

EP 0 905 223 B2

(12)

NEW EUROPEAN PATENT SPECIFICATION

After opposition procedure

(45) Date of publication and mention
of the opposition decision:
06.04.2011 Bulletin 2011/14

(51) Int Cl.:
C11D 3/395 (2006.01) **C11D 1/29 (2006.01)**

(45) Mention of the grant of the patent:
25.04.2007 Bulletin 2007/17

(21) Application number: **97870138.1**

(22) Date of filing: **19.09.1997**

(54) Self thickened bleaching compositions

Selbstverdickende Bleichmittelzusammensetzungen

Compositions de blanchiment auto-épaisseissantes

(84) Designated Contracting States:
**AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
PT SE**

(74) Representative: **Engisch, Gautier et al
NV Procter & Gamble Services Company SA
IP Patent Department
Temselaan 100
1853 Strombeek-Bever (BE)**

(43) Date of publication of application:
31.03.1999 Bulletin 1999/13

(56) References cited:
**EP-A- 0 144 166 EP-A2- 0 340 371
WO-A1-93/21298 DE-A- 4 333 100
US-A- 3 954 675 US-A- 5 034 150
US-A- 5 279 758**

(73) Proprietor: **THE PROCTER & GAMBLE COMPANY
Cincinnati, OH 45202 (US)**

Remarks:

The file contains technical information submitted after
the application was filed and not included in this
specification

(72) Inventors:
• **Todini, Oreste
Castelnuovo di Porto,
00060 Rome (IT)**
• **Agostini, Andrea
00046 Grottaferrata (Rome) (IT)**
• **Grande, Giovanni
00136 Rome (IT)**

DescriptionField of the invention

5 [0001] The present invention relates to liquid thickened bleaching compositions, in particular to liquid thickened hypochlorite bleaching compositions, which can be used to bleach various surfaces including but not limited to, hard-surfaces like walls, tiles, floors, glass, bathrooms surfaces, kitchen surfaces, toilet bowls, dishes as well as fabrics, clothes, carpets and the like.

10 Background of the invention

[0002] Thickened bleaching compositions are well-known in the art. Amongst the different thickened bleaching compositions available, those relying on bleaching by hypohalite bleaches such as hypochlorite are often preferred, mainly for performance reasons.

15 [0003] Preferably viscosity will be build up by a so called 'self thickening surfactant or surfactant system' as opposed to using a thickener for that specific purpose. Indeed, thickeners, such as gums have at least one drawback that they affect the formula cost, while providing only one benefit, which is thickening. They do not participate to the actual cleaning of the surface and therefore represent "inert" materials. Also, some thickeners are detrimental to the physical stability of the liquid compositions they are formulated in.

20 [0004] Thus, it is desirable to formulate liquid thickened bleaching compositions based on hypohalite bleach with the help of a viscosifying surfactant which on top of its viscosifying properties also delivers good cleaning performance, i.e. good stain removal performance on a variety of stains including greasy stains and/or enzymatic stains and the like. More particularly, there is a need to liquid thickened bleaching compositions based on hypohalite bleach and a viscosifying surfactant that are rheologically stable upon ageing of the compositions, i.e. for prolonged periods of storage after their manufacturing.

25 [0005] Indeed, when it is desired to incorporate a viscosifying surfactant in a liquid hypohalite bleach-based composition, the resulting composition generally shows a poor rheological stability, upon ageing of the composition, resulting in lowering of the viscosity of the composition upon prolonged periods of storage. Indeed, upon prolonged storage periods the viscosifying surfactants may be decomposed by the hypohalite bleach present in such a liquid hypohalite bleach-based composition, and thus may lose their viscosifying potential. This surfactant decomposition can be accelerated by product exposure at high temperature or by raw material impurities like presence of metal ions.

30 [0006] It is therefore an object of the invention to provide a stable liquid thickened hypohalite bleach-containing composition comprising a viscosifying surfactant, said composition being rheologically stable upon ageing of the composition.

35 [0007] The Applicant has thus now surprisingly found that this problem is solved by formulating a liquid bleaching composition comprising a hypohalite bleach, a pH buffering means, an alkyl (alkoxy)₂₋₄ sulphate, optionally a co-surfactant and a stabilising agent (0.01%-10%) being either a radical scavenger, a chelating agent or a mixture thereof. More particularly, it has been found that the addition of such a stabilising agent, preferably a radical scavenger alone or together with a chelating agent, in a liquid bleaching composition comprising a hypohalite bleach, an alkyl (alkoxy)₂₋₄ sulphate, and optionally a co-surfactant, improves the rheological stability of this composition upon ageing, i.e. upon prolonged periods of storage after its manufacturing, as compared to the rheological stability of the same composition without any such stabilising agent, upon ageing of the composition.

40 [0008] Advantageously the compositions of the invention are also chemically stable upon ageing of the compositions.

45 [0009] Another advantage of the compositions of the present invention is that they deliver effective bleaching performance, more particularly effective whiteness performance when used in any laundry application, as well as effective stain removal performance on various stains including greasy stains like lipstick, make up, sebum, oil (mineral and vegetable), mayonnaise, eggs and the like and/or enzymatic stains like grass, cocoa, blood and the like, even upon ageing of the composition. Indeed, it is the presence of such a stabilising agent in the liquid hypohalite bleach-containing compositions of the present invention that delivers these benefits upon ageing of these compositions.

50 [0010] Advantageously the compositions of the invention are suitable for the bleaching of different types of surfaces including hard-surfaces like floors, walls, tills, glass, kitchen surfaces, bathrooms surfaces, toilet bowls and/or dishes and the like as well as fabrics. More particularly, the compositions of the present invention are suitable for bleaching any type of fabrics including natural fabrics (e.g., fabrics made of cotton, viscose, linen, silk and wool), synthetic fabrics such as those made of polymeric fibers of synthetic origin as well as those made of both natural and synthetic fibers. Indeed, the compositions of the present invention may be used on synthetic fibers despite a standing prejudice against the use of hypohalite bleaches, especially hypochlorite bleaches, on synthetic fibers, as evidenced by warning on labels of commercially available hypochlorite bleaches and clothes. Advantageously the compositions of the present invention are not only safe to the fabrics per se bleached therewith but also to the fabrics colours.

55 [0011] A further advantage of the liquid bleaching compositions of the present invention is that said bleaching com-

positions are suitable for various laundry bleaching applications both when used in diluted conditions, e.g. as a detergent additive or a fully formulated laundry detergent composition, and when used in neat condition, e.g. as a liquid pretreater (spotter).

5 Background art

[0012] European co-pending application number 97870041.7 (relevant for novelty according to Art. 54 EPC) discloses bleaching compositions comprising a hypohalite bleach, a pH buffering means and an effective amount of an anionic surfactant (e.g. alkyl ethoxy sulphate). Radical scavengers and chelating agents are mentioned as optional ingredients without specifying any, nor levels thereof.

10 **[0013]** EP-A-0 812 904 and EP-A-0 834 549 (relevant for novelty according to Art. 54 EPC) disclose hypochlorite-based compositions with surfactants like alkyl ethoxy sulphates and optionally radical scavengers. Chelants are mentioned as optional ingredients without specifying any, nor levels thereof. No pH buffering means are disclosed.

15 **[0014]** Various other patent applications disclose compositions based on hypochlorite and alkyl alkoxy sulphate, see for instance US 5 034 105, US 5 279 758, EP-447 261, EP-340 371 or WO 93/08247. However these documents fail to disclose the presence of a stabilising agent like a radical scavenger and/or a chelating agent in said compositions, let alone that it improves the rheological stability of the compositions upon ageing.

Summary of the invention

20 **[0015]** The present invention is a liquid thickened bleaching composition comprising

25

- a hypohalite bleach,
- an alkyl (alkoxy)_n sulphate surfactant, wherein n is from 2 to 4
- optionally a co-surfactant,
- a pH buffering component in an amount of 0.5% to 9% by weight,
- and from 0.01 % to 10% by weight of the total composition of a stabilising agent,

30 wherein said stabilising agent is a radical scavenger alone or together with a chelating agent and wherein said radical scavenger has one of the formulas such as described in claim 1.

[0016] Yet the present invention also encompasses a process of bleaching a surface (including fabrics, hard-surfaces and/or dishes) where said surface is contacted with a bleaching composition according to the present invention, in its neat or diluted form.

35 Detailed description of the invention

Liquid bleaching compositions:

40 **[0017]** The compositions according to the present invention are in liquid form. Preferably, the compositions of the invention are in liquid aqueous form. More preferably, they comprise water in an amount of from 60% to 98% by weight, more preferably of from 80% to 97% and most preferably of from 85% to 97% by weight of the total aqueous liquid bleaching composition.

45 **[0018]** The compositions according to the present invention are thickened compositions, thus they typically have a viscosity of from 10 cps to 2000 cps, when measured with a rheometer, for example a Carri-med CSL2-100®, at the following viscosity parameters : angle : 1°58, gap : 60, diameter : 4.0 cm, iner : 63.60, temperature of 25°C and a shear rate of 30 1/sec, preferably from 25 cps to 1500 cps, and more preferably from 50 cps to 1200 cps.

Hypohalite bleaches

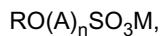
50 **[0019]** An essential component of the invention is a hypohalite bleach. Hypohalite bleaches may be provided by a variety of sources, including bleaches that are oxidative bleaches and subsequently lead to the formation of positive halide ions as well as bleaches that are organic based sources of halides such as chloroisocyanurates.

55 **[0020]** Suitable hypohalite bleaches for use herein include the alkali metal and alkaline earth metal hypochlorites, hypobromites, hypoiodites, chlorinated trisodium phosphate dodecahydrates, potassium and sodium dichloroisocyanurates, potassium and sodium trichlorocyanurates, N-chloroimides, N-chloroamides, N-chloroamines and chlorohydrans.

[0021] For the liquid compositions herein, the preferred hypohalite bleaches among the above described are the alkali metal and/or alkaline earth metal hypochlorites selected from the group consisting of sodium, potassium, magnesium,

lithium and calcium hypochlorites, and mixtures thereof, more preferably the alkali metal sodium hypochlorite.

[0022] Preferably, the liquid compositions according to the present invention comprise said hypohalite bleach or mixture thereof such that the content of active halide in the composition is of from 0.1% to 20% by weight, more preferably from 0.25% to 8% by weight, most preferably from 0.5% to 6% by weight of the composition.


5

The alkyl (alkoxy)₂₋₄ sulphates

[0023] An essential component of the invention is an alkyl (alkoxy)_n sulphate, wherein n is from 2 to 4, or a mixture thereof.

10

[0024] Suitable alkyl (alkoxy)₂₋₄ sulphate surfactants for use herein are water-soluble salts or acids of the formula :

wherein

15

- R is a substituted or unsubstituted C₄-C₂₄ linear or branched alkyl group having a C₄-C₂₄ alkyl component, preferably a C₈-C₂₀ linear or branched alkyl, more preferably C₈-C₁₈ linear or branched alkyl, most preferably C₁₀-C₁₆ linear or branched alkyl,
- A is an ethoxy or propoxy unit,
- n is from 2 to 4, preferably 2 or 3 and more preferably 3,
- and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.

20

[0025] Alkyl (ethoxy)2 sulfates and alkyl (ethoxy)3 sulfates are preferred herein. Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperidinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.

25

[0026] Sodium C12/C14 E3 sulphate may be for example commercially available from Albright & Wilson under the name EMPICOL ESC3®. Sodium C12/C14 E2 sulphate may be for example commercially available from Rhone Poulenc under the name Rhodapex ES-2®.

30

[0027] Preferably, the liquid compositions according to the present invention comprise said alkyl (alkoxy)₂₋₄ sulphate in amount of from 0.1% to 20% by weight, more preferably from 0.5% to 15%, even more preferably from 2% to 10% by weight, most preferably from 3% to 8% by weight of the composition.

35

[0028] The presence of such an alkyl (alkoxy)₂₋₄ sulphate, preferably an alkyl (ethoxy)2-4 sulphate, provides viscosity to the liquid bleaching compositions of the present invention while also delivering excellent stain removal performance on various types of stains including greasy stains and/or enzymatic stains.

40

[0029] Furthermore, in a laundry application the presence of such an alkyl (alkoxy)₂₋₄ sulphate and especially an alkyl (ethoxy)₂₋₄ sulphate in the bleaching compositions of the present invention will improve the whiteness to fabrics which are treated with said bleaching compositions.

Optional co-surfactants

45

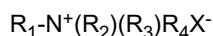
[0030] The liquid compositions of the present invention may further comprise a co-surfactant or a mixture thereof as a desirable optional ingredient to regulate the viscosity of the compositions herein. More particularly, the co-surfactants for use herein have the properties to modify the initial viscosity provided by the presence of the alkyl (alkoxy)₂₋₄ sulphate in the compositions of the present invention, i.e. to lower or higher the viscosity provided by the sole presence of such alkyl (alkoxy)₂₋₄ sulphate as a viscosifying surfactant, in the compositions herein. In other words, such a co-surfactant will be chosen depending on the initial viscosity desired for the compositions of the present invention. Furthermore, the presence of the co-surfactants in the bleaching compositions according to the present invention, further contributes to deliver effective stain removal performance and/or whiteness performance to fabrics treated therewith.

50

[0031] Typically, the compositions according to the present invention comprise said co-surfactant in amounts of from 0.01% to 10% by weight of the total composition, preferably of from 0.1% to 5% and more preferably of from 1 % to 2.5%.

55

[0032] Suitable co-surfactants for use herein are typically selected from the group consisting of alkyl sulphates, alkyl aryl sulphonates, alkyl alkoxy sulphates with 1 or more than 4 alkoxylated units, zwitterionic surfactants like betaine surfactants, cationic surfactants like alkyl trimethylammonium halogenides and mixture thereof.


[0033] Suitable alkyl sulphates for use in the compositions herein include water-soluble salts or acids of the formula ROSO₃M wherein R preferably is a C₄-C₂₄ hydrocarbyl, preferably linear or branched alkyl having a C₆-C₂₀ alkyl component, more preferably a C₆- C₁₈ linear or branched alkyl, most preferably a C₆- C₁₆ linear or branched alkyl and M is

H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethylammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).

5 [0034] Other alkyl alkoxy sulphates for use herein are water-soluble salts or acids of the formula $RO(A)_mSO_3M$ wherein R is a substituted or unsubstituted C_4-C_{24} linear or branched alkyl group having a C_4-C_{24} alkyl component, preferably a C_8-C_{20} linear or branched alkyl, more preferably $C_{10}-C_{18}$ linear or branched alkyl, most preferably $C_{10}-C_{16}$ linear or branched alkyl, A is an ethoxy or propoxy unit, m is 1 or above 4, typically between about 5 and about 30, more preferably between about 5 and about 15, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, 10 lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation. Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium cations include methyl-dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like. Exemplary surfactants are $C_{12}-C_{18}$ alkyl polyethoxylate(8) sulfate, $C_{12}-C_{18}E(6)$ sulfate, wherein the counterion is 15 conveniently selected from sodium and potassium.

10 [0035] Suitable alkyl aryl sulphonates for use herein include water- soluble salts or acids of the formula RSO_3M wherein R is an aryl, preferably a benzyl, substituted by a C_4-C_{20} linear or branched saturated or unsaturated alkyl group, 15 preferably a $C_{12}-C_{18}$ alkyl group and more preferably a $C_{14}-C_{16}$ alkyl group, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium, calcium, magnesium etc) or ammonium or substituted ammonium (e.g., methyl-, 20 dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).

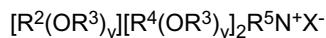
25 [0036] Suitable zwitterionic betaine surfactants for use herein contain both a cationic hydrophilic group, i.e., a quaternary ammonium group, and anionic hydrophilic group on the same molecule at a relatively wide range of pH's. The typical anionic hydrophilic groups are carboxylates and sulfonates, although other groups like sulfates, phosphonates, and the like can be used. A generic formula for the zwitterionic betaine surfactants to be used herein is :

30 wherein R_1 is a hydrophobic group; R_2 is hydrogen, C_1-C_6 alkyl, hydroxy alkyl or other substituted C_1-C_6 alkyl group; R_3 is C_1-C_6 alkyl, hydroxy alkyl or other substituted C_1-C_6 alkyl group which can also be joined to R_2 to form ring structures with the N, or a C_1-C_6 carboxylic acid group or a C_1-C_6 sulfonate group; R_4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms; and X is the hydrophilic group which is a carboxylate or sulfonate group.

35 [0037] Preferred hydrophobic groups R_1 are aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chains that can contain linking groups such as amido groups, ester groups. More preferred R_1 is an alkyl group containing from 1 to 24 carbon atoms, preferably from 8 to 18, and more preferably from 10 to 16. These simple alkyl groups are preferred for cost and stability reasons. However, the hydrophobic group R_1 can also be an amido radical of the formula $R_a-C(O)-NH-(C(R_b)_2)_m$, wherein R_a is an aliphatic or aromatic, saturated or unsaturated, 40 substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16, R_b is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any $(C(R_b)_2)$ moiety.

45 [0038] Preferred R_2 is hydrogen, or a C_1-C_3 alkyl and more preferably methyl. Preferred R_3 is a C_1-C_4 carboxylic acid group or C_1-C_4 sulfonate group, or a C_1-C_3 alkyl and more preferably methyl. Preferred R_4 is $(CH_2)_n$ wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably from 1 to 3.

50 [0039] Some common examples of betaine/sulphobetaine are described in U.S. Pat. Nos. 2,082,275, 2,702,279 and 2,255,082.


[0040] Examples of particularly suitable alkyldimethyl betaines include coconut-dimethyl betaine, lauryl dimethyl betaine, decyl dimethyl betaine, 2-(N-decyl-N, N-dimethyl-ammonia)acetate, 2-(N-coco N, N-dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine. For example Coconut dimethyl betaine is commercially available from Seppic under the trade name of Amonyl 265®. Lauryl betaine is commercially available from Albright & Wilson under the trade name Empigen BB/L®.

55 [0041] Examples of amidobetaines include cocoamidoethylbetaine, cocoamidopropyl betaine or C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine. For example C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine is commercially available from Sherex Company under the trade name "Varion CAS® sulfobetaine".

[0042] A further example of betaine is Lauryl-immino-dipropionate commercially available from Rhone-Poulenc under the trade name Mirataine H2C-HA ®.

[0043] Suitable cationic surfactants are alkyl trimethylammonium halogenides and those surfactants having the for-

mula:

5 wherein R^2 is an alkyl or alkyl benzyl group having from 8 to 18 carbon atoms in the alkyl chain, each R^3 is selected from the group consisting of $-CH_2CH_2-$, $-CH_2CH(CH_3)-$, $-CH_2CH_2CH_2-$, and mixtures thereof; each R^4 is selected from the group consisting of C_1-C_4 alkyl, benzyl ring structures formed by joining the two R^4 groups, and hydrogen when y is not 0; R^5 is the same as R^4 or is an alkyl chain wherein the total number of carbon atoms of R^2 plus R^5 is not more than 18; each y is from 0 to 10 and the sum of the y values is from 0 to 15; and X is any compatible anion. Most preferred cationics are linear or branched C8-C20 trimethyl ammonium chlorides.

10

The pH buffering components

[0044] A pH buffering component is another essential component for the compositions of the invention.

15 [0045] The pH buffering component ensures that the pH of the composition is buffered to a pH value ranging from 7.5 to 13, preferably from 8 to 12, more preferably from 8.5 to 11.5 after the composition has been diluted into 1 to 500 times its weight of water.

20 [0046] Suitable pH buffering components for use herein are selected from the group consisting of alkali metal salts of carbonates, polycarbonates, sesquicarbonates, silicates, polysilicates, boron salts, phosphates, stannates, alluminates and mixtures thereof. The preferred alkali metal salts for use herein are sodium and potassium.

25 [0047] Suitable boron salts or mixtures thereof for use herein include alkali metal salts of borates and alkyl borates and mixtures thereof. Examples of boron salts include boric acid, alkali metal salts of metaborate, tetraborate, octaborate, pentaborate, dodecaboron, borontrifluoride and alkyl borate containing from 1 to 12 carbon atoms, preferably from 1 to 4. Suitable alkyl borate includes methyl borate, ethyl borate and propyl borate. Particularly preferred boron salts herein are the alkali metal salts of metaborate, such as sodium metaborate, potassium metaborate, and the alkali metal salts of borate, such as sodium borate, or mixtures thereof. Boron salts like sodium metaborate and sodium tetraborate are commercially available from Borax and Societa Chimica Larderello under the name sodium metaborate and Borax®.

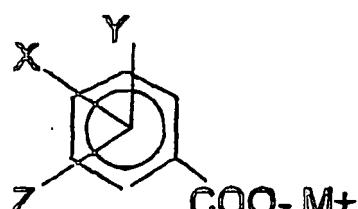
30 [0048] Particularly preferred pH buffering components are selected from the group consisting of sodium carbonate, sodium silicate, sodium borate, sodium metaborate and mixtures thereof.

[0049] The raw materials involved in the preparation of hypohalite bleaches usually contain by-products, e.g. calcium carbonate resulting in an amount of up to 0.4% by weight of by-product within the hypohalite composition. However, at such amount, the by-product will not have the buffering action defined above.

35 [0050] Liquid bleaching compositions herein will contain an amount of pH buffering component of from 0.5% to 9% by weight, preferably from 0.5% to 5% by weight, and more preferably in an amount of from 0.6% to 3% by weight of the composition.

40 [0051] The presence of such a pH buffering component in the bleaching compositions of the present invention contributes to the effective whiteness performance of said compositions as well as to the fabric safety of these compositions.

The stabilising agents


45 [0052] An essential component of the invention is a stabilising agent being a radical scavenger, a chelating agent or a mixture thereof. Naturally, for the purpose of the invention, the stabilizing agents have to be stable to the hypohalite bleach.

[0053] Highly preferred in the liquid bleaching compositions of the present invention as the stabilising agent is a radical scavenger or a mixture thereof alone, or together with a chelating agent or a mixture thereof.

[0054] The radical scavenger for use in the present invention has the following formula:

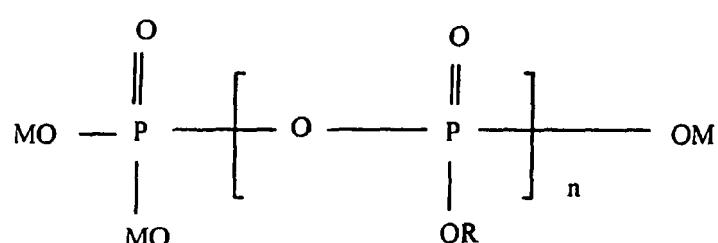
50 (a)

55

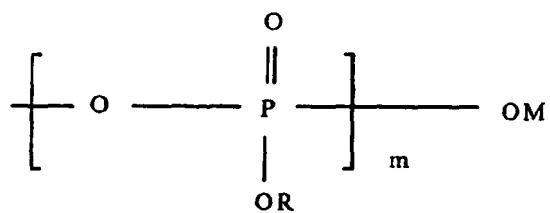
wherein each X, Y, and Z are -H, -COO-M⁺, -Cl, -Br, -SO₃-M⁺, -NO₂, -OCH₃, or a C₁ to C₁₀ primary and secondary alkyl groups and M is H or an alkali metal, or mixtures thereof. Examples of these components include pyromellitic acid, i.e. where X, Y and Z are -COO-H⁺; hemimellitic acid, trimellitic acid, i.e. where X and Y are -COO-H⁺ and Z is H. Preferred to be used in the present invention as radical scavengers are benzoic acid, toluic acid, 3-nitro benzoic acid, 2 n-octyl benzoic acid, anisic acid or mixtures thereof. Most preferred herein are benzoic acid, methoxy benzoic acid and/or 3-nitrobenzoic acid.

[0055] All the radical scavengers described above are the acidic form of the species, i.e. M is H. It is intended that the present invention also covers the salt derivatives of these species, i.e. M is an alkali metal, preferably sodium or potassium. In fact, since the pH of the compositions of the present invention is in the alkaline range, the radical scavengers of the present invention exist primarily as the ionized salt in the aqueous composition herein. The anhydrous derivatives of certain species described herein above can also be used in the present invention, e.g. pyromellitic dianhydride, phthalic anhydride, sulphthalic anhydride and the like.

[0056] Suitable chelating agents for use herein may be any of those known to those skilled in the art such as the ones selected from the group comprising phosphonate chelating agents, phosphate chelating agents, polyfunctionally-substituted aromatic chelating agents, ethylenediamine N,N'-disuccinic acids, or mixtures thereof.


[0057] Suitable phosphonate chelating agents to be used herein may include alkali metal ethane 1-hydroxy diphosphonates (HEDP), alkylene poly (alkylene phosphonate), as well as amino phosphonate compounds, including amino aminotri(methylene phosphonic acid) (ATMP), nitrilo trimethylene phosphonates (NTP), ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates (DTPMP). The phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities. Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonate (DTPMP) and ethane 1-hydroxy diphosphonate (HEDP). Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®.

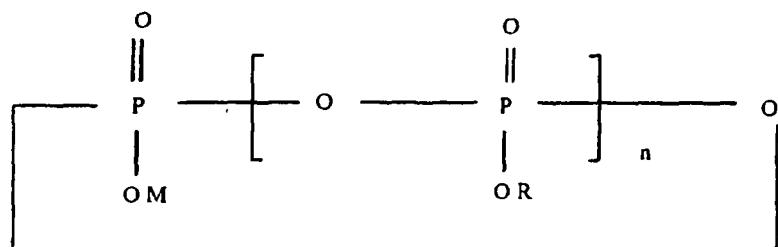
[0058] Suitable phosphate chelating agents are as following: Phosphonic acid can be condensed in the reaction


[0059] The reaction can be repeated with any of the reactive OH groups, and phosphate ingredients are obtained which can be

- linear or branched polyphosphates of structure

- when R is M or

5

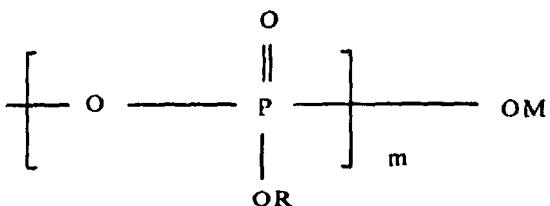

10

- when M is a counterion, preferably alkali metal;
- when $O \leq n+m < 500$ (if $n+m = 0$ then the compound is phosphonic acid)

- cyclic polyphosphates (also referred to as metaphosphates), of structure

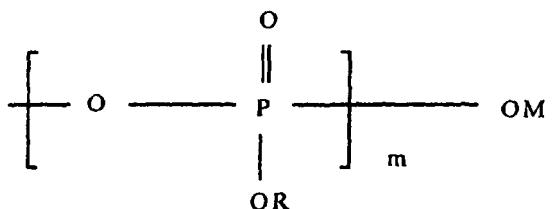
15

20



25

- when R is M or


30

35

40

45

50

the phosphate compound contains both cycles and branched chain, and can be referred to as an ultraphosphate.)

55

- where M is a counterion, preferably an alkali metal
- where $O \leq n+m < 500$

[0060] All such phosphate ingredients are suitable for use herein, and preferred are linear phosphate ingredients (i.e. R is M) where n is 1 (pyrophosphate) and n is 2 (tripolyphosphate (STPP)), most preferably where n is 2. The most commonly available form of these phosphate is where M is Sodium.

[0061] Phytic acid, which is a chelating agent particularly suitable for use herein, is a hexa-phosphoric acid that occurs naturally in the seeds of many cereal grains, generally in the form of the insoluble calcium-magnesium salt. It may also

be derived from corn steep liquor. Commercial grade phytic acid is commercially available from J.T.Baker Co., e.g. as a 40% aqueous solution. It is intended that the present invention covers the acidic form of phytic acid as well as alkali metal salt derivatives thereof, particularly sodium or potassium salts thereof. Sodium phytate is available from Jonas Chemical Co (Brooklyn, N.Y.). In fact since the typical pH of the compositions of the present invention are in the alkaline pH range, the phytic acid component exists primarily as the ionized salt in the liquid compositions herein even if it is added in its acidic form. Mixtures of such salts of phytic acid are also covered.

[0062] Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,812,044, issued May 21, 1974, to Connor et al. Preferred compounds of this type in acid form are dihydroxy-disulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.

[0063] A preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof. Ethylenediamine N,N'-disuccinic acids, especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins. Ethylenediamine N,N'- disuccinic acids is, for instance, commercially available under the tradename sSEDDS® from Palmer Research Laboratories.

[0064] Particularly preferred chelating agents for use herein are phosphate chelating agents like sodium tripolyphosphate, sodium pyrophosphate, phytic acid, and mixtures thereof.

[0065] Typically, the compositions according to the present invention comprise from 0.01% to 10% by weight of the total composition of a stabilising agent, or mixtures thereof, preferably from 0.01% to 8% by weight, more preferably from 0.1% to 5%, and most preferably from 0.2% to 3%.

[0066] Alkyl (alkoxy) sulphates as used in the bleaching compositions of the present invention are vulnerable to bleach-initiated degradation and result in a loss of rheology that can be unacceptable for most applications. A certain small percentage of chlorine bleach ingredient is present in solution in the form of free radicals, i.e. molecular fragments having one or more unpaired electrons. These radicals, although short lived, are highly reactive and may initiate the degradation of alkyl (alkoxy) sulphate surfactants present in a bleaching composition, via propagation mechanism. It is believed that alkyl (alkoxy) sulphates are subject to this degradation because of the presence of alkoxy groups that are oxidizable sites.

[0067] It has now been found that the addition of a stabilising agent, especially a radical scavenger alone or together with a chelating agent, increases the rheological stability of the compositions of the present invention.

[0068] By "rheological stability", it is meant herein that the compositions of the present invention do not loose more than 30% initial viscosity after 10 days at 50°C, preferably not more than 20%.

[0069] Indeed, it is believed that the radical scavenger react with the free radicals present and prevent them from reacting/oxidising the alkyl (alkoxy)₂₋₄ sulphates. Also the chelating agents present bind metal ion impurities (e.g., copper, iron, manganese and the like) present in the compositions (e.g. as by product of the raw material) and thus prevent them from attacking the hypochlorite bleach thereby limiting the generation of free radicals, that would otherwise be generated in presence of such metal ions impurities. Thus adding the chelating agents on top of the radical scavengers further contribute to deliver excellent rheological stability upon ageing of the compositions.

[0070] Advantageously the liquid bleaching compositions of the present invention are also chemically stable. By "chemically stable", it is meant that the hypohalite bleaching compositions of the present invention do not undergo more than 25% loss of available chlorine after 5 days of storage at 50°C ± 0.5°C preferably not more than 20%. The % loss of available chlorine may be measured using the method described, for instance, in "Analyses des Eaux et Extraits de Javel" by "La chambre syndicale nationale de L'eau de Javel et des produits connexes", pages 9-10 (1984). Said method consists in measuring the available chlorine in the fresh compositions, i.e. just after they are made, and in the same compositions after 5 days at 50°C.

[0071] Surprisingly, it has also been found that the addition of such a stabilising agent, especially a radical scavenger alone or together with a chelating agent, in the compositions of the present invention, while increasing the rheological stability of these compositions further provides effective stain removal performance and/or effective fabric whiteness performance upon ageing of these compositions.

[0072] By "effective" whiteness performance, it is to be understood that the whitening performance delivered on fabrics bleached with an aged composition according to the present invention is improved, as compared to the whitening performance delivered by the same composition but without any stabilising agent as mentioned herein before in the same aged condition. In other words, the present invention allows to maintain excellent whitening performance after prolonged periods of storage time, as compared to the same composition but without said stabilising agent.

[0073] The whitening effect, i.e. the yellowing-prevention effect, of the present invention upon ageing of the composition can be evaluated by comparing the composition according to the present invention to the same composition without the stabilising agent upon ageing of the compositions.

[0074] The degree of yellowing can be determined by both visual and instrumental grading. Visually, the difference in yellowing between items treated with different compositions can be determined by a team of expert panelists. Instrumentally, the assessment can be determined with the help of Colorimeters such as Ganz Griesser® instruments (e.g., Datacolor® Spectraflash® SF 500, Machbet White-eye® 500) or a ZEISS ELREPHO® or others which are available for

instance from Hunterlab® or Gardner®.

[0075] The stain removal performance of the present invention upon ageing of the composition can be evaluated by comparing the compositions according to the present invention to the same compositions without the stabilising agent upon ageing of the compositions. The stain removal performance can be determined on different stains like greasy stains and/or enzymatic stains visually.

[0076] Advantageously, the presence of the stabilising agents may also contribute to reduce tensile strength loss of fabrics and/or colour damage, especially in a laundry pretreatment application. Fabric safety may be evaluated by different test methods including the degree of polymerisation test method according to UNI (Ente Nazionale Italiano di Unificazione) official method UNI 8282-Determinazione della viscosità intrinseca in soluzione di cuprietilendiammina (CED).

pH

[0077] The pH of the liquid compositions according to the present invention, as is, is typically from 12 to 14 measured at 25°C. The liquid compositions of the invention have a pH of from 7.5 to 13, preferably from 8 to 12, more preferably from 8.5 to 11.5, when diluted into 1 to 500 times its weight of water. It is in this alkaline range that the optimum stability and performance of the hypohalite as well as fabric whiteness and/or safety are obtained. The pH range is suitably provided by the pH buffering component and the hypohalite bleach mentioned hereinbefore, which are alkalis. However, in addition to these components, a strong source of alkalinity may also optionally be used.

[0078] Suitable sources of alkalinity are the caustic alkalis such as sodium hydroxide, potassium hydroxide and/or lithium hydroxide, and/or the alkali metal oxides such as sodium and/or potassium oxide. A preferred strong source of alkalinity is a caustic alkali, more preferably sodium hydroxide and/or potassium hydroxide. Typical levels of such caustic alkalis, when present, are of from 0.1% to 1.5% by weight, preferably from 0.5% to 1.5% by weight of the composition.

[0079] The composition according to the invention may comprise other optional components such as other bleach-stable surfactants, organic or inorganic alkalis, builders, thickening agents, polymers, pigments, dyes, solvents, perfumes, brighteners, and mixtures thereof.

Optional surfactants

[0080] The liquid compositions of the present invention may further comprise another surfactant or a mixture thereof on top of the alkyl (alkoxy)₂₋₄ sulphate and optional co-surfactant mentioned herein before. Said other surfactants may be present in the compositions according to the present invention in amounts up to 30% by weight of the total composition, preferably of from 0.1% to 20% and more preferably of from 1% to 10%.

[0081] Surfactants for use herein include other anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof as long as they do not affect the viscosity and rheological properties of the compositions according to the present invention. Naturally, for the purpose of the invention, the additional surfactants have to be stable to the hypohalite bleach.

Optional polymers

[0082] An optional component of the compositions herein is a polymer. That polymer, has surprisingly been found to also reduce the yellowing of the fabrics treated therewith, i.e. improve whiteness, as well as improve fabric safety. Naturally, for the purpose of the invention, the polymer has to be stable to the hypohalite bleach.

[0083] Suitable polymers for use are polymers comprising monomeric units selected from the group consisting of unsaturated carboxylic acids, polycarboxylic acids, sulphonic acids, phosphonic acids and mixtures thereof. Co-polymerisation of the above monomeric units among them or with other co-monomers such as styrenesulfonic acid is also suitable.

[0084] Preferred examples of such polymers are the polymers and co-polymers of monomeric units selected from the group consisting of acrylic acid, maleic acid, vinylsulphonic acid and mixtures thereof. Also suitable for use herein are the above mentioned polymers and co-polymers which are modified in order to contain other functional groups such as aminophosphonic and/or phosphonic units. More preferred polymers are selected from the group consisting of polyacrylate polymers, co-polymers of acrylic and maleic acid, co-polymers of styrene sulphonic acid and maleic acid, and mixtures thereof, preferably modified with aminophosphonic and/or phosphonic groups.

[0085] The molecular weight for these polymers and co-polymers is preferably below 100,000, most preferably between 500 and 50,000. Most suitable polymers and co-polymers for use herein will be soluble in an amount up to 0.1 % by weight, in an aqueous composition comprising 5% by weight of sodium hypochlorite with its pH adjusted to 13 with sodium hydroxide.

[0086] Commercially available such polymers, suitable for use herein, are the polyacrylate polymers sold under the

tradename Good-Rite® from BF Goodrich, Acrysol® from Rohm & Haas, Sokalan® from BASF, Norasol® from Norso Haas. Also suitable for use herein are the co-polymers of styrene sulphonic acid and maleic acid, commercially available under the tradename Versaflex® from National Starch such as Versaflex 157, as well as Acumer® terpolymers from Rohm and Haas, in particular Acumer® 3100. Preferred commercially available polymers are the polyacrylate polymers, especially the Norasol®/polyacrylate polymers and more preferred are the polyacrylate polymer Norasol® 410N (MW 10,000) and the polyacrylate polymer modified with phosphonic groups Norasol® 440N (MW 4000) and its corresponding acid form Norasol® QR 784 (MW 4000).

[0087] A preferred polymer for use herein is a polyacrylate polymer modified with phosphonic groups commercially available under the tradename Norasol® 440N (MW 4000) and its corresponding acid form Norasol® QR 784 (MW 4000) from Norso-Haas.

[0088] Mixtures of polymers as herein described may also be used in the present invention.

[0089] Polymers herein are preferably present in low amounts, i.e. in amounts of up to 10% by weight, preferably up to 1%, more preferably from 0.001 % to 0.5% by weight, most preferably from 0.005% to 0.2% by weight of the liquid composition.

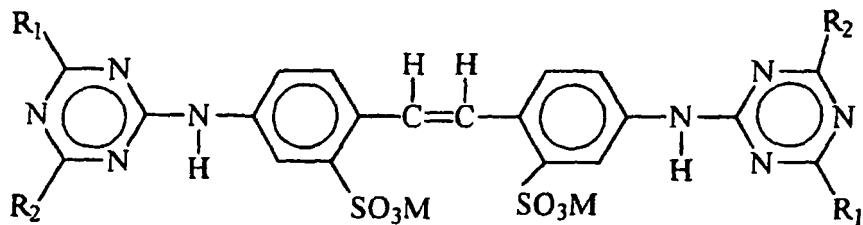
Optional brighteners

[0090] The compositions according to the present invention may also comprise a brightener or a mixture thereof as an optional ingredient. Naturally, for the purpose of the invention, the brightener has to be stable to the hypohalite bleach.

The brighteners may be desired herein to further enhance the whiteness performance of the compositions herein.

[0091] Brighteners are compounds which have the ability to fluorescent by absorbing ultraviolet wave-lengths of light and re-emitting visible light. Brighteners, also referred to as fluorescent whitening agent (FWA), have been extensively described in the art, see for instance EP-A-0 265 041, EP-A-0 322 564, EP-A-0 317 979 or "Fluorescent whitening agents" by A.K. Sarkar, published by MERROW, especially page 71-72.

[0092] Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methine-cyanines, dibenzothiophene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradník, Published by John Wiley & Sons, New York (1982). Further optical brighteners which may also be used in the present invention include naphthlimide, benzoxazole, benzofuran, benzimidazole and any mixtures thereof.


[0093] Examples of optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4,790,856. These brighteners include the PHORWHITE® series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal-UNPA®, Tinopal CBS® and Tinopal 5BM® available from Ciba-Geigy; Artic White CC® and Artic White CWD®; the 2-(4-styryl-phenyl)-2H-naphtho[1,2-d]triazoles; 4,4'-bis(1,2,3-triazol-2-yl)-stilbenes; 4,4'-bis(styryl)bisphenyls; and the aminocoumarins.

[0094] Specific examples of brighteners useful herein include 4-methyl-7-diethyl-amino coumarin; 1,2-bis(-benzimidazol-2-yl)ethylene; 1,3-diphenyl-pyrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-styryl-naphtho-[1,2-d]oxazole; 2-(stilbene-4-yl)-2H-naphtho[1,2-d]triazole; 3-phenyl-7-(isoindolinyl) coumarin; 3-methyl-7-(isoindolinyl) coumarin; 3-chloro-7-(isoindolinyl) coumarin; 4-(isoindolinyl)-4'-methylstilbene; 4-(isoindolinyl)-4'-methoxystilbene; sodium 4-(isoindolinyl)-4'-stilbenesulfonate; 4-(isoindolinyl)-4'-phenylstilbene; 4-(isoindolinyl)-3-methoxy-4'-methylstilbene; 4-(2-chloroisoindolinyl)-4'-2-methylisoindolinyl)-2,2'-stilbenedisulfonic acid; disodium 4,4'-diisoindolinyl-2,2'-stilbene disulfonate; 4,4'-diisoindolinyl-2,2'-stilbenedisulfonamide; disodium 4,4'-(7,8-dichloro-1-isoindolinyl)2,2-stilbenedisulfonate; disodium 4,4'-(7-chloro-1-isoindolinyl)2,2-stilbenedisulfonate; disodium 4,4'-(6-isopropoxy-1-isoindolinyl)2,2-stilbenedisulfonate; disodium 4,4'-(7,8-diisopropyl-1-isoindolinyl)2,2-stilbenedisulfonate; disodium 4,4'-(7-butoxy-1-isoindolinyl)2,2-stilbenedisulfonate; disodium 4,4'-(6-trifluoromethyl-1-isoindolinyl)2,2-stilbenedisulfonate; disodium 4,4'-[6-(1,4,7-trioxanonyl)-1-isoindolinyl]2,2-stilbenedisulfonate; disodium 4,4'-(7-methoxymethyl-1-isoindolinyl)2,2-stilbenedisulfonate; disodium 4,4'-(6-phenyl-1-isoindolinyl)2,2-stilbenedisulfonate; disodium 4,4'-(6-naphthyl-1-isoindolinyl)2,2-stilbenedisulfonate; disodium 4,4'-(6-methylsulfonyl-1-isoindolinyl)2,2-stilbenedisulfonate; disodium 4,4'-(7-cyano-1-isoindolinyl)2,2-stilbenedisulfonate; and disodium 4,4'-[7-(1,2,3-trihydroxypropyl)-1-isoindolinyl]2,2-stilbenedisulfonate; disodium 4-isoindolinyl-4'-ethoxy-2,2'-stilbenedisulfonate; disodium 4-isoindolinyl-4'-methoxy-2,2'-stilbenedisulfonate; disodium 4-isoindolinyl-4'-ethoxy-2,2'-stilbenedisulfonamide; disodium 4-isoindolinyl-4'-methyl-2,2'-stilbenedisulfonamide; 4,4'-bis(4-phenyl-2H-1,2,3-triazol-2-yl)-2,2'-stilbenedisulfonic acid and mixture thereof. See also U.S. Patent 3,646,015, U.S. Patent 3,346,502 and U.S. Patent 3,393,153 for further examples of brighteners useful herein.

[0095] Indeed one of the functionally equivalent derivative salts of 4,4'-bis(4-phenyl-2H-1,2,3-triazol-2-yl)-2,2'-stilbenedisulfonic acid, namely its sodium salt is available from Mobay Chemical Corporation, a subsidiary of Bayer AG under the name Phorwite® CAN. The amine salt is available from Molay under the name Phorwite® CL solution. The potassium salt is available under the name Phorwite® BHC 766.

[0096] Other specific examples of optical brighteners useful in the present invention are those having the structural

formula:

15 wherein R₁ is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R₂ is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.

[0097] When in the above formula, R₁ is anilino, R₂ is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.

[0098] When in the above formula, R₁ is anilino, R₂ is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.

[0099] When in the above formula, R₁ is anilino, R₂ is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.

[0100] Other substituted stilbene 2,2'-disulfonic acid derivatives also include 4-4'-bis (2-2' styryl sulfonate) biphenyl, commercially available from Ciba-Geigy under the trade name Brightener 49® or other hydrophilic brighteners like for example Brightener 3® or Brightener 47®, also commercially available from Ciba-Geigy.

[0101] Further specific examples of brighteners useful in the present invention include the polycyclic oxazole derivatives such as benzo-oxazole derivatives, or mixtures thereof and particularly preferred herein the benzo-oxazole derivatives. An example of such a brightener is benzoxazole,2,2'-(thiophenaldyl)bis having the following formula C18H10N2O2S, commercially available from Ciba-Geigy under the trade name Tinopal SOP®. This brightener is almost insoluble in water, i.e. it has a solubility being lower than 1 gram per liter. Another example of such a brightener is bis(sulfonybenzofuranyl)biphenyl, commercially available from Ciba-Geigy under the trade name Tinopal PLC®.

[0102] Typically the compositions according to the present invention comprise up to 1.0% by weight of the total composition of a brightener or a mixture thereof, preferably from 0.005% to 0.5%, more preferably from 0.005% to 0.3% and most preferably from 0.008% to 0.1%.

40 Process of bleaching surfaces:

[0103] In the present invention, the liquid bleaching composition of the present invention needs to be contacted with the surface to treat.

45 [0104] By "surfaces", it is meant herein any inanimate surface. These inanimate surfaces include, but are not limited to, hard-surfaces typically found in houses like kitchens, bathrooms, or in car interiors, e.g., tiles, walls, floors, chrome, glass, smooth vinyl, any plastic, piastified wood, table top, sinks, cooker tops, dishes, sanitary fittings such as sinks, showers, shower curtains, wash basins, WCs and the like, as well as fabrics including clothes, curtains, drapes, bed linens, bath linens, table cloths, sleeping bags, tents, upholstered furniture and the like, and carpets. Inanimate surfaces 50 also include household appliances including, but not limited to, refrigerators, freezers, washing machines, automatic dryers, ovens, microwave ovens, dishwashers and so on.

[0105] By "treating a surface", it is meant herein bleaching and/or disinfecting said surfaces as the compositions of the present invention comprise a hypohalite bleach and cleaning, i.e. removing various types of stains from the surfaces, as said compositions comprise an alkyl (alkoxy)₂₋₄ sulphate and optionally a co-surfactant.

55 [0106] Thus, the present invention also encompasses a process of treating (e.g. bleaching) a fabric, as the inanimate surface. In such a process a composition according to the present invention is contacted with the fabrics to be treated.

[0107] This can be done either in a so-called "pretreatment mode", where a liquid bleaching composition, as defined herein, is applied neat onto said fabrics before the fabrics are rinsed, or washed then rinsed, or in a "soaking mode"

where a liquid bleaching composition, as defined herein, is first diluted in an aqueous bath and the fabrics are immersed and soaked in the bath, before they are rinsed, or in a "through the wash mode", where a liquid bleaching composition, as defined herein, is added on top of a wash liquor formed by dissolution or dispersion of a typical laundry detergent. It is also essential in both cases, that the fabrics be rinsed after they have been contacted with said composition, before said composition has completely dried off.

[0108] The processes of treating surfaces fabrics according to the present invention, especially fabrics, delivers effective whiteness performance and/or effective stain removal performance upon ageing of the compositions.

[0109] The compositions according to the present invention are preferably contacted to fabrics in a liquid form. Indeed, by "in a liquid form", it is meant herein the liquid compositions according to the present invention per se in neat or diluted form.

[0110] The compositions according to the present invention are typically used in diluted form in a laundry operation. By "in diluted form", it is meant herein that the compositions for the bleaching of fabrics according to the present invention may be diluted by the user, preferably with water. Such dilution may occur for instance in hand laundry applications as well as by other means such as in a washing machine. Said compositions can be diluted up to 500 times, preferably from 5 to 200 times and more preferably from 10 to 80 times.

[0111] More specifically, the process of bleaching fabrics according to the present invention comprises the steps of first contacting said fabrics with a bleaching composition according to the present invention, in its diluted form, then allowing said fabrics to remain in contact with said composition, for a period of time sufficient to bleach said fabrics, typically 1 to 60 minutes, preferably 5 to 30 minutes, then rinsing said fabrics with water. If said fabrics are to be washed, i.e., with a conventional composition comprising at least one surface active agent, said washing may be conducted together with the bleaching of said fabrics by contacting said fabrics at the same time with a bleaching composition according to the present invention and said detergent composition, or said washing may be conducted before or after that said fabrics have been bleached. Accordingly, said process according to the present invention allows to bleach fabrics and optionally to wash fabrics with a detergent composition comprising at least one surface active agent before the step of contacting said fabrics with said bleaching composition and/or in the step where said fabrics are contacted with said bleaching composition and/or after the step where said fabrics are contacted with the bleaching composition and before the rinsing step and/or after the rinsing step.

[0112] In another embodiment of the present invention the process of bleaching fabrics comprises the step of contacting fabrics with a liquid bleaching composition according to the present invention, in its neat form, of allowing said fabrics to remain in contact with said bleaching composition for a period of time sufficient to bleach said fabrics, typically 5 seconds to 30 minutes, preferably 1 minute to 10 minutes and then rinsing said fabrics with water. If said fabrics are to be washed, i.e., with a conventional composition comprising at least one surface active agent, said washing may be conducted before or after that said fabrics have been bleached. In the embodiment of the present invention wherein the liquid bleaching composition of the present invention, is contacted to the fabrics in its neat form, it is preferred that the level of hypohalite bleach, is from 0.01% to 5%, preferably from 0.1% to 3.5%, more preferably from 0.2% to 2% and most preferably from 0.2% to 1%. Advantageously, the present invention provides liquid hypohalite bleach-containing compositions that may be applied neat onto a fabric to bleach, despite a standing prejudice against using hypochlorite-containing compositions neat on fabrics.

[0113] It is preferred to perform the bleaching process herein before said fabrics are washed. Indeed, it has been observed that bleaching said fabrics with the compositions according to the present invention (diluted and/or neat bleaching processes) prior to washing them with a detergent composition provides superior whiteness and stain removal with less energy and detergent than if said fabrics are washed first, then bleached.

[0114] Alternatively instead of following the neat bleaching process as described herein above (pretreater application) by a rinsing step with water and/or a conventional washing step with a liquid or powder conventional detergent, the bleaching pre-treatment operation may also be followed by the diluted bleaching process as described herein before either in bucket (hand operation) or in a washing machine.

[0115] In another embodiment the present invention also encompasses a process of treating a hard-surface, as the inanimate surface. In such a process a composition, as defined herein, is contacted with the hard-surfaces to be treated. Thus, the present invention also encompasses a process of treating a hard-surface with a composition, as defined herein, wherein said process comprises the step of applying said composition to said hard-surface, preferably only soiled portions thereof, and optionally rinsing said hard-surface.

[0116] In the process of treating hard-surfaces according to the present invention the composition, as defined herein, may be applied to the surface to be treated in its neat form or in its diluted form typically up to 200 times their weight of water, preferably into 80 to 2 times their weight of water, and more preferably 60 to 2 times.

[0117] When used as hard surfaces bleaching/disinfecting compositions the compositions of the present invention are easy to rinse and provide good shine characteristics on the treated surfaces.

[0118] By "hard-surfaces", it is understood any hard-surfaces as mentioned herein before as well as dishes.

Examples

[0119] The invention is illustrated in the following non-limiting examples, in which all percentages are on a weight basis unless otherwise stated.

Composition (weight %)		I	II	III	IV					
Sodium hypochlorite	4.95	4.95	3.50	3.50						
Sodium hydroxide*	1.00	1.00	1.25	1.25						
Sodium carbonate	1.25	1.25	3.00	3.00						
Sodium silicate	0.50	0.50	0.50	0.50						
Na C ₁₂ /C ₁₄ E3S	10.00	5.00	7.00	6.00						
NaC ₈ S	-	-	-	-						
m-methoxy benzoate	1.0	1.0	1.0	1.0						
Typical initial Viscosity** after manufacturing (cps)	1000	1000	1000	460						
Water and minor	up to 100%									
Composition (weight %)		V	VI	VII	VIII	IX				
Sodium hypochlorite	3.50	3.50	3.50	3.50	3.50					
Sodium hydroxide*	1.25	1.25	1.25	1.25	1.25					
Sodium carbonate	3.00	3.00	3.00	3.00	3.00					
Sodium silicate	0.50	0.50	0.50	0.50	0.50					
Na C ₁₂ /C ₁₄ E3S	3.50	6.00	7.00	7.00	-					
Na C ₁₂ /C ₁₄ E2S	-	-	-	-	7.0					
NaC ₈ S	-	0.10	-	-	-					
Betaine	-	-	0.50	-	-					
Na C ₁₂ /C ₁₄ E1S	-	-	-	1.0	-					
LAS	3.50	-	-	-	-					
m-methoxy benzoate	1.0	1.0	1.0	.1.0	-					
Typical initial Viscosity** after manufacturing (cps)	60	240	1200	50	820					
Water and minor	up to 100%									
* added NaOH										
** the viscosity of the compositions above was measured with a Carri-mad CSL2-100® rheometer at the following viscosity parameters : angle : 1°58, gap : 60, diameter: 4.0 cm, inner : 63.60, temperature of 25°C and a shear rate of 30 1/sec.										
Na C ₁₂ -C ₁₄ E3S is an alkyl C _{12/14} (ethoxy)3 sulphate commercially available from Rhone Poulenc and Albright & Wilson.										
Na C ₁₂ -C ₁₄ E2S is an alkyl C _{12/14} (ethoxy)2 sulphate commercially available from Rhone Poulenc.										
Na C ₁₂ -C ₁₄ E1 S is an alkyl C _{12/14} (ethoxy)1 sulphate commercially available from Rhone Poulenc.										
NaC ₈ S is sodium C ₈ alkyl sulphate.										
Betaine is lauryl dimethyl amine betaine from Albright & Wilson.										
LAS is sodium paraffin benzene sulphonate from Albright Wilson.										

[0120] Compositions I-VIII above are rheologically stable upon prolonged periods of storage, e.g. they do not undergo more than 30% loss of initial viscosity after 10 days of storage at 50°C. Composition IX is a comparative example.

[0121] Also compositions I-VIII deliver effective stain removal performance as well as effective whiteness performance

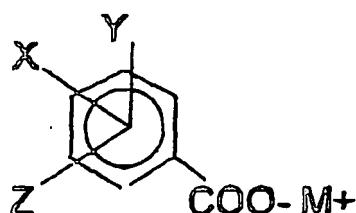
when used in a laundry application in their neat or diluted form, e.g. 200 times their weight of water, after prolonged periods of storage, e.g., after 3 months of storage at room temperature (25°C) after their manufacturing.

[0122] Compositions I-VIII also deliver effective cleaning performance when used in any household cleaning application.

5

Claims

1. A liquid thickened bleaching composition comprising:


10

- a hypohalite bleach,
- an alkyl (alkoxy)_n sulphate surfactant, wherein n is from 2 to 4,
- optionaiiy a co-surfactant,
- a pH buffering component in an amount of 0.5% to 9% by weight,
- and from 0.01 % to 10% by weight of the total composition of a stabilising agent,

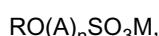
15

wherein said stabilising agent is radical scavenger alone or together with a chelating agent and wherein said radical scavenger has the following formula:

20

25

30 wherein each X, Y, and Z are -H, -COO-M⁺, -Cl, -Br, -SO₃-M⁺, -NO₂, -OCH₃, or a C₁ to C₁₀ primary and secondary alkyl groups and M is H or an alkali metal, or mixtures thereof.


2. A composition according to any of the preceding claims, wherein said hypohalite bleach is an alkali metal sodium hypochlorite.

35

3. A composition according to any one of the preceding claims, wherein said hypohalite, based on active halide, is present in an amount of from 0.1% to 20% by weight, preferably from 0.25% to 8% by weight of the total liquid composition.

40

4. A composition according to any of the preceding claims, wherein said alkyl (alkoxy)₂₋₄ sulphate surfactant is water-soluble salt or acid of the formula

45

wherein

- R is a substituted or unsubstituted C₄-C₂₄ linear or branched alkyl group having a C₄-C₂₄ alkyl component, preferably a C₈-C₂₀ linear or branched alkyl, more preferably C₈-C₁₈ linear or branched alkyl, most preferably C₁₀-C₁₆ linear or branched alkyl,

50

- A is an ethoxy or propoxy unit,

- n is an integer from 2 to 4, preferably 2 or 3, more preferably 3,

- and M is H or a cation, preferably a metal cation, ammonium or substituted-ammonium cation, or mixture thereof.

55

5. A composition according to any one of the preceding claims, wherein the alkyl (alkoxy)₂₋₄ sulphate surfactant or mixture thereof, is present in an amount of from 0.1% to 20% by weight, more preferably from 2% to 10% by weight, most preferably from 3% to 8% by weight of the total composition.

6. A composition according to any of the preceding claims, wherein said pH buffering component is selected from the

group consisting of alkali metal salts of carbonates, polycarbonates, sesquicarbonates, silicates, polysilicates, boron salt, phosphates, stannates, alluminates, and mixtures thereof.

7. A composition according to any of the preceding claims wherein said a pH buffering component or mixture thereof is present in an amount of 0.5% to 5% by weight of the total composition and preferably of 0.6% to 3% by weight.

8. A composition according to any of the preceding claims wherein said radical scavenger is benzoic acid, toluic acid, 3-nitro benzoic acid, 2 n-octyl benzoic acid, anisic acid or mixtures thereof. Most preferred herein are benzoic acid, methoxy benzoic acid and/or 3-nitrobenzoic acid.

10 9. A composition according to any of the preceding claims, wherein said stabilising agent is a chelating agent, preferably a phosphonate chelating agent, phosphate chelating agent, polyfunctionally-substituted aromatic chelating agent, ethylenediamine N,N'- disuccinic acids, or mixtures thereof, more preferably sodium pyrophosphate, sodium tripolyphosphate, and/or phytic acid.

15 10. A composition according to any one of the preceding claims, wherein the stabilising agent or mixture thereof, is present in an amount of from 0.01% to 10% by weight of the total composition, preferably from 0.01 % to 8% by weight, more preferably from 0.1% to 5%, and most preferably from 0.2% to 3%.

20 11. A composition according to any of the preceding claims, wherein said co-surfactant is typically selected from the group consisting of alkyl sulphates, alkyl aryl sulphonates, alkyl (alkoxy)_n sulphates wherein n is 1 or higher than 4, zwitterionic surfactants, cationic surfactants and mixture thereof, typically in amounts of from 0.01% to 10% by weight of the total composition, preferably of from 0.1% to 5% and more preferably of from 1% to 2.5%.

25 12. A composition according to any of the preceding claims, wherein said composition further comprises a strong source of alkalinity.

30 13. A composition according to any of the preceding claims, wherein said composition further comprises an optional ingredient selected from the group consisting of other bleach-stable surfactants, builders, polymers, pigments, dyes, solvents, perfumes, brighteners and mixtures thereof.

35 14. A composition according to any of the preceding claims, which has a viscosity of from 10 cps to 2000 cps, preferably from 25 cps to 1500 cps, and more preferably from 50 cps to 1200 cps, when measured with a Carri-med CSL2-100® rheometer at an angle : 1°58, gap : 60, diameter : 4.0 cm, iner : 63.60, temperature of 25°C and a shear rate of 30 1/sec.

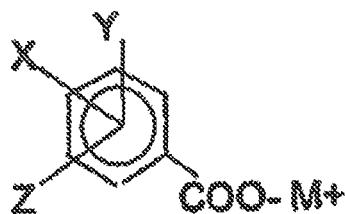
15. A process of bleaching fabrics which comprises the steps of:

40 - contacting said fabrics with a liquid bleaching composition according to any of the preceding claims, in its diluted or neat form,
 - allowing said fabrics to remain in contact with said bleaching composition for a period of time sufficient to bleach said fabrics,
 - then rinsing said fabrics with water.

45 16. A process of bleaching fabrics according to claim 15 wherein the bleaching composition is diluted with water at a dilution level up to 500 times its weight, preferably from 5 to 200 times and more preferably from 10 to 80 times.

50 17. A process according to any of the claims 15 or 16 wherein said fabrics are washed with a detergent composition comprising at least one surface active agent before the step of contacting said fabrics with said bleaching composition and/or in the step where said fabrics are contacted with said bleaching composition in its diluted form and/or or after the step where said fabrics are contacted with the bleaching composition and before the rinsing step and/or after the rinsing step.

55 **Patentansprüche**

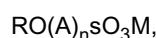

1. Flüssige verdickte Bleichmittelzusammensetzung, umfassend:

5 - ein Hypohalogenitbleichmittel,
 - ein Alkyl(alkoxy)_nsulfat-Tensid, worin n 2 bis 4 ist,
 - wahlweise ein Cotensid,
 - einen pH-Pufferbestandteil in einer Menge von 0,5 Gew.-% bis 9 Gew.-%,
 - und zu 0,01 Gew.-% bis 10 Gew.-% der gesamten Zusammensetzung ein Stabilisierungsmittel,

wobei das Stabilisierungsmittel ein Radikalfänger alleine oder zusammen mit einem Chelierungsmittel ist und wobei der Radikalfänger die folgende Formel hat:

10

15



20 wobei jedes von X, Y und Z -H, COO-M⁺, -Cl, -Br, -SO₃-M⁺, -NO₂, -OCH₃, oder eine C₁- bis C₁₀-Primär- und Sekundäralkylgruppe ist und M H oder ein Alkalimetall, oder Mischungen davon, ist.

25 2. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Hypohalogenitbleichmittel ein Alkalimetallnatriumhypochlorit ist.

3. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Hypohalogenit, auf der Basis von aktivem Halogenid, in einer Menge von 0,1 Gew.-% bis 20 Gew.-%, vorzugsweise von 0,25 Gew.-% bis 8 Gew.-% der gesamten flüssigen Zusammensetzung vorhanden ist.

30 4. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Alkyl(alkoxy)₂₋₄sulfat-Tensid wasserlösliches Salz oder Säure folgender Formel ist

35 worin

- R eine substituierte oder unsubstituierte, lineare oder verzweigte C₄-C₂₄-Alkylgruppe mit einem C₄-C₂₄-Alkylbestandteil ist, vorzugsweise ein lineares oder verzweigtes C₈-C₂₀-Alkyl, bevorzugter lineares oder verzweigtes C₈-C₁₈-Alkyl, am meisten bevorzugt lineares oder verzweigtes C₁₀-C₁₆-Alkyl,

- A eine Ethoxy- oder Propoxyeinheit ist,
 - n eine ganze Zahl von 2 bis 4, vorzugsweise 2 oder 3, bevorzugter 3 ist,
 - und M für H oder ein Kation, vorzugsweise ein Metallkation, Ammonium- oder substituiertes Ammoniumkation oder für Mischungen davon steht.

45 5. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Alkyl(alkoxy)₂₋₄sulfat-Tensid oder die Mischung davon in einer Menge von 0,1 Gew.-% bis 20 Gew.-%, bevorzugter von 2 Gew.-% bis 10 Gew.-%, am meisten bevorzugt von 3 Gew.-% bis 8 Gew.-% der gesamten Zusammensetzung vorhanden ist.

50 6. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei der pH-Pufferbestandteil ausgewählt ist aus der Gruppe bestehend aus Alkalimetallsalzen von Carbonaten, Polycarbonaten, Sesquicarbonaten, Silicaten, Polysilicaten, Borsalz, Phosphaten, Stannaten, Aluminaten und Mischungen davon.

55 7. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei ein pH-Pufferbestandteil oder eine Mischung davon in einer Menge von 0,5 Gew.-% bis 5 Gew.-% der gesamten Zusammensetzung und vorzugsweise von 0,6 Gew.-% bis 3 Gew.-% vorhanden ist.

8. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei der Radikalfänger Benzoesäure, Toluylsäure, 3-Nitrobenzoesäure, 2-n-Octyl-Benzoesäure, Anissäure oder Mischungen davon ist. Am meisten bevorzugt hierin

sind Benzoësäure, Methoxybenzoësäure und/oder 3-Nitrobenzoësäure.

9. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Stabilisierungsmittel ein Chelierungsmittel ist, vorzugsweise ein Phosphonat-Chelierungsmittel, Phosphat-Chelierungsmittel, polyfunktionell substituierter aromatisches Chelierungsmittel, Ethyldiamin-N,N'-dibernsteinsäure oder Mischungen davon, bevorzugter Natrium-pyrophosphat, Natriumtripolyphosphat und/oder Phytinsäure.

5 10. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Stabilisierungsmittel oder die Mischung davon in einer Menge von 0,01 % bis 10 % bezogen auf das Gewicht der gesamten Zusammensetzung, vorzugsweise von 0,01 Gew.-% bis 8 Gew.-%, bevorzugter von 0,1 Gew.-% bis 5 Gew.-% und am meisten bevorzugt von 0,2 Gew.-% bis 3 Gew.-% vorhanden ist.

15 11. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Cotensid in der Regel ausgewählt ist aus der Gruppe bestehend aus Alkylsulfaten, Alkylarylsulfonaten, Alkyl(alkoxy)_n-sulfaten, worin n 1 oder höher als 4 ist, zwitterionischen Tensiden, kationischen Tensiden und Mischungen davon, in der Regel in Mengen von 0,01 Gew.-% bis 10 Gew.-% der gesamten Zusammensetzung, vorzugsweise von 0,1 Gew.-% bis 5 Gew.-% und bevorzugter von 1 Gew.-% bis 2,5 Gew.-%.

20 12. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei die Zusammensetzung ferner eine starke Alkalinitätsquelle umfasst.

25 13. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei die Zusammensetzung ferner einen fakultativen Bestandteil, ausgewählt aus der Gruppe bestehend aus anderen bleichmittelstabilen Tensiden, Buildern, Polymeren, Pigmenten, Farbstoffen, Lösungsmitteln, Duftstoffen, Aufhellern und Mischungen davon, umfasst.

30 14. Zusammensetzung nach einem der vorstehenden Ansprüche, die eine Viskosität von 10 cps bis 2000 cps, vorzugsweise von 25 cps bis 1500 cps, und am meisten bevorzugt von 50 cps bis 1200 cps aufweist, gemessen mit einem Carrimed CSL2-100®-Rheometer bei einem Winkel: 1°58, Spalt: 60, Durchmesser: 4,0 cm, iner: 63,60, Temperatur 25 °C und Scherrate 30 1/s.

35 15. Verfahren zum Bleichen von Stoffen, das die folgenden Schritte umfasst:

- In-Kontakt-Bringen der Stoffe mit einer flüssigen Bleichmittelzusammensetzung nach einem der vorstehenden Ansprüche in ihrer verdünnten oder unverdünnten Form,
- In-Kontakt-Lassen der Stoffe für einen zum Bleichen der Stoffe ausreichenden Zeitraum mit der Bleichmittelzusammensetzung,
- anschließendes Ausspülen der Stoffe mit Wasser.

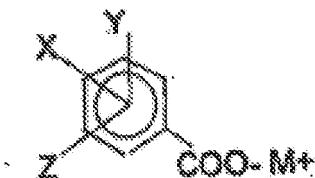
40 16. Verfahren nach Anspruch 15 zum Bleichen von Stoffen, wobei die Bleichmittelzusammensetzung in einem Verdünnungsgrad bis zum 500-fachen ihres Gewichts, vorzugsweise vom 5- bis 200-fachen und bevorzugter vom 10- bis 80-fachen mit Wasser verdünnt ist

45 17. Verfahren nach einem der Ansprüche 15 oder 16, wobei die Stoffe vor dem Schritt des In-Kontakt-Bringens der Stoffe mit der Bleichmittelzusammensetzung und/oder während des Schrittes, in dem die Stoffe mit der Bleichmittelzusammensetzung in ihrer verdünnten Form in Kontakt gebracht werden, und/oder nach dem Schritt, in dem die Stoffe mit der Bleichmittelzusammensetzung in Kontakt gebracht werden und vor dem Ausspülungsschritt und/oder nach dem Ausspülungsschritt mit einer Waschmittelzusammensetzung, die mindestens ein oberflächenaktives Mittel umfasst, gewaschen werden.

50 **Revendications**

1. Composition de blanchiment liquide épaisse comprenant :

55

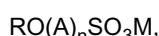

- un agent de blanchiment hypohalite,
- un agent tensioactif alkyl (alcoxy)_n sulfate, où n va de 2 à 4,
- facultativement un co-tensioactif,
- un composant tampon de pH en une quantité allant de 0,5 % à 9 % en poids,

- et de 0,01 % à 10 % en poids de la composition totale d'un agent stabilisant,

dans laquelle ledit agent stabilisant est un agent anti-radicaux libres seul ou conjointement avec un agent chélatant et dans laquelle ledit agent anti-radicaux libres a la formule suivante :

5

10



15 dans laquelle chaque X, Y, et Z est -H, -COO-M⁺, -Cl, -Br, -SO₃-M⁺, -NO₂, -OCH₃, ou un groupe alkyle primaire et secondaire en C₁ à C₁₀ et M est H ou un métal alcalin, ou leurs mélanges.

20 2. Composition, selon l'une quelconque des revendications précédentes, dans laquelle ledit agent de blanchiment hypohalite est un hypochlorite du métal alcalin sodium.

25 3. Composition, selon l'une quelconque des revendications précédentes, dans laquelle ledit hypohalite, sur base de l'halogénure actif, est présent en une quantité allant de 0,1 % à 20 % en poids, de préférence de 0,25 % à 8 % en poids de la composition liquide totale.

30 4. Composition, selon l'une quelconque des revendications précédentes, dans laquelle ledit agent tensioactif alkyl (alcoxy)₂₋₄ sulfate est un sel ou un acide hydrosoluble de formule

35 dans laquelle

- R est un groupe alkyle linéaire ou ramifié substitué ou non substitué en C₄ à C₂₄ ayant un composant alkyle en C₄ à C₂₄, de préférence un alkyle linéaire ou ramifié en C₈ à C₂₀, plus préféablement un alkyle linéaire ou ramifié en C₈ à C₁₈, le plus préféablement un alkyle linéaire ou ramifié en C₁₀ à C₁₆,

35 - A est un motif éthoxy ou propoxy,
- n est un nombre entier allant de 2 à 4, de préférence 2 ou 3, plus préféablement 3,
- et M est H ou un cation, de préférence un cation métallique, un cation ammonium ou ammonium substitué, ou un mélange de ceux-ci.

40 5. Composition, selon l'une quelconque des revendications précédentes, dans laquelle l'agent tensioactif alkyl (alcoxy)₂₋₄ sulfate ou son mélange est présent en une quantité allant de 0,1 % à 20 % en poids, plus préféablement de 2 % à 10 % en poids, le plus préféablement de 3 % à 8 % en poids de la composition totale.

45 6. Composition selon l'une quelconque des revendications précédentes, dans laquelle ledit composant tampon de pH est choisi dans le groupe constitué de sels de métaux alcalins de carbonates, de polycarbonates, de sesquicarbonates, de silicates, de polysilicates, de sel de bore, de phosphates, de stannates, d'aluminates, et leurs mélanges.

50 7. Composition selon l'une quelconque des revendications précédentes, dans laquelle ledit composant tampon de pH ou mélange de celui-ci est présent en une quantité de 0,5 % à 5 % en poids de la composition totale et de préférence de 0,6 % à 3 % en poids.

55 8. Composition selon l'une quelconque des revendications précédentes, dans laquelle ledit agent anti-radicaux libres est l'acide benzoïque, l'acide toluique, l'acide 3-nitro benzoïque, l'acide 2-n-octyl benzoïque, l'acide anisique ou leurs mélanges. Les plus préférés ici sont l'acide benzoïque, l'acide méthoxy benzoïque et/ou l'acide 3-nitrobenzoïque.

9. Composition selon l'une quelconque des revendications précédentes, dans laquelle ledit agent stabilisant est un agent chélatant, de préférence un agent chélatant phosphonate, un agent chélatant phosphate, un agent chélatant

aromatique polyfonctionnel substitué, des acides éthylène-diamine N,N'-disucciniques, ou leurs mélanges, plus préféablement du pyrophosphate de sodium, du tripolyphosphate de sodium, et/ou de l'acide phytique.

5 10. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'agent stabilisant ou mélange de celui-ci, est présent en une quantité de 0,01 % à 10 % en poids de la composition totale, de préférence de 0,01 % à 8 % en poids, plus préféablement de 0,1 % à 5 %, et le plus préféablement de 0,2 % à 3 %.

10 11. Composition, selon l'une quelconque des revendications précédentes, dans laquelle ledit co-tensioactif est typiquement choisi dans le groupe constitué par des alkyles sulfates, des alkylaryl sulfonates, des alkyl (alcoxy)_n sulfates dans lesquels n est 1 ou plus de 4, des agents tensioactifs zwittérioniques, des agents tensioactifs cationiques et leur mélange, typiquement en des quantités allant de 0,01 % à 10 % en poids de la composition totale, de préférence de 0,1 % à 5 % et plus préféablement de 1 % à 2,5 %.

15 12. Composition, selon l'une quelconque des revendications précédentes, où ladite composition comprend, en outre, une puissante source d'alcalinité.

20 13. Composition selon l'une quelconque des revendications précédentes, où ladite composition comprend, en outre, un ingrédient facultatif choisi parmi le groupe constitué d'autres agents tensioactifs stables aux agents de blanchiment, d'adjutants, de polymères, de pigments, de teintures, de solvants, de parfums, d'azurants et leurs mélanges.

25 14. Composition selon l'une quelconque des revendications précédentes, qui a une viscosité allant de 10 cP à 2000 cP, de préférence de 25 cP à 1500 cP, et plus préféablement de 50 cP à 1200 cP, lorsqu'on mesure avec un rhéomètre Carrimed CSL2-100® à un angle : 1°58, écartement : 60, diamètre : 4,0 cm, inertie : 63,60, température de 25 °C et une vitesse de cisaillement de 30 1/sec.

15. Procédé de blanchiment des tissus qui comprend les étapes consistant à :

- mettre en contact lesdits tissus avec une composition de blanchiment liquide selon l'une quelconque des revendications précédentes, sous sa forme diluée ou pure,
- laisser lesdits tissus en contact avec ladite composition de blanchiment pendant un laps de temps suffisant pour blanchir lesdits tissus,
- puis, rincer lesdits tissus avec de l'eau.

35 16. Procédé de blanchiment des tissus selon la revendication 15, dans lequel ladite composition de blanchiment est diluée avec de l'eau à un taux de dilution allant jusqu'à 500 fois son poids, de préférence de 5 à 200 fois et plus préféablement de 10 à 80 fois.

40 17. Procédé, selon l'une quelconque des revendications 15 ou 16, dans lequel lesdits tissus sont lavés avec une composition détergente comprenant au moins un agent tensioactif avant l'étape de mise en contact desdits tissus avec ladite composition de blanchiment et/ou au cours de l'étape où lesdits tissus sont mis en contact avec ladite composition de blanchiment sous sa forme diluée et/ou après l'étape où lesdits tissus sont mis en contact avec ladite composition de blanchiment et avant l'étape de rinçage et/ou après l'étape de rinçage.

45

50

55

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 97870041 A [0012]
- EP 0812904 A [0013]
- EP 0834549 A [0013]
- US 5034105 A [0014]
- US 5279758 A [0014]
- EP 447261 A [0014]
- EP 340371 A [0014]
- WO 9308247 A [0014]
- US 2082275 A [0039]
- US 2702279 A [0039]
- US 2255082 A [0039]
- US 3812044 A [0062]
- US 4704233 A [0063]
- EP 0265041 A [0091]
- EP 0322564 A [0091]
- EP 0317979 A [0091]
- US 4790856 A [0093]
- US 3646015 A [0094]
- US 3346502 A [0094]
- US 3393153 A [0094]