  and  [M°°]  for  each  infinite  element  involves  only  the  evaluation  of  the  2-D  angular 
integrals,  making  these  3-D  elements  as  cheap  to  generate  as  2-D  elements.  In  addition,  since  the  frequency  depend- 
ence  of  the  element  is  contained  only  in  the  radial  integrals,  element  generation  during  a  frequency  sweep  is  essentially 
free  after  the  first  frequency. 

Combining  Two  Infinite  Elements  for  Complete  Electromagnetic  Field 

[0093]  Eq.  (27)  applies  to  each  Debye  potential.  The  matrices  [K°°]  and  [M°°]  are  identical  for  both  potentials.  The 
only  difference  is  the  vector  {n}.  For  FT  it  lists  the  nodal  values  of  FT;  for  FT  it  lists  the  nodal  values  of  FT.  Therefore, 
as  in  standard  FE  practice,  one  combines  the  nodal  values  of  FT  and  FT  into  a  new  vector  of  twice  the  length,  the  terms 
being  ordered  in  any  convenient  fashion.  The  matrices  [K°°]  and  [M°°]  similarly  double  in  size,  with  the  row/column 
ordering  of  terms  dictated  by  the  ordering  chosen  for  {n}.  This  could  be  illustrated  by  modifying  FIG.  6  to  show  two 
degrees  of  freedom  at  each  node,  one  belonging  to  FT  and  FT. 

Coupling  of  Exterior  Infinite  Elements  to  Interior  Finite  Elements 

[0094]  FIG.  7  shows  a  portion  of  the  spherical  surface  separating  the  exterior  and  interior  regions.  Inside  the  surface 
is  shown  a  finite  element,  one  face  of  which  is  on  the  surface.  In  the  infinite  element  the  independent  field  variables 
are  the  two  Debye  potentials.  In  the  finite  element  the  independent  field  variables  are  a  vector  function  and  a  scalar 
function.  All  of  these  fields  exist  on  both  sides  of  the  surface.  Since  the  surface  is  a  mathematical  construct,  not  an 
actual  discontinuity,  and  since  the  constitutive  properties  are  continuous  across  the  surface  (being  the  properties  of 
free  space),  then  all  of  these  fields  must  be  continuous  across  the  surface. 
[0095]  The  steps  in  the  process  for  establishing  this  continuity  are  as  follows.  Consider  first  the  interior  element. 

•  Using  a  Galerkin  formulation  and  applying  the  divergence  theorem  will  yield  a  surface  integral  over  the  boundary 
of  the  element,  with  the  vector  and  scalar  functions  in  the  integrand. 

•  Use,  e.g.,  Eqs.  (1  )-(3)  to  relate  these  variables  to  the  Debye  potentials. 

•  Substitute  for  the  Debye  potentials  their  finite  element  expansions  used  in  the  infinite  elements,  namely,  Eq.  (11). 
This  will  yield  a  matrix/vector  product.  The  terms  in  the  matrix  are  integrals  that  are  known  (can  be  computed). 
The  terms  in  the  vector  are  the  nodal  values  of  the  Debye  potentials.  The  latter,  of  course,  are  unknown.  Note  that 
the  matrix  equation  for  the  interior  element  now  also  contains  degrees  of  freedom  associated  with  the  adjacent 
exterior  element. 

•  Move  this  matrix/vector  product  to  the  "left  hand  side"  of  the  element  matrix  equation.  The  matrix  will  be  off  the 
main  diagonal  because  it  couples  the  nodal  degrees  of  freedom  in  the  interior  finite  element  to  the  nodal  degrees 
of  freedom  in  the  exterior  infinite  element.  This  is  the  "coupling  matrix". 

[0096]  This  procedure  could  be  repeated,  starting  with  the  exterior  infinite  element.  The  resulting  coupling  matrix  will 
be  the  transpose  of  the  one  derived  for  the  interior  matrix  equation,  so  repeating  the  procedure  is  not  necessary.  The 
pair  of  coupling  matrices  will  appear  symmetrically  positioned  on  either  side  of  the  main  diagonal,  thus  preserving 
symmetry  in  the  assembled  system  equations,  which  is  a  manifestation  of  the  self-adjointness  of  the  governing  partial 
differential  equations  on  both  sides  of  the  spherical  surface. 
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Claims 

1.  A  method  for  operating  a  digital  computer,  having  at  least  one  digital  memory  and  at  least  one  data  processing 
element,  to  simulate  the  electromagnetic  behavior  of  a  body  surrounded  by  a  spatial  region,  the  body  having  an 

5  outer  surface,  and  the  body  subjected  to  given  driving  conditions,  comprising: 

a)  subdividing  at  least  the  spatial  region  into  a  pattern  of  elements,  said  pattern  to  be  referred  to  as  a  mesh, 
and  storing  said  mesh  in  the  memory; 
b)  for  each  element  of  the  mesh,  computing  a  set  of  element  matrix  coefficients,  and  storing  said  coefficients 

10  in  the  memory; 
c)  assembling  all  of  the  element  matrix  coefficients  into  a  system  matrix,  and  storing  the  system  matrix  in  the 
memory; 
d)  in  the  data  processing  element,  solving  the  system  matrix  equation,  thereby  to  create  a  description  of  the 
values  assumed  within  the  mesh  by  one  or  more  electromagnetic  field  variables;  and 

is  e)  recording  the  description  in  a  data-storage  device,  wherein: 

the  subdividing  step  comprises  constructing  a  closed  bounding  surface  about  the  body  such  that  at  least 
part  of  the  spatial  region,  said  part  to  be  referred  to  as  the  external  region,  lies  outside  the  bounding  surface; 
within  the  external  region,  the  one  or  more  electromagnetic  field  variables  comprise  at  least  one  scalar 

20  electromagnetic  potential;  and 
the  subdividing  step  further  comprises  filling  the  external  region  with  elements,  to  be  referred  to  as  infinite 
elements,  wherein:  (i)  each  infinite  element  is  bounded  by  a  base,  at  least  three  side  faces,  and  an  outer 
face;  (ii)  each  respective  base  lies  on  the  bounding  surface;  and  (iii)  the  outer  face  recedes  to  an  infinite 
radius. 

25 
2.  A  machine  for  simulating  the  electromagnetic  behavior  of  a  body  surrounded  by  a  spatial  region,  the  body  having 

an  outer  surface,  and  the  body  subjected  to  given  driving  conditions,  comprising: 

a)  means  for  subdividing  at  least  the  spatial  region  into  a  pattern  of  elements,  said  pattern  to  be  referred  to 
30  as  a  mesh; 

b)  a  digital  memory  element  for  storing  the  mesh; 
c)  digital  processing  means  for  computing  a  set  of  element  matrix  coefficients  for  each  element  of  the  mesh; 
d)  a  digital  memory  element  for  storing  the  element  matrix  coefficients,  assembled  from  all  of  the  elements, 
as  a  system  matrix; 

35  e)  digital  processing  means  for  solving  the  system  matrix,  thereby  to  create  a  description  of  the  values  assumed 
by  at  least  one  electromagnetic  field  variable  within  the  mesh;  and 
f)  means  for  recording  the  resulting  description  of  the  at  least  one  electromagnetic  field  variable,  wherein: 

the  subdividing  means  comprise  means  for  constructing  a  closed  bounding  surface  about  the  body  such 
40  that  at  least  part  of  the  spatial  region,  said  part  to  be  referred  to  as  the  external  region,  lies  outside  the 

bounding  surface; 
within  the  external  region,  the  one  or  more  electromagnetic  field  variables  comprise  at  least  one  scalar 
electromagnetic  potential,  and 
the  subdividing  means  further  comprise  means  for  filling  the  external  region  with  elements,  to  be  referred 

45  to  as  infinite  elements,  wherein:  (i)  each  infinite  element  is  bounded  by  a  base,  at  least  three  side  faces, 
and  an  outer  face;  (ii)  each  respective  base  lies  on  the  bounding  surface;  and  (iii)  the  outer  face  recedes 
to  an  infinite  radius. 

3.  The  method  of  claim  1  ,  wherein  the  subdividing  step  further  comprises: 
50 

a)  constructing  a  geometrical  representation  of  the  body;  and 
b)  subdividing  the  body  representation  into  finite  elements;  or 

55 
the  machine  of  claim  2,  wherein  the  subdividing  means  further  comprise: 

a)  means  for  constructing  a  geometrical  representation  of  the  body;  and 
b)  means  for  subdividing  the  body  representation  into  finite  elements. 
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The  method  of  claim  1  ,  wherein  the  step  of  computing  element  matrix  coefficients  is  carried  out  in  such  a  manner 
as  to  satisfy  the  Sommerfeld  radiation  condition,  or  the  machine  of  claim  2,  wherein  the  means  for  computing 
element  matrix  coefficients  are  constrained  to  satisfy  the  Sommefeld  radiation  condition. 

The  method  of  claim  1  ,  wherein  the  step  of  computing  element  matrix  coefficients  comprises  applying  the  Helmholtz 
equation  to  an  approximation  of  a  multipole  expansion  of  an  electromagnetic  field  variable,  or  the  machine  of  claim 
2,  wherein  the  means  for  computing  element  matrix  coefficients  comprise  means  for  applying  the  Helmholtz  equa- 
tion  to  an  approximation  of  a  multipole  expansion  for  an  electromagnetic  field  variable. 

The  method  of  claim  1  ,  further  comprising,  before  solving  the  system  matrix  equation,  adding  to  said  equation 
loads  and  boundary  conditions  subject  to  which  the  body  is  to  be  driven. 

The  method  of  claim  1  ,  further  comprising,  after  solving  the  system  matrix  equation,  displaying  a  graphical  image 
that  conveys  information  resulting  from  the  solving  step,  or  the  machine  of  claim  2,  further  comprising  means  for 
displaying  a  graphical  image  that  conveys  information  resulting  from  solving  the  system  matrix. 

The  method  of  claim  1  ,  wherein,  within  the  external  region,  the  one  or  more  electromagnetic  field  variables  comprise 
at  least  one  Debye  potential,  or  the  machine  of  claim  2,  wherein,  within  the  external  region,  the  one  or  more 
electromagnetic  field  variables  comprise  at  least  one  Debye  potential. 

The  method  of  claim  1  ,  wherein,  within  the  external  region,  the  one  or  more  electromagnetic  field  variables  comprise 
a  Debye  potential  for  a  TE  field  component  and  a  Debye  potential  for  a  TM  field  component,  or  the  machine  of 
claim  2,  wherein,  within  the  external  region,  the  one  or  more  electromagnetic  field  variables  comprise  a  Debye 
potential  for  a  TE  field  component  and  a  Debye  potential  for  a  TM  field  component. 

The  method  of  claim  I  wherein  the  method  is  carried  out  an  electromagnetic  oscillation  frequency  having  a  corre- 
sponding  wavelength,  and  the  bounding  surface  is  constructed  to  have  a  distance  of  closest  approach  to  the  body 
of  less  than  about  one-half  said  wavelength,  or  the  machine  of  claim  2,  wherein  the  simulation  is  to  be  carried  out 
at  an  electromagnetic  oscillation  frequency  having  a  corresponding  wavelength,  and  the  means  for  constructing 
a  bounding  surface  are  adapted  to  bring  the  bounding  surface,  at  its  closest  approach,  within  a  distance  from  the 
body  that  is  less  than  one-half  said  wavelength. 

The  method  of  claim  1  ,  wherein  the  bounding  surface  is  a  sphere,  or  the  machine  of  claim  2,  wherein  the  bounding 
surface  is  a  sphere. 
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