(19)
(11) EP 0 903 852 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
24.03.1999  Patentblatt  1999/12

(21) Anmeldenummer: 98116588.9

(22) Anmeldetag:  02.09.1998
(51) Internationale Patentklassifikation (IPC)6H03J 1/00
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 19.09.1997 DE 19741325

(71) Anmelder:
  • TEMIC Semiconductor GmbH
    74072 Heilbronn (DE)
  • BECKER GmbH
    D-76307 Karlsbad (DE)

(72) Erfinder:
  • Becker, Karl Anton
    76307 Karlsbad (DE)
  • Brinkhaus, Stefan
    75196 Remchingen (DE)
  • Ganz, Armin
    76467 Bietigheim (DE)
  • Memmler, Bernd
    74538 Rosengarten (DE)
  • Kröbel, Hans-Eberhardt
    74080 Heilbronn (DE)

(74) Vertreter: Maute, Hans-Jürgen, Dipl.-Ing. 
Daimler-Benz Aktiengesellschaft, FTP/H, Postfach 35 35
74025 Heilbronn
74025 Heilbronn (DE)

   


(54) Verfahren zum Abgleich eines mehrstufigen selektiven Verstärkers


(57) Die Erfindung betrifft ein Verfahren zum Abgleich eines mehrstufigen selektiven Verstärkers. Bei bisherigen, derartigen Verfahren mußten alle Abstimmspannungen des Verstärkers für alle Kreise, die diese Kreise auf die gewünschte Frequenz einstellen, in einem Mikroprozessor abgespeichert werden. Bei anderen Abstimmschaltungen mußten alle Abstimmspannungen des Verstärkers für alle Kreise, die diese Kreise auf die gewünschte Frequenz einstellen, durch iterative Verfahren eingestellt werden. Nachteilig bei diesen Abstimmschaltungen war entweder die große abzuspeichernde Datenmenge oder das langwierige iterative Verfahren, das sich dem gewünschten Wert nur langsam annähert. Bei diesem Verfahren werden die Abstimmspannungen aller Selektionskreise berechnet. Für die Berechnung wird in der Abstimmanordnung nur ein kennzeichnender multiplikativer Koeffizient und additiver Koeffizient pro Kreis abgespeichert, die bei der Herstellung oder beim Einschalten des Gerätes ermittelt werden. Aus diesen beiden Werten ergeben sich dann pro Abstimmkreis alle Abstimmspannungen, die zur Einstellung der gewünschten Frequenz benötigt werden. Diese Verfahren stellt die gewünschte Frequenz exakt, sehr schnell und sehr zuverlässig ein.


Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zum Abgleich eines mehrstufigen selektiven Verstärkers, gemäß dem Oberbegriff des Patentanspruches 1 und 2.

[0002] Mit Tunern können verschiedene Programme oder allgemeiner Signale auf unterschiedlichen Frequenzen empfangen, verstärkt und wiedergegeben werden. Abstimmschaltungen werden zur Einstellung der gewünschten Frequenz benötigt, die den Empfang eines bestimmten Signals, welches auf dieser Frequenz übertragen wird, gewährleisten. Hierbei wird an einem Oszillatorkreis eine Oszillatorfrequenz eingestellt, die um eine feste Zwischenfrequenz zur gewünschten Empfangsfrequenz verschoben ist und einem Mischer zugeführt wird. Aus der Oszillatorfrequenz und dem vorgefilterten Empfangssignal, das gleichfalls dem Mischer zugeführt ist, wird die feste Zwischenfrequenz gebildet. Vor dem Mischer befinden sich daher die Vor-, Drain- bzw. Zwischenkreise, die als Frequenzfilter für die Empfangsfrequenz dienen. Hierbei dient die Abstimmschaltung dazu, daß Vor-, Drain- bzw. Zwischenkreise auf die gewünschte Empfangsfrequenz, der Oszillatorkreis auf die um die ZF-Frequenz versetzte entsprechende Oszillatonfrequenz abgestimmt wird. Sind alle Kreise auf die Sollfrequenz abgestimmt, so wird dies als Gleichlauf bezeichnet, mit dem optimaler Empfang gewährleistet ist.

[0003] Aus der EP 0 044 237 A1 ist die Abstimmung eines elektronischen Schaltkreises, insbesondere eines Fernsehempfängers, mit mehreren variablen Elementen und die Regelung der Oszillatorfrequenz über einen Phasenregelkreis bekannt. Dieses Dokument erwähnt insbesondere die Abstimmung eines Filters oder Oszillators mit Kapazitätsdioden. Die bekannte Abgleichvorrichtung enthält einen bereits zum Zeitpunkt der Herstellung fest programmierten Speicher (PROM). Er beinhaltet die Kennlinienfunktion mit der der gewünschte Wert berechnet werden kann. Die abgespeicherten Informationen dienen der Erzeugung von Steuersignalen für die elektronische Abstimmung.

[0004] Nachteilig hierbei ist jedoch, daß die Kennlinie bereits bei der Herstellung in den Speicher eingegeben wird und etwaige Änderungen, die sich im Laufe der Zeit ergeben, nicht mitberücksichtigt werden können. Auch können mit diesem Verfahren gerätespezifische Abweichungen nicht miteinbezogen werden. Desweiteren ist es bei diesem Verfahren von Bedeutung möglichst viele Punkte der Kennlinie im Speicher abzuspeichern, da die Genauigkeit dieses Verfahrens von der Anzahl der abgespeicherten Kennlinienpunkte abhängig ist. Als weiterer Nachteil ist der rege Datenverkehr beim Frequenzwechsel anzusehen. Bei jedem Frequenzwechsel müssen neue Werte vom Speicher in den Phasenregelkreis geschrieben werden.

[0005] Bei bekannten elektronisch abstimmbaren selektiven Verstärkern, insbesondere Tunern, werden in den Vor-, Zwischen- und Oszillatorkreisen meist spannungsgesteuerte Reaktanzelemente (Kapazitätsdioden) zur Abstimmung verwendet. Dort werden den für die Abstimmung verwendeten Kapazitätsdioden getrennte und voneinander unabhängige veränderbare Abstimmspannungen zugeführt. Jeweils nach Wahl eines neuen Kanals wird der Tuner von einem Mikroprozessor mit Hilfe der unabhängig voneinander veränderbaren Abstimmspannungen automatisch auf diesen Kanal abgeglichen. Hierzu trennt zunächst der Mikroprozessor die Antenne vom Eingang des Vorkreises ab und koppelt anstelle dessen einen PLL gesteuerten Oszillator mit der aktuellen Frequenz des betreffenden Kanals ein.

[0006] Der Abgleich der einzelnen Kreise erfolgt nacheinander durch Variation der dem jeweiligen Element zugeordneten Abstimmspannung. Über einen am Ausgang des letzten Kreises angeschlossener Detektor wird der Abgleich der einzelnen Kreise beendet, wenn das Maximum der Durchlaßkurve erreicht ist. Nach Beendigung des gesamten Abgleichvorganges wird anstelle des Oszillators wieder die Antenne an den Vorkreis geschaltet. Die so ermittelten Abstimmspannungen werden digital abgelegt bis ein neuer Kanal gewählt wird und der Abgleichvorgang neu abläuft.

[0007] Aus der EP 0 147 518 B1 ist es weiterhin bekannt, im Gegensatz zu dem zuvor beschriebenen Verfahren, den Abgleichvorgang über eine anschließbare, externe automatische oder manuelle Abgleichvorrichtung durchzuführen. Diese Abgleichvorrichtungen beinhalten einen externen Zwischenspeicher, der die bei dem iterativen Abgleich gewonnenen Abgleichschritten zwischenspeichert und die optimierten Abgleichwerte in einem Verstärker bzw. Tuner zugeordneten, nichtflüchtigen internen Speicher überträgt. Bei der späteren Kanalwahl werden diese gespeicherten Werte dann abgerufen und die einzelnen Abstimmspannungen entsprechend eingestellt. Da dieser interne Speicher erhebliche Datenmengen beinhalten muß, ist auch vorgesehen, nur jeden n-ten Kanal abzugleichen und die dazwischenliegenden Werte zu interpolieren

[0008] Der Nachteil der zuvor genannten, bekannten Verfahren liegt zum einen in dem hohen Speicherplatzbedarf, zum anderen in dem bei jedem Frequenzwechsel (Kanalwechsel) notwendigen Datenverkehr, der einen schnellen Suchlaufvorgang oder Frequenzsprung erheblich beeinträchtigt. Dieser schnelle Suchlauf oder Frequenzsprung ist im TV-Bereich weniger bedeutsam, bei derzeitigen Autoradios aber außerordentlich wichtig, um bei sich verschlechternder Empfangsqualität sehr schnell und damit möglichst unhörbar auf einen alternativen Sender gleichen Programminhaltes zu springen, oder in einem kurzfristigen Frequenzsprung verschiedene Frequenzen auf alternative Sender zu überprüfen.

[0009] Auch beim Anlegen einer Tabelle der zu empfangenden Programme sind derartige schnelle Frequenzsprünge notwendig.

[0010] Aus der Patentschrift DE 25 24 171 C2 ist eine Abstimmschaltung bekannt, die mittels eines Abstimmpotentiometers die Abstimmspannung liefert und bei der zur Erzielung des Gleichlaufs zwischen den einzelnen Abstimmkreisen weitere Trimmpotentiometer vorgesehen sind.

[0011] Weiter ist es bekannt, statt des Abstimmpotentiometers eine PLL-Schleife zur Regelung der Oszillatorfrequenz zu verwenden. Die letztere Anordnung hat den Vorteil, daß lediglich der PLL über einen Prozessor die gewünschte Oszillatorfrequenz übermittelt wird und der Gleichlauf zwangsweise über die Stellung der Abgleichpotentiometer definiert ist.

[0012] Der Erfindung liegt daher die Aufgabe zugrunde ein Verfahren zum Abgleich eines mehrstufigen selektiven Verstärkers aufzuzeigen, das einen Gleichlauf exakt, schnell und zuverlässig einstellt ohne große Datenmengen abzuspeichern oder einen regen Datenverkehr zu beanspruchen.

[0013] Diese Aufgabe wird erfindungsgemäß durch die Merkmale im Kennzeichen der Patentansprüche 1 und 2 gelöst. Hierbei wird der Wert der benötigten Abstimmspannung, welche die zur Abstimmung erforderliche Frequenz erzeugt, aus einer mathematischen Beziehung berechnet, wobei die mathematische Beziehung bei der Produktion oder beim ersten Einschalten ders Gerätes ermittelt und abgespeichert wird.

[0014] Die mit der Erfindung erzielten Vorteile liegen darin, daß keine großen Datenmengen zur Erzielung des Gleichlaufs in einem Speicher abgelegt bzw. abgerufen werden müssen. Dadurch wird die Abstimmgeschwindigkeit gesteigert ohne daß zusätzliche Speicherkapazitäten oder andere Raum einnehmende Vorrichtungen verwendet werden müssen. Die durch dieses Vertahren ermittelten Werte sind immer genau und nahezu unabhängig von Gerätetoleranzen.

[0015] Weitere vorteilhafte Ausbildungen ergeben sich daraus, daß die Abstimmspannung der Vor-, Drain- bzw Zwischenkreise, jeweils einzeln aus der Oszillatorabstimmung über eine mathematische Beziehung abgeleitet werden, die bei jedem Einschalten aktualisiert wird. Für die weitere Berechnung müssen nur zwei Werte: ein multiplikativer Faktor und ein additiver Koeffizient abgespeichert werden. Weiterhin müssen beim Einschalten des Gerätes nur zwei Werte vom Speicher in den Phasenregelkreis eingelesen werden.

[0016] Im folgenden soll die Erfindung anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen dargestellt und erläutert werden.
Figur 1:
Prinzip der erfindungsgemäßen Verfahrens
Figur 2A:
Erstes Beispiel der Abstimmkurven für Oszillator-, Vor- und Zwischenkreis
Figur 2B:
Zweites Beispiel der Abstimmkurven für Oszillator-, Vor- und Zwischenkreis
Figur 3A:
Erstes Ablaufdiagramm zur Einstellung des Gleichlaufs
Figur 3B:
Zweites Ablaufdiagramm zur Einstellung des Gleichlaufs
Figur 4:
Erfindungsgemäße Verfahren gemäß dem zweiten Ablaufdiagramm von Figur 3B


[0017] Figur 1 zeigt das Prinzip der erfindungsgemäßen Abstimmschaltung. Bei dieser Abbildung werden die eingehenden Signale SE am Vorkreis 2 entsprechend der Empfangsfrequenz gefiltert und dann an einem ersten Verstärker 3 verstärkt. Die hinsichtlich der Empfangsfrequenz des Vorkreises 2 gefilterten und verstärkten Signale gelangen sodann in einen Zwischenkreis 4, der die Signale nochmals entsprechend der Empfangsfrequenz bzw. Frequenzbereich filtert. Diese verbleibenden Signale werden dann an einen Mischer 5 weitergeleitet, der die verbliebenen Signale exakt auf einer vorgegebenen dritten Frequenz herausfiltert, indem am Oszillatorkreis 6 eine Oszillatorfrequenz eingestellt wird, die die gewünschte Empfangsfrequenz bestimmt. Dann wird das Ausgangssignal SA an eine Signalverarbeitungseinheit weitergeleitet. Zur Erzielung des Gleichlaufs müssen die Frequenzen oder Frequenzbereiche von Vorkreis 2 und Zwischenkreis 4 mit der Empfangsfrequenz, die durch die Oszillatorfrequenz am Oszillatorkreis 6 bestimmt ist, übereinstimmen oder zumindest beinhalten. Die Einstellung der Oszillatorfrequenz und damit auch der gewünschten Empfangsfrequenz erfolgt über die regulierbare Oszillatorabstimmspannung. Der Oszillatorkreis wird über einen Mikroprozessor 8 angesteuert, der über wird einen Phasenregelkreis 7 die gewünschte Empfangsfrequenz bzw. Oszillatorfrequenz übermittelt. Der Mikroprozessor 8 stellt in der Regelschleife des Oszillator-Phasenregelkreis 7 die entsprechende Oszillatorabstimmspannung VOSZ für den Oszillator 6 ein. Dem Phasenregelkreis 7 sind die entsprechenden Stellglieder für die jeweiligen Abstimmspannungen der zugehörigen weiteren Selektionskreise zugeordnet. In diesem Fall weisen der Vor- und Zwischenkreis 2, 4 die Abstimmspannungen VVOR und VZWI auf, die dann diese Kreise auf die mit dem Oszillatorkreis definierte Empfangsfrequenz einstellen. Grundlage hierfür ist eine bestehende feste Relation zwischen der Oszillatorabstimmspannung VOSZ und der Abstimmspannung des Vorkreises 2 VVOR bzw. der Abstimmspannung des Zwischenkreises 4 VZWI. Diese Relation zwischen den Spannungen ist gekennzeichnet durch einen multiplikativen Koeffizienten Y und einem additiven Koeffizienten X. Ist die Oszillatorabstimmspannung VOSZ bekannt so gilt:



[0018] Damit müssen nur die Koeffizienten Y und X pro Abstimmkreis 2, 4 zur Realisierung des Gleichlaufs im Gerätespeicher 8 abgelegt werden. Es besteht eine feste Relation zwischen der Oszillatorabstimmspannung VOSZ und der Vorkreisabstimmspannung VVOR bzw. der Zwischenkreisabstimmspannung VZWI. Der additive Koeffizient X und der multiplikative Koeffizient Y für jeden Kreis 2, 4 und damit die exakte mathematische Beziehung wird entweder einmal bei der Herstellung des Gerätes oder beim Einschalten des Gerätes ermittelt, wie in Figur 2 beschrieben wird. Dadurch können Bauteilschwankungen oder sogar zeit- und umgebungsabhängige Veränderungen der Gerätes mitberücksichtigt werden.

[0019] Figur 2A und Figur 2B zeigen jeweils ein Beispiel zur Bestimmung der Abstimmkurven. Hierbei zeigt die Kurve 1 in Figur 2A die Beziehung zwischen Oszillatorabstimmspannung VOSZ und der Empfangsfrequenz f. Diese Beziehung ist beispielsweise linear. Die Kurve ist dann eine Gerade und kann durch eine lineare Funktionsgleichung beschrieben werden. Die Kurve 2 ergibt sich durch eine Multiplikation der Kurve 1 mit einem Koeffizienten Y. Die Kurve 3, hierbei handelt es sich um die Abstimmkurve des Vor- oder Zwischenkreises ergibt sich aus der Kurve 2 und einer Addition mit einem Koeffizienten X. Die für die jeweiligen Abstimmkreis relevanten Koeffizienten Y und X können einmalig bei der Herstellung oder beim Einschalten des Gerätes ermittelt werden. Diese Werte werden dann in den Speicher des Mikroprozessors eingelesen und von dort in den Phasenregelkreis geladen. Die Bestimmung der Koeffizienten erfolgt dadurch, daß zunächst über den Phasenregelkreis der Oszillator auf den ersten Gleichlaufpunkt A bei einer niedrigen Empfangsfrequenz fN eingestellt wird. Dann wird die entsprechende Empfangsfrequenz f über einen Meßsender eingespeist und die Feldstärkespannung im weiteren Zuge des Empfängers wie bekannt gemessen. Über den Mikroprozessor werden die zugehörigen Werte aller X und Y Stellgrößen im Sinne eines Maximumabgleichs dieser Feldstärkespannung variiert und die sich ergebenden Werte für die Maxima festgehalten. Beim zweiten Gleichlaufpunkt B bei einer höheren Empfangsfrequenz fH wird diese Verfahren wiederholt und die Werte festgehalten und daraus die jeweilige Spannungen V (A) und V (B) berechnet.

[0020] Die Abstimmspannung für den Vorkreis ergibt sich dann für den Punkt A zu:

und für den Punkt B:



[0021] Weiterhin muß gelten:



[0022] Aus diesen Gleichungen kann dann der Koeffizient Y und der additive Koeffizient X berechnet werden:



[0023] Entsprechendes gilt für den Zwischenkreis oder allgemein:



[0024] Damit können diese neuen für beide Abgleichpunkte A und B geltenden Werte für jeden Selektionskreis berechnet werden und im Speicher abgelegt werden. Diese Werte werden jeweils einmal beim Einschalten des Gerätes in den Phasenregelkreis 7 gemäß Figur 1 eingelesen. Anschließend braucht nur noch die aktuelle, die Empfangsfrequenz f erzeugende Oszillatorfrequenz fOSZ übertragen zu werden, der Zweipunktgleichlauf ist gesichert. Die für den Abstimmkreise verwendeten Bauelemente bestimmen den Kurvenverlauf. In Figur 2A ist der Abstimmkreis so aufgebaut, daß die Kurve 1 eine Gerade ist. Durch Bestimmung von zwei Punkten auf einer Geraden können alle anderen Punkte daraus berechnet werden. In Figur 2B sind die Abstimmkreise derart aufgebaut, daß die Kurve 1 und damit auch die Kurve 2 und 3 einen logarithmischen Verlauf hat. Hierbei zeigt die Kurve 1 in Figur 2b die Beziehung zwischen Oszillatorabstimmspannung VOSZ und der Empfangsfrequenz f. Diese Beziehung ist logarithmisch. Die Kurven können durch eine logarithmische Funktionsgleichung beschrieben werden. Die Kurve 2 ergibt sich durch eine Multiplikation der Kurve 1 mit einem Koeffizienten Y wie in Figur 2A dargestellt. Die Kurve 3, hierbei handelt es sich um die Abstimmkurve des Vor- oder Zwischenkreises ergibt sich aus der Kurve 2 und einer Addition mit einem Koeffizienten X.

[0025] Ist die Funktionsart, also der prinzipielle Verlauf der Funktionskurve, z.B. ein linearer oder logarithmischer Kurvenverlauf, zumindest in einem Teilbereich bekannt, so reichen gleichfalls zwei bekannte Punkte auf dieser Funktionskurve aus um daraus alle Spannungswerte V bei einer gegebenen Empfangsfrequenz f zumindest für diesen Teilbereich zu berechnen. Die beiden Koeffizienten Y und X werden entweder bei der Herstellung oder beim Einschalten des Gerätes einmalig oder immer wieder beim Einschalten des Gerätes neu bestimmt. Während der Betriebsdauer des Gerätes sind diese beiden Koeffizienten in einem Speicher fest abgespeichert.

[0026] Die Berechnung der jeweiligen Abstimmwerte aus der anliegenden Oszillatorabstimmspannung kann durch die in Figur 3A und 3B dargestellten Ablaufdiagramme erfolgen.

[0027] Hierbei zeigt Figur 3A die erste Möglichkeit bei der ausgehend von der Oszillatorabstimmspannung VOSZ zuerst der additive Koeffizient X addiert wird und dann dieser Wert um den Koeffizienten Y multiplikativ verstärkt wird. Die zweite Möglichkeit, wie sie in Figur 3B dargestellt ist, zeigt ein Ablaufdiagramm bei dem die Oszillatorabstimmspannung VOSZ zuerst um einen anderen Koeffizienten Y multiplikativ verstärkt wird und dann erst zu diesem Wert der andere additive Koeffizient X hinzu addiert wird. Eine Schaltung, die diese Möglichkeit realisiert ist in Figur 4 dargestellt. Beide Verfahren führen zum gleichen Ergebnis der Abstimmspannung V des Vorkreises bzw. Zwischenkreises VVOR oder VZWI. Koeffizienten Y und X sind je nach angewendetem Verfahren unterschiedlich.

[0028] Figur 4 zeigt eine erfindungsgemäße Abstimmschaltung. Im wesentlichen wird diese Anordnung von zwei Spannungsquellen gespeist. Zum einen wird die einstellbare, variable Oszillatorabstimmspannung VOSZ an den nicht invertierenden Eingang eines ersten Operationsverstärkers 10 angelegt. Alternativ hierzu kann zwischen die Oszillatorabstimmspannung VOSZ und dem nicht invertierenden Eingang des Operationsverstärkers 10 ein Vorteiler 19 eingebaut werden. Diese Alternative ist gestrichelt in der Figur eingezeichnet. Der Vorteiler 19 besteht aus zwei Widerständen einem Feldeffekttransistor 21 auch FET genannt und einer Gleichspannungsquelle. Die Gleichspannungsquelle liegt zwischen dem Gate und Source Anschluß des FET 21. Am Drain Anschluß ist ein Widerstand angeschlossen, welcher einerseits über einen anderen Widerstand mit der Oszillatorabstimmspannung VOSZ und andererseits mit dem nicht invertierenden Eingang des ersten Operationsverstärkers 10 verbunden ist. Der invertierende Eingang des ersten Operationsverstärkers 10 ist wie bei einer Verstärkerschaltung üblich mit einem Spannungsteiler verbunden, der Spannungsteiler besteht aus zwei Widerständen RN1, RX1. Der eine Widerstand RN1 ist mit dem Ausgang des Operationsverstärkers 10, mit dem invertierenden Eingang des Operationsverstärkers 10 und mit dem anderen variablen Widerstand RX1, welcher einerseits auf Masse und andererseits am invertierenden Eingang des Operationsverstärkers 10 anliegt, verbunden. Dadurch wird die am nicht invertierenden Eingang angelegte Spannung VOSZ verstärkt. Diese verstärkte Spannung VOSZ·Y* wird über einen Widerstand R2 an den nicht invertierenden Eingang eines zweiten Operationsverstärkers 16 angelegt. Dieser Widerstand R2 wiederum ist mit einem anderen Widerstand R1 verbunden, der gleichfalls an den nicht invertierenden Eingang des zweiten Operationsverstärkers 16 und an Masse angelegt ist.

[0029] Zum anderen wird eine feste Eingangsspannung VEIN an den nicht invertierenden Eingang eines dritten Operationsverstärkers 13 angelegt. Alternativ hierzu kann zwischen der festen Eingangsspannung VEIN und dem nicht invertierenden Eingang ein Vorteiler 20 eingebaut werden. Diese Alternative ist gestrichelt in der Figur eingezeichnet. Der Vorteiler 20 besteht aus zwei Widerständen: einem Feldeffekttransistor 22 auch FET genannt und einer Gleichspannungsquelle Die Gleichspannungsquelle liegt zwischen dem Gate und Source Anschluß des FET 20. Am Drain Anschluß ist ein Widerstand angeschlossen, welcher einerseits über einen anderen Widerstand mit der festen Eingangsspannung VEIN verbunden ist und andererseits mit dem nicht invertierenden Eingang des dritten Operationsverstärkers 13. Der invertierende Eingang des dritten Operationsverstärkers 13 ist wie bei einer Verstärkerschaltung üblich mit einem Spannungsteiler verbunden, der Spannungsteiler besteht aus zwei Widerständen RX2, RN2. Der eine Widerstand RN2 ist mit dem Ausgang des dritten Operationsverstärkers 13, mit dem invertierenden Eingang des dritten Operationsverstärkers 13 und mit dem anderen variablen Widerstand RX2, welcher einerseits auf Masse und andererseits am invertierenden Eingang des dritten Operationsverstärkers 13 anliegt, verbunden. Dadurch wird die am nicht invertierenden Eingang angelegte Spannung VEIN verstärkt. Diese Spannung VAUS gelangt über einen Widerstand R4 an den invertierenden Eingang des zweiten Operationsverstärkers 16. Dieser Widerstand R4 ist mit einem anderen Widerstand R3 verbunden, dieser Widerstand R3 ist auch an den invertierenden Eingang des zweiten Operationsverstärkers 16 und an den Ausgang des zweiten Operationsverstärkers 16 angeschlossen. Am Ausgang des zweiten Operationsverstärkers 16 liegt dann die Spannung VEND an.

[0030] Die Aufgabe einer solchen Schaltung besteht darin, daß der Verstärker 10 die Eingangsspannung im Anwendungsbeispiel die Oszillatorabstimmspannung VOSZ oder eine davon abhängige Spannung um den Faktor Y* verstärkt. Die Verstärkung ist dabei linear in einer vorgegebenen Schrittweite und Auflösung einstellbar. Die Linearität kann z.B. dadurch erreicht werden, daß dem Widerstand RN1 binär abgestufte Werte vom Widerstand RX1 zugeschaltet werden. Der variable Widerstand RX1 besteht dann tatsächlich aus mehreren parallel geschalteten Widerständen, die je nach Höhe des gewünschten Widerstandswertes dazugeschaltet werden können. Die Verstärkung ergibt sich hierbei durch:



[0031] Der Verstärkungsfaktor Y* kann hierbei linear eingestellt werden.

[0032] Der andere Operationsverstärker 13 liefert eine linear einstellbare Ausgangsspannung (DA-Wandler). Am Eingang des Verstärkers liegt eine feste Eingangsspannung VEIN an, welche mit den Widerständen RX2 und RN2 nach dem gleichen oben beschriebenen Prinzip verstärkt werden kann. Somit ergibt sich die Ausgangsspannung VAUS vom Operationsverstärker 13 zu:



[0033] Der dritte Operationsverstärker 16 ist mit den Widerständen R3 und R4 bzw. R2 und R1 als Summierverstärker geschaltet. Ist der Wert von R3 gleich dem Wert von R1 und der Wert von R4 gleich dem Wert von R2, dann bildet der Operationsverstärker 16 eine Ausgangsspannung VEND mit:



[0034] Der Koeffizient Y dieser Schaltung ist damit:

und der additive Koeffizient X beträgt:



[0035] Die vorab bestimmten X und Y Koeffizienten können mit dieser Schaltung beliebig eingestellt werden.

[0036] Abschließend muß noch erwähnt werden, daß bei der Zuschaltung der binär abgestuften Widerstände, die dann den Wert von RX1 bzw. RX2 bilden, temperaturbedingte Abweichungen auftreten können, die dadurch zustande kommen, daß die nicht abgebildeten FET Transistoren, die als Schalter für die Zuschaltung der binären Widerstände verwendet werden, temperaturabhängig sind. Dadurch ändert sich der Verstärkungsfaktor über die Temperatur. Um diesen Effekt zu kompensieren wird, werden, wie der gestrichelte Block zeigt, Vorteiler 19, 20 eingebaut, die ebenfalls einen FET Schalter 21, 22 beinhalten. Diese kompensieren den oben erwähnten Temperaturgang der als Schalter verwendeten FET-Transistoren bei der binären Abstufung der Widerstände.


Ansprüche

1. Verfahren zum Abgleich eines mehrstufigen selektiven Verstärkers, insbesondere Tuners, welcher einen Oszillatorkreis und einen oder mehrere Abstimmkreise aufweist und bei dem zur Einstellung der Empfangsfrequenz (f) für den Oszillator eine veränderbare, frequenzbestimmende Oszillatorabstimmspannung (VOSZ) und für die Abstimmkreise veränderbare, frequenzbestimmende Abstimmspannung, (VVOR, VZWI) gewählt werden, dadurch gekennzeichnet, daß der Wert der jeweils benötigten Abstimmspannung (VVOR, VZWI), welche die zum Abgleich erforderliche Frequenz (f) erzeugt, aus einer mathematischen Beziehung zwischen der jeweiligen Abstimmspannung (VVOR, VZWI) und der Oszillatorabstimmspannung (VOSZ) und damit von der Empfangsfrequenz (f) berechnet wird, wobei die mathematische Beziehung bei der Herstellung oder beim Einschalten des Verstärkers, insbesondere Tuners ermittelt und abgespeichert wird.
 
2. Verfahren zum Abgleich eines mehrstufigen selektiven Verstärkers, insbesondere Tuners, welcher einen Oszillatorkreis und einen oder mehrere Abstimmkreise aufweist und bei dem zur Einstellung der Empfangsfrequenz (f) für den Oszillator eine veränderbare, frequenzbestimmende Oszillatorabstimmspannung (VOSZ) und für die Abstimmkreise veränderbare, frequenzbestimmende Abstimmspannungen (VVOR, VZWI) gewählt werden, dadurch gekennzeichnet, daß der Wert der jeweils benötigten Abstimmspannung (VVOR, VZWI), welche den jeweiligen Abstimmkreis auf die gewünschte Empfangsfrequenz (f) einstellt, aus einer mathematischen Beziehung, die die Abhängigkeit der benötigten Abstimmspannung (VVOR, VZWI) von der Empfangsfrequenz (f) beschreibt, berechnet wird, wobei die mathematische Beziehung bei der Herstellung oder beim Einschalten des Verstärkers, insbesondere Tuners ermittelt und abgespeichert wird.
 
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die mathematische Beziehung bei jedem Einschalten des Verstärkers ermittelt wird und bis zum Abschalten des Gerätes abgespeichert ist.
 
4. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die mathematischen Beziehung durch eine Funktion

beschrieben wird, bei der eine elementare Funktion g(z) mit einem ersten Koeffizienten (Y) multipliziert wird und zu der ein weiterer Koeffizient (X) addiert wird, wobei die elementare Funktion g(z), insbesondere

,

,

,

oder

, bekannt ist und die beiden Koeffizienten (X, Y) bei der Herstellung oder beim Einschalten des Verstärkers dadurch bestimmt werden indem pro Abstimmkreis die Abstimmspannungswerte (

,

) für eine höhere und eine niedrigere Empfangsfrequenz (

,

) durch ein iteratives Abgleichverfahren ermittelt werden und mit diesen beiden Wertepaaren (V(A)/fN, V(B)/fH) die beiden Koeffizienten (X, Y) berechnet werden.
 
5. Verfahren nach Patentanspruch 4, dadurch gekennzeichnet, daß pro Abstimmkreis die Werte der beiden Koeffizienten (X, Y) abgespeichert werden und damit die mathematische Beziehung festgelegt wird und daraus alle Abstimmspannungswerte (VVOR, VZWI) berechnet werden.
 




Zeichnung













Recherchenbericht