Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 0 916 456 A2**

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:19.05.1999 Patentblatt 1999/20

(51) Int Cl.6: **B25F 5/02**, B24B 23/04

(21) Anmeldenummer: 99103025.5

(22) Anmeldetag: 26.10.1996

(84) Benannte Vertragsstaaten:

DE GB IT NL

Benannte Erstreckungsstaaten:

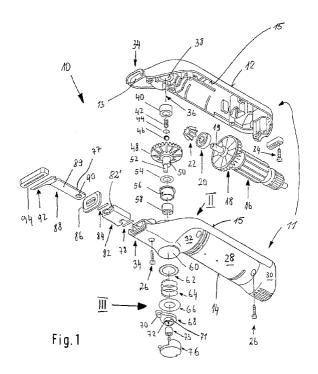
AL LT LV RO SI

(30) Priorität: 19.12.1995 DE 19547332

(62) Dokumentnummer(n) der früheren Anmeldung(en) nach Art. 76 EPÜ: 96934436.5 / 0 868 256

(71) Anmelder: ROBERT BOSCH GMBH 70442 Stuttgart (DE)

- (72) Erfinder:
 - Wuensch, Steffen
 71088 Holzgerlingen (DE)
 - Stierle, Peter 71111 Waldenbuch (DE)
 - Fuchs, Rudolf
 73765 Neuhausen (DE)
 - Mueller, Joachim 70597 Stuttgart (DE)


Bemerkungen:

Diese Anmeldung ist am 16 - 02 - 1999 als Teilanmeldung zu der unter INID-Kode 62 erwähnten Anmeldung eingereicht worden.

(54) Elektrohandwerkzeugmaschine

(57) Die Erfindung betrifft eine Handwerkzeugmaschine mit einem aus längsgeteilten Schalen (12, 14) bestehenden Gehäuse (11), das ein Winkelgetriebe mit einer beidenends gelagerten Abtriebswelle (50) aufnimmt, wird verformungsstabiler als bisher bekannte

Handwerkzeugmaschinen in Schalenbauweise, dadurch daß das Gehäuse (11) aus zwei mit in Arbeitsposition waagerecht verlaufender Teilungsebene zusammengesetzten Gehäuseschalen (12, 14) gebildet wird, wobei die Abtriebswelle (50) in beiden Gehäuseschalen (12, 14) in je einem Lager (40, drehbar gelagert ist.

Beschreibung

Stand der Technik

[0001] Die Erfindung geht von einer Elektrohandwerkzeugmaschine nach dem Oberbegriff des Anspruchs 1 aus.

[0002] Durch die DE-OS 42 35 278 ist eine gattungsgemäße Handwerkzeugmaschine bekannt, deren feilenartiges Einsatzwerkzeug durch eine einen Exzenter tragende Abtriebswelle über einen Mitnehmer hin- und hergehend angetrieben wird. Die Abtriebswelle wird von einem Elektromotor über ein Winkelgetriebe in Bewegung gesetzt, wobei die etwa um 90° gegenüber der Motorwelle abgewinkelte Abtriebswelle keine Justiermittel zum Einstellen des Winkelgetriebespiels, d.h. des Spiels der Abtriebswelle gegenüber der Motorwelle bzw. des Axialspiels der Abtriebswelle gegenüber dem Gehäuse besitzt. Das obere Ende der Abtriebswelle wird im oberen Bereich des Getriebegehäuses von einem axiale und radiale Kräfte aufnehmenden Wälzlager und das untere Wellenende im unteren Bereich des Getriebegehäuses von einem Nadellager aufgenommen. Es sind keine Mittel zum Justieren/Nachstellen des Axialspiels der Abtriebswelle vorgesehen, die ohne Demontage von außen einstellbar sind. Falls das Axialspiel zu groß geworden ist, ist ein erheblicher Meß-, Justierund Montageaufwand zur Widerherstellung des ursprünglichen minimalen Axialspiels nötig. Um das minimale Spiel möglichst gering zu halten bzw. lange zu sichern, müssen die Gehäuse-, die Getriebeteile und die Abtriebswelle sehr maßgenau und damit verhältnismä-Big kostenaufwendig hergestellt werden.

[0003] Außerdem verläuft die Teilungsebene des Gehäuses, wie bisher bei Handwerkzeugmaschinen üblich, in Arbeitsstellung senkrecht und eben, wobei zumindest eine Lagerstelle der Abtriebswelle im Bereich der Teilungsebene liegt, d.h. daß der Lagersitz ebenfalls geteilt ist. Dadurch können die vom Einsatzwerkzeug auf das Gehäuse übertragenen Kräfte zu einer Verformung der Gehäusekanten im Bereich der Teilungsebene führen. Dies wiederum kann die Lagersitze der Abtriebswelle verformen und damit die Getriebefunktion stören.

[0004] Die Spannmittel für das Werkzeug, insbesondere Einsatzwerkzeug, sind von außen über Bedienmittel in die Spann- und Lösestellung bewegbar, müssen aber auch der Bewegung des Mitnehmers und des Werkzeugs folgen können. Dadurch sind die Spannmittel zum Kuppeln des Einsatzwerkzeugs mit dem Mitnehmer verhältnismäßig aufwendig ausgestaltet.

Vorteile der Erfindung

[0005] Die erfindungsgemäße Elektrohandwerkzeugmaschine mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, daß die Abtriebswelle in bezug auf die Antriebswelle und gegenüber dem Gehäuse optimal eingestellt werden kann. Damit ist ein wirksamer Toleranzausgleich geschaffen, der die Verwendung grob tolerierter, kostengünstig herstellbarer Teile für das Gehäuse und das Getriebe ermöglicht.

[0006] Weitere Vorteile der Erfindung ergeben sich beispielsweise durch die Merkmale der abhängigen Ansprüche, z.B. dadurch, daß ein einfaches Stellmittel geschaffen wird, das als, insbesondere mit einem Steilgewinde, im Gehäuse axial verstellbare Lagerbuchse ausgestaltet ist und daß die Lagerbuchse an der Unterseite eines oberen, radialen Bundes mindestens einen Ringkeil trägt, dem ein gehäuseseitiger Gegen-Ringkeil als Abstützfläche zugeordnet ist.

[0007] Das Stellmittel ist gegen ungewolltes Verstellen mit einer Verdrehsicherung gegenüber dem Gehäuse lagesicherbar, wobei die Verdrehsicherung in besonders einfacher Ausführung aus einem außenverzahnten Klemmring besteht, der innen mit einem Zweiflach einen Gegenzweiflach auf der unteren Außenseite der Lagerbuchse von der dem Bund bzw. dem Ringkeil zugewandten Seite her übergreift.

[0008] Dadurch, daß sich eine Druckfeder an der als Justierring ausgebildeten Verdrehsicherung abstützt und diese gegenüber der Lagerbuchse bzw. dem Gehäuse festhält, ist das Stellmittel besonders verschleißsicher. Außerdem wird die Drucktaste zuverlässig in ihre Ausgangsposition zurückgestellt, wenn sie losgelassen wird bzw. wenn das Werkzeug gespannt ist

[0009] Die lösbare Anordnung der Verdrehsicherung auf einer, insbesondere werkzeugzugewandten, von außen her zugänglichen Seite ermöglicht das Einstellen des Axialspiels der Abtriebswelle ohne Demontage der Handwerkzeugmaschine.

[0010] Dadurch, daß sich die werkzeugferne Seite der Abtriebswelle axial federnd gegenüber dem Gehäuse abstützt, ist deren Axialspiel über einen großen Toleranzbereich elastisch ausgleichbar.

[0011] Die Abstützung ist einfach und kostengünstig dadurch, daß sich die Abtriebswelle über eine federnd gelagerte, axialverschiebliche Kugel gegenüber dem Gehäuse abstützt und daß in der oberen Gehäuseschale eine Druckfeder angeordnet ist, die einends einen gehäuseseitigen Dorn und andernends einen eine Stützscheibe tragenden Zapfen umgreift und sich über die Stützscheibe gegenüber der Kugel abstützt, die in einer stirnseitigen Ausnehmung im oberen Ende der Abtriebswelle sitzt und über den Rand der Ausnehmung hinausragt.

[0012] Die Lagerstelle in der oberen Gehäuseschale kann Schieflagen der Abtriebswelle dadurch ausgleichen, daß ein ringartiges Gleitlager zur Lagerung des oberen Endes der Abtriebswelle angeordnet ist, dessen Lauffläche konisch ausgestaltet ist. Das Gleitlager gleicht Schieflagen der Abtriebswelle besonders wirksam aus, dadurch, daß die Lauffläche des Gleitlagers in ihrem oberen Bereich über eine Länge von etwa 2 bis 3 mm zylindrisch verläuft und sich nach unten daran an-

schließend in einen sich unter einem Winkel von etwa 5° öffnenden konischen, etwa 7 mm langen Bereich übergeht. Die konische Öffnung erleichtert bei der Montage der Handwerkzeugmaschine das Einführen der Abtriebswelle in das Gleitlager.

[0013] Dadurch, daß der Mitnehmer durch Verschieben außer Eingriff zum Werkzeug bringbar ist, das dadurch vom Antrieb getrennt und leicht entnehmbar ist, kann die Bedienung mit einfachen Mitteln, nämlich über eine Drucktaste erfolgen, mit der der Mitnehmer von Hand verschiebbar ist.

[0014] Das Werkzeug ist im Bereich seines Einspannendes in einer Längsführung spiel- und reibungsarm und damit den Antrieb und das Gehäuse von arbeitsbedingten Querkräften sowie dadurch wechselnden Reibungseinflüssen entlastend geführt, indem die Längsführung den flachen einspannseitigen Bereich des Werkzeugs umgreift und es beim Arbeiten gegen Verdrehen sichert.

[0015] Eine Dichtkappe deckt die Öffnung des vorderen Bereiches des Gehäuses ab, durch die der Schaft des Werkzeugs hindurchtritt. Sie dient als Gleitführung und Schwingungsdämpfung für das Werkzeug.

[0016] Dadurch, daß das Werkzeug eine quer zu seiner Bewegungsrichtung verlaufende Schneide trägt, ist es besonders voreilhaft als Meißel, Spachtel oder dergl. einsetzbar

[0017] Die Längsführung wird in der Gehäuseschale sicher arretiert durch ein diese umgreifendes, kastenartiges Profil mit einem hinten und vorn zum Durchtritt des Einsatzwerkzeugs offenen Aufnahmetunnel.

[0018] Die nachstehenden, auf die Ausgestaltung des Gehäuses bezogenen Vorteile sind nicht auf Schaber beschränkt, sondern treffen für alle Handwerkzeugmaschinen, insbesondere mit Winkelgetriebe zu.

[0019] Das Gehäuse ist besonders verformungsstabil dadurch, daß es aus zwei mit in Arbeitsposition waagerecht verlaufender Teilungsebene zusammengesetzten Gehäuseschalen gebildet wird, wobei die Abtriebswelle in beiden Gehäuseschalen in je einem Lager drehbar gelagert ist. Die Stabilität des Gehäuses wird erhöht, indem die Schalen und die durch Teilungskanten gebildete Teilungsebene im Bereich des Halses - in Arbeitsposition betrachtet - nach unten abgeknickt verlaufen und wobei die Abknickung als Handgriff dient. Die Versteifung des Gehäuses erhöht sich durch Angreifen der Hand des Bedienenden und infolge der Bedienkräfte beim Arbeiten, wodurch die Gehäuseschalen quasi ineinander verschränkt und fest gegeneinander verspannt werden.

[0020] Ein weiterer Vorteil besteht darin, daß die Spannmittel zum Befestigen des Werkzeugs aus nur wenigen, kostengünstigen Einzelteilen bestehen, mit denen das Werkzeug bequem, mit wenigen, einfachen Handgriffen mit dem Mitnehmer betrieblich verbindbar und somit auch schnell austauschbar ist. Die Gefahr, daß sich der Bedienende an der Schneide der Werkzeuge verletzt, wird durch die leichte Bedienbarkeit verrin-

gert. Damit trägt der vereinfachte Werkzeugwechsel zur Verbesserung der Arbeitssicherheit bei.

[0021] Dadurch, daß der Mitnehmer selbst mit einem Vorsprung in die Ausnehmung des Einspannendes des Werkzeugs lösbar eingreift, ist ein besonders einfach aufgebautes, leicht bedienbares Spannsystem für als Werkzeug ausgestaltete Schabewerkzeuge geschaffen

[0022] Dadurch daß die Drucktaste in der Löseposition für das Einsatzwerkzeug gegenüber dem Gehäuse einrastend festgehalten wird und die Rastmittel durch das Werkzeug bei dessen Einsetzen wieder gelöst werden können, muß die Drucktaste nicht während des Einsetzen des Werkzeugs niedergedrückt gehalten werden. Damit steht eine Hand des Bedienenden allein für das Halten der Handwerkzeugmaschine und die andere Hand zur Werkzeugentnahme zur Verfügung. Dies erleichtert den Wechsel des Werkzeugs.

[0023] Dadurch, daß der Mitnehmer pleuelartig ausgestaltet ist mit einem einen Vorsprung tragenden Kopf, wird dessen ungewolltes Drehen im Inneren des Gehäuses vermieden und ein besonders ruhiger, verschleißarmer Lauf des Handwerkzeugs erreicht, wobei der Kopf in der Einkerbung der Längsführung schwingungsdämpfend geführt ist. Dabei begrenzt die achsparallele Anordnung des mitnehmenden Vorsprungs zum Exzenterzapfen mit einem radialen Abstand zur Ausnehmung die Verdrehbarkeit des Mitnehmers gegenüber dem Exzenterzapfen und vermindert damit Reibung und Verschleiß zwischen dem Exzenterzapfen, dem Mitnehmer und dem Werkzeug. Dabei ist es vorteilhaft, daß die Ausnehmung des Einspannendes des Werkzeugs kreisrund ist und im wesentlichen den gleichen Durchmesser wie der Vorsprung des Mitnehmers hat.

[0024] Statt kreisrund kann diese auch als in Bewegungsrichtung des Werkzeugs sich längserstreckende, langlochartige Ausnehmung des Einspannendes ausgestaltet sein, deren Länge größer ist als der Hub des Exzenters. Dadurch erfolgt die Bewegungsübertragung vom Antrieb über den Mitnehmer auf das Werkzeug nur dann, wenn diese beispielsweise beim Aufsetzen auf das Werkstück, gegenüber dem Vorsprung des Mitnehmers soweit zurückgeschoben wird, daß sich der Vorsprung am Rand des Langlochs abstützen und eine hinund hergehende Bewegung auf das Werkzeug weitergeben kann. Im Leerlauf steht also das Werkzeug bei Drehen des Motors und des Mitnehmers still, so daß dabei der Verschleiß an den Bewegungsübertragenden Teilen verringert wird.

[0025] Die Längsführung ist als separater Körper unverschieblich im Inneren des Gehäuses angeordnet, sobald die Gehäuseschalen zusammengeschraubt sind. Dabei stützt sich die Längsführung in Bewegungsrichtung des geführten Einsatzwerkzeugs gegen eine Frontwand einer der Gehäuseschalen ab und ist dadurch unverlierbar und spielfrei aber zugleich auch leicht auswechselbar, festgehalten, weil die Längsfüh-

50

15

35

rung nach leichtem voneinander Abheben der Gehäuseschalen im vorderen Bereich aus dem Gehäuse entnommen werden kann.

[0026] Dadurch, daß die Längsführung ein separater Körper ist, nimmt sie kassettenartig die über den Schaft des Werkzeugs auf das Gehäuse übertragenen Biegekräfte auf und leitet diese großflächig auf das Gehäuse weiter, so daß dieses nur geringen Biege- und Verwindungskräften ausgesetzt wird und in Leichtbauweise ausgeführt werden kann, wobei Wälzkörper beidenends des Führungsschlitzes der Längsführung den Verschleiß bzw, die Reibung zwischen der Längsführung und dem Werkzeug vermindern, dadurch, daß dort nur Roll- anstelle von Gleitreibung zugelassen wird.

[0027] Das Werkzeug kann ein Meißel, Schaber, Spachtel oder dergl. aus Metall, z.B. Hartmetall oder HSS-Stahl sein. Es ist vielseitig einsetzbar, z.B. zum Schnitzen, zum Entfernen von Farbe, Tapete, Teppichkleber, Schaumrücken, Nadelfilz, PVC, ferner für Reinigungsarbeiten, z.B. Entfernen von Schmutz-, Kleberund Leim-, Putz-, Gips-, Spachtelmassen-, Kitt-, Farbund Silikonresten sowie Mörtel- und Betonresten auf Bautafeln. Schließlich können damit auch Untergrundvorbereitungen durchgeführt werden, z.B. Estrich- und Betonvorbereitung, Glätten von Raupen und Nasen, Verfugen von Rissen, Entfernen von Fliesenkleber.

[0028] Das Werkzeug hat im Bereich des Schafts einen flachen, insbesondere rechteckigen, Querschnitt, der in einer Längsführung, insbesondere in einem Flachschlitz, führbar ist und elastisch, blattfederartig, Biegekräfte beim Schaben aufnimmt. Dadurch ist das Werkzeug gegen Verdrehen um seine Längsachse gesichert und federt beim Betrieb des Schabers zwischen dem Werkstück und dem Bedienenden Stöße ab.

[0029] Da das Werkzeug ein Verschleißteil ist, ist dessen schnelle Auswechselbarkeit von erheblichem Vorteil. Dieser Vorteil ergibt sich aus dem Zusammenwirken der Rastmittel des Einsatzwerkzeugs mit denen der Handwerkzeugmaschine. Damit weisen sowohl die Handwerkzeugmaschine als auch das Werkzeug Erfindungsmerkmale auf.

Zeichnungen

[0030] Die Erfindung ist anhand in der Zeichnung dargestellter Ausführungsbeispiele in der nachfolgenden Beschreibung näher erläutert.

[0031] Es zeigen

Figur 1 eine Explosionsdarstellung eines Ausführungsbeispiel der erfindungsgemäßen Elektrohandwerkzeugmaschine,

Figur 2 den in Figur 1 mit II bezeichneten Bereich zusammengebaut im Längsschnitt,

Figur 3 die stirnseitige Lagerung der Antriebswelle gemäß Figur 2 als Einzelheit,

Figur 4 die mit III bezeichneten, zusammengehörigen Teile nach Figur 1 vergrößert dargestellt,

Figur 5 einen Teil eines weiteren Ausführungsbeispiels der erfindungsgemäßen Elektrohandwerkzeugmaschine im Längsschnitt,

Figur 6 die Einzelheit der stirnseitigen Lagerung der Antriebswelle gemäß Figur 5,

Figur 7 analog zu Figur 4 eine Explosionsdarstellung von Teilen der Werkzeugmaschine nach Figur 5

Figur 8 ein zu den Elektrohandwerkzeugmaschinen nach Figur 1 bis 7 gehörendes Werkzeug mit einer zugehörigen Längsführung zum Eingriff des Mitnehmers in räumlicher Ansicht.

Figur 9 eine Explosionsdarstellung der Längsführung mit Wälzkörpern,

Figur 10 eine Explosionsdarstellung der oberen und unteren Gehäuseschalen nur mit dem Gleitlager und der Lagerbuchse gemäß Figur 1

und Figur 11 eine Explosionsdarstellung der unteren Gehäuseschale mit der Lagerbuchse.

Beschreibung der Ausführungsbeispiele

[0032] Die Figur 1 zeigt eine Explosionsdarstellung und die Figur 2 einen Teil-Längsschnitt einer Elektrohandwerkzeugmaschine zur schabenden Bearbeitung von Werkstücken, kurz als Schaber 10 bezeichnet. Dessen zylindrisches Gehäuse 11 wird aus zwei Gehäuseschalen 12, 14 aus Kunststoff gebildet, deren Ränder je eine Teilungskante 15 bilden, die eine waagerechte Teilungsebene definieren. Das Gehäuse 11 besitzt in seinem hinteren Bereich eine Verdickung 30 und in seinem vorderen Bereich einen gegenüber der Gehäuseachse geneigten Hals 32. Zwischen dem Hals 32 und der Verdickung 30 ist das Gehäuse als Handgriff 28 ausgestaltet. Die Gehäuseschalen 12, 14 sind durch Schrauben 26 miteinander verbindbar.

[0033] Ein nicht dargestelltes Elektrokabel kann am Gehäuse 11 durch eine weitere Schraube 24 mit Klemme gesichert befestigt werden. Im Inneren des Gehäuses 11 ist ein Motor 16 mit einem Lüfterrad 18 angeordnet, dessen Antriebswelle 19 in einem Kugellager 20 gelagert und mit einem kegeligen Ritzel 22 drehfest verbunden ist. Das Ritzel 22 kämmt mit einem von einer Abtriebswelle 50 drehfest getragenen kegeligen Tellerrad 48, dessen Drehachse 36 rechtwinklig zur Antriebswelle 19 verläuft.

[0034] Die werkzeugferne Lagerstelle der Abtriebswelle 50 besteht aus einem ringartigen in eine zylindrische Lageraufnahme 38 der Gehäuseschale 12 einsetzbaren Gleitlager 40, insbesondere aus Sinterwerkstoff, einer Druckfeder 42, einer Stützscheibe 44 sowie einer Kugel 46, die in einer zentrischen Ausnehmung 43 in der oberen Stirnseite der Abtriebswelle 50 gelagert ist.

[0035] Die Druckfeder 42 umgreift oben, d.h. einenends, einen gehäusefesten Dorn 41 und unten, d. h. andernends, einen eine Stützscheibe 44 tragenden Zapfen 44' und stützt sich über die Stützscheibe 44 ge-

genüber der Kugel 42 ab, die in der zentrischen Ausnehmung 43 der Abtriebswelle 50 sitzt, wobei sie über den Rand der Ausnehmung 43 hinausragt. Das Gleitlager 40 hat eine keglige bzw. ballige innere Lauffläche 47 zur Aufnahme des oberen Lagerendes der Abtriebswelle 50. Dadurch, und auch durch die axiale Abstützung an der Kugel 46 kann die Abtriebswelle 50 um einen bestimmten Betrag geneigt gegenüber der Mittelachse des Gleitlagers 40 spielfrei geführt werden, ohne daß das Gleitlager 40 dabei zerstört wird. Dies ermöglicht die Verwendung grob tolerierter Einzelteile für den Schaber 10, wobei dessen Funktion in hoher Qualität gesichert ist.

[0036] Die werkzeugnahe Lagerstelle der Abtriebswelle 50 besteht aus einer hülsenartigen Lagerbuchse 56, einer Ring-Scheibe 54 sowie einem Wälzlager bzw. Nadellager 58.

[0037] Ein vom werkzeugnahen Ende der Abtriebswelle 50 getragener Exzenterzapfen 52 mit einer Exzenterachse 53 durchtritt die Lagerbuchse 56, wobei sein freies Ende von oben in in eine Bohrung 72 eines pleuelartigen Mitnehmers 68 greift, der sich axial nach unten auf einer Drucktaste 76 abstützt. Es können hier auch andere an sich bekannte Exzenterantriebe verwendet werden.

[0038] Der Abstand der Exzenterachse 53 gegenüber der Drehachse 36 bestimmt die Exzentrizität, wobei die doppelte Exzentrizität den Hub des Exzenterzapfens bzw. des Mitnehmers 69 bestimmt.

[0039] Zwischen dem Mitnehmer 68 und der Lagerbuchse 56 sind eine Verdrehsicherung 62 und eine Scheibe 66 angeordnet, zwischen denen sich ein abstandhaltendes Federmittel 64 abstützt. Die als Justierscheibe bzw. Klemmring ausgebildete Verdrehsicherung 62 ist zum formschlüssigen Umgreifen der Lagerbuchse 56 ausgebildet. Die Drucktaste 76 verschließt staubdicht eine Öffnung 60 in der unteren Gehäuseschale 14 und endet dort bündig mit der Gehäusekontur. [0040] In Figur 2 ist gezeigt, daß der Rand des Bundes 71' als Anschlag für das Einspannende 77 dient, wobei in der Anschlaglage die Ausnehmung 90 im Einspannende 77 genau fluchtend zum Vorsprung 70 des Mitnehmers 68 positioniert ist. Dies erleichtert das Einsetzen des Einsatzwerkzeugs 88, 288, weil beim gut fühlbaren Anschlagen des Einsatzwerkzeugs 88, 288 am Bund 71' das Einrasten des Vorsprungs 70 in die Ausnehmung 90 sicher ist, so daß die genaue Spannposition erreicht ist und die Drucktaste 76 losgelassen werden kann.

[0041] Hinter einer frontalen Öffnung 34 des Gehäuses 11, die anteilig durch entsprechende Ausformungen der Gehäuseschalen 12, 14 gebildet wird, ist im Inneren des Gehäuses 11 eine Längsführung 82 für ein Werkzeug, insbesondere Einsatzwerkzeug 88 ortsfest angeordnet. Eine Querwand 13 ist im Bereich der Öffnung 34 in der oberen Kunststoffschale 12 angeordnet und übergreift die äußere Stirnseite 82' der Längsführung 82 teilweise und sichert diese so gegen ungewolltes Her-

austreten aus der Öffnung 34 bzw. gegen Verlieren. In der Längsführung 82 ist der Schaft 89 des Werkzeugs 88 gerade, vor- und zurückverschiebbar geführt. Der Mitnehmer 68 greift mit einem als Zapfen ausgebildeten Vorsprung 70 von oben verdrehbar in eine kreisrunde Ausnehmung 90 des Einspannendes 77 des Schafts 89 des Werkzeugs 88. Sobald die Abtriebswelle 50 rotiert, kreist der Exzenterzapfen 52 um die Drehachse 36, wobei ihm der Mitnehmer 68 folgt. Infolge der gelenkigen Koppelung zwischen dem Vorsprung 70 des Mitnehmers 68 in der Ausnehmung 90 des Schaftes 89 wird nur der vor- und zurückgehende Bewegungsanteil des Exzenterzapfens 52 auf das Werkzeug 88 übertragen. weshalb die Ausnehmung 90 kreisrund sein kann bzw. 15 weshalb ein kulissenartiges Langloch wie gemäß Figur 4, 5 unnötig ist.

[0042] Die Figuren 2 und 4 zeigen, daß zur reibungsarmen, besseren Lagerung des Exzenterzapfens 52 der Mitnehmer 68 in seiner Bohrung 72 zum Durchtritt des Exzenterzapfens 52 ein Wälzlager 73, insbesondere Nadellager, aufweist. Der mit der Ausnehmung 90 zusammenarbeitende Zapfen 70 ist in einem Abstand achsparallel zur Ausnehmung 72 bzw zum Wälzlager 73 angeordnet.

[0043] Die Figuren 1 bis 4 lassen erkennen, daß der Mitnehmer 68 entlang dem Exzenterzapfen 52 geführt und federnd axial verschiebbar gelagert ist und daß der Vorsprung 70 des Mitnehmers 68 bei dessen axialem Verschieben außer Eingriff mit der Ausnehmung 90 des Werkzeugs 88 gebracht werden kann, so daß dadurch der Antrieb vom Werkzeug 88 trennbar ist. Ist dies der Fall, kann danach das Werkzeug 88 leicht von Hand entnommen und gewechselt werden.

[0044] Der Mitnehmer 68 wird über die mit den Fingern der Bedienhand verschiebbare Drucktaste 76 in die Löseposition verschoben. Die Drucktaste 76 ist im Gehäuse 11 in der Öffnung 60 - wie ein Motorkolben im Zylinder - verschieblich in der Gehäuseschale 14 gelagert, wobei die Drucktaste 76 gleichsinnig wie der Mitnehmer 68, an dem sie sich abstützt, bewegbar ist.

[0045] Zwischen dem Mitnehmer 68 und der unteren Gehäuseschale 14 ist fluchtend und konzentrisch zur Abtriebswelle 50 eine Druckfeder 64 angeordnet, die sich einenends über eine Ringscheibe 66 am Mitnehmer 68 bzw. der Drucktaste 76 abstützt und diese in ihre Ausgangsposition zurückstellt. Die Druckfeder 64 stützt sich gegenüber dem Mitnehmer 68 ab. Die Ringscheibe 66 verhindert, daß die hin- und hergehende Bewegung des Mitnehmers 68 auf die Druckfeder 64 übertragen wird.

[0046] Ferner ist zu erkennen, daß die Drucktaste 76 mittels im Inneren der Gehäuseschale 12 anschlagender Schnapphaken 75, 79 gegen Herausfallen gesichert ist. Zum Abstützen gegenüber dem pleulartigen Mitnehmer 68 trägt die Drucktaste 76 radiale Rippen 8 und 9. [0047] Das Werkzeug 88 ist in einem Bereich zwischen seinem eine Schneide tragenden Arbeitsende 92 und seinem Einspannende 77 in der Längsführung 82

geführt. Die Längsführung 82 ist so ausgebildet, siehe auch Fig. 9, daß sie den flachen Schaft 89 des Werkzeugs 88 kassettenartig umgreift und dadurch die beim Arbeiten auftretenden Biegekräfte aufnimmt, so daß keine örtlichen Spannungen auftreten können, die zur Zerstörung der Gehäuseschalen 12, 14 führen würden [0048] Die Längsführung 82 ist als in das Gehäuse 12, 14 einsetzbarer Würfel oder Quader mit einem durchgehenden Führungsschlitz 67, siehe Figuren 6 und 8, zum Durchtritt des Schafts 89 des Werkzeugs 88 ausgestaltet. Die Längsführung 82 weist auf ihrer dem Mitnehmer 68 zugewandten Seite eine Einkerbung 83 auf, die den in die Ausnehmung 90 des Einspannendes 77 des Werkzeugs 88 greifenden Kopf 65 des Mitnehmers 68 zentriert, der den in das Einspannende 77 des Werkzeugs 88 eingreifenden und dieses mitnehmenden Vorsprung 70 trägt.

[0049] Gemäß Figur 5 wird die dortige Längsführung 87 von einer Querausnehmung 81 durchtreten. Zu dieser fluchtet in der unteren Gehäuseschale 14 eine Ausnehmung 81', durch die bei nicht eingesetztem Werkzeug 88 Schmiermittel eingebracht werden bzw. durch die hindurch mittels Schraubendreher die Verbindung zwischen den beiden Kunststoffschalen 12, 14 hergestellt bzw. gelöst werden kann.

[0050] Die Längsführung 82 muß nicht quaderartig geformt sein, sondern kann auch je nach Bedarf eine unterschiedliche äußere Gestaltung haben.

[0051] Die Figur 6 zeigt wie die Figur 3 die obere Lagerung der Abtriebswelle 50 im Gehäuse 12, 14 als Einzelheit, wobei die Druckfeder 42, die zentrische Ausnehmung 43, die Scheibe 44, die Kugel 46 und der obere Bereich der Abtriebswelle 50 deutlich erkennbar sind. [0052] Die Figuren 1 bis 7 lassen erkennen, daß die werkzeugzugewandte Lagerstelle der Abtriebswelle 50 durch die das Wälzlager 58 tragende Lagerbuchse 56 gebildet wird, die über einen wie ein Steilgewinde wirkenden Ringkeil 57 gegenüber einem Gegenringkeil 63 (Fig. 10) der Gehäuseschale 14 nach dem Lösen der Verdrehsicherung 62 axial verstellbar ist und die, - nach Demontieren der Taste 76 und des Mitnehmers 68 -, von außen z.B. für einen Schraubenschlüssel oder dergl. zum Verdrehen zugänglich ist.

[0053] Die Lagerbuchse 56 könnte anstelle des Ringkeils 57 ein Steil-Außengewinde tragen, das in ein passendes gehäuseseitiges Gegengewinde schraubbar sein müßte.

[0054] Die Verdrehsicherung der Lagerbuchse 56 ist als außenverzahnter Klemmring 62 ausgestaltet, der mit zwei auf seiner Innenseite angeordneten Zähnen 61 in zwei gegenüberliegende Nuten 59 auf der unteren Außenseite der Lagerbuchse 56 greift. Der Klemmring 62 hält sich mit seiner Außenverzahnung an Vorsprüngen des Gehäuses 11, insbesondere der Gehäuseschale 12, einrastend verdrehsicher fest, indem die Zähne zwischen Nocken 67 (Fig. 10) am Boden der Öffnung 60 greifen. Damit sichert er die Lagerbuchse 56 gegen Verdrehen gegenüber dem Gehäuse 11.

[0055] Am Klemmring 62 stützt sich die Druckfeder 64 ab, womit sie diesen axial gegenüber der Lagerbuchse 56 bzw. gegenüber dem Gehäuse 11 vorspannt und damit insbesondere an den Nocken festhält. Der Klemmring 62 ist über eine Außenverzahnung mit der Gehäuseschale 14 drehfest verbunden.

[0056] Gemäß den Figuren 1 bis 7 tritt das Werkzeug 88 bzw. 188 aus der durch eine Dichtkappe 86 abgedeckten Öffnung 34 des vorderen Bereichs des Gehäuses 11 aus. Über die Schneide bzw. das Arbeitsende 92 des Werkzeugs 88 bzw. 188 ist ein Messerschutz 94 setzbar, der die Schneide gegen Beschädigung sichert und den Bedienenden insbesondere beim Transport der Handwerkzeugmaschine 10 gegen Verletzung durch die Schneide schützt.

[0057] Gemäß den Figuren 5 und 7 ist ein Mitnehmer 69 als Lochscheibe ausgebildet - im Unterschied zu dem gemäß den Figuren 1 bis 3 pleuelartig ausgestalteten Mitnehmer 68. In eine zentrale Bohrung 72' des Mitnehmers 69 greift ein Exzenterzapfen 51 der Abtriebswelle 50 ein, der deutlich kürzer ist als der Exzenterzapfen 52 gemäß den Figuren 1 bis 3. Dieses kürzere Maß ist notwendig, weil damit der Exzenterzapfens 51 selbst außer Eingriff mit der Ausnehmung 91 des Einspannendes des Einsatzwerkzeugs 188 steht, damit dadurch das Einsatzwerkzeug 188 quer zum Exzenterzapfen 51 - über dessen freies Ende vorbeischiebbar - entnehmbar ist.

[0058] Die zentrale Bohrung 72' kann natürlich, wie die Bohrung 72 gemäß Figur 2 und 4, ein Nadellager 73 enthalten, um die Bewegung des Exzenterzapfens 51 reibungsarm auf den Mitnehmer 69 und das Einsatzwerkzeug 188 zu übertragen.

[0059] Über das freie Ende des Exzenterzapfens 51 hinaus ragt ein konzentrisch zur Ausnehmung 91 verlaufender, ringbundartiger Vorsprung 71 des Mitnehmers 69. Dieser greift in die als Langloch ausgestaltete Ausnehmung 91 des Einspannendes 77 des Werkzeugs 188 ein. Die langlochartige Ausnehmung 91 ist nahe dem freien Ende des Einspannendes 77 angeordnet, wobei ihre Längserstreckung quer zur Bewegungsrichtung des Werkzeugs 188 verläuft und mindestens um den Hub h bzw. um die doppelte Exzentrizität des Exzenterzapfens 51 länger ist als der Durchmesser des Exzenterzapfens 51. Die Breite des Langlochs 91 ist so bemessen, daß der Vorsprung 71 im wesentlichen spielfrei darin eingreifen kann.

[0060] Mittel, die ein ungewolltes Mitdrehen der Mitnehmers 69 mit dem Exzenterzapfen 51 infolgen der Lagereibung zwischen dem Exzenterzapfen 51 und und dem Mitnehmer 69 in der Bohrung 72' verindern, sind nicht mit dargestellt.

[0061] Die Position des vorderen Arbeitsendes 92 bzw. der Schneide der Einsatzwerkzeuge 88, 188 gegenüber der frontalen Öffnung 34 des Gehäuses 11 soll bei allen Ausführungsbeispielen gemäß Figur 1, 2, 4, 5 und 7 gleich sein. Aus diesem Grund ist der Schaft 89 des Einsatzwerkzeugs 188 gemäß Figur 5, 7 gegenüber

dem gemäß Figur 2, 4 länger, weil der Eingriffspunkt zwischen dem Schaft 89 und dem Mitnehmer 69 gemäß Figur 5, 7 weiter im Inneren des Gehäuses 11 liegt.

[0062] Die Figur 8 zeigt ein Einsatzwerkzeug 288, das für den Schaber 10 gemäß den Figuren 1 bis 4 geeignet ist. Im Unterschied zum Einsatzwerkzeug 88 gemäß Figur 1 bis 4 weist das Einsatzwerkzeug 288 eine Ausnehmung 93 im Einspannende 77 auf, die als sich längs zur Bewegungsrichtung erstreckendes Langloch ausgestaltet ist, dessen Breite auf den Außendurchmesser des im Querschnitt kreisrunden Zapfens 70 abgestimmt ist. Seine Längserstreckung ist um den Hub h bzw, um die doppelte Exzentrizität des Exzenterzapfens 52 größer als der Außendurchmesser des Exzenterzapfens 52. Damit wird bei drehendem Motor das Einsatzwerkzeug 288 nur dann hin- und hergehend bewegt bzw. angetrieben, wenn es von einer frontalen Gegenkraft beaufschlagt wird, so daß sich der Vorsprung 70 mitnehmend am vorderen Rand 193 der Ausnehmung 90 abstützen kann. Dadurch steht bei eingeschaltetem Motor 16 und bei vom Werkstück abgehobenem Einsatzwerkzeug 288 dieses still, so daß der Energieverbrauch, die Geräuschentwicklung und der Verschleiß an der Längsführung 82 sowie an allen Bewegungsübertragenden Teilen des Schabers 10, z.B. zwischen dem Mitnehmer 68 und dem Einspannende 77 des Einsatzwerkzeugs 288, gering gehalten wird.

[0063] Ein Vergleich der Einspannenden 77 der Einsatzwerkzeuge 88, 188, 288 gemäß den Figuren 1 bis 8 zeigt, daß die Ausnehmung 90 des Einsatzwerkzeugs 88 weiter vom freien Ende des Einspannendes 77 entfernt als die Ausnehmung 91 des Einsatzwerkzeugs 188 und als die Ausnehmung 93 des Einsatzwerkzeugs 288 gemäß den Figuren 5 und 7.

[0064] Die Figur 9 zeigt als Vergrößerung die Längsführung 82 gemäß Figur 1. Die Längsführung 82 trägt als Nadeln ausgestaltete Wälzkörper 78 und 84, die vor und hinter dem rechteckigen, flachen Führungsschlitz 67 angeordnet sind und an denen sich das Werkzeug 88, 188, 288 rollend abstützen kann. Die Wälzkörper 78 und 84 sind in entsprechenden Schlitzen 85 der Längsführung 82 gelagert. Durch diese Anordnung der Wälzkörper 78, 84 wird die Gleitreibung in der Längsführung 82 erheblich vermindert, deren Belastbarkeit erhöht sowie Wärmeentwicklung und Verschleiß am Schaber 10 verringert und Biegekräfte des Einsatzwerkzeugs 88, 188 und 288 vom Gehäuse 11 ferngehalten.

[0065] Das Zusammenarbeiten zwischen der Längsführung 82 und dem pleuelartigen Mitnehmer 68 zeigen die Figuren 1, 2 und 4. Der Mitnehmer 68 besitzt den den Vorsprung 70 tragenden Kopfteil 65, der in die als Führungsschlitz dienende Einkerbung 83 der Längsführung 82 verdrehbar einrastet. Dadurch ist sichergestellt, daß der Kopf 65 und damit der Mitnehmer 68 innerhalb des Gehäuses 11 auch dann gegen Drehen gesichert geführt ist, wenn der Schaber 10 nicht mit einem Werkzeug 88, 288 bestückt ist und wenn in diesem Zustand der Motor 16 gestartet wird.

[0066] In Figur 10 sind die obere und die untere Gehäuseschale 12, 14 parallel zur Achse auseinandergezogen dargestellt, wobei der geneigte, vorn abgeknickte Verlauf der Teilungskante 15 bei beiden Gehäuseschalen deutlich wird. Die obere Gehäuseschale zeigt besonders deutlich den Dorn 41 und die dazu konzentrische Bohrung 45 zur Aufnahme der hier nichtdargestellten, aber in den Figuren 1 bis 3, 5, 6 gezeigten Druckfeder 42, die ihrerseits den Zapfen 44' mit der Scheibe 44 trägt zur axialen Abstützung an der Kugel 46 bzw. an der Abtriebswelle 50. Deutlich erkennbar ist eine kreisrunde, als Lageraufnahme 38 dienende Ausnehmung, die konzentrisch zum Dorn 41 angeordnet ist und in die das ringförmige Gleitlager 40 einsetzbar ist. Darüberhinaus ist die vordere Querwand 13 nahe der Öffnung 34 zum Durchtritt des hier nichtdargestellten Werkzeugs 88 besonders deutlich sichtbar.

[0067] Deutlich wird auch, daß die innere Lauffläche 47 des Gleitlagers 40 konisch, nach sich nach unten zur Gehäuseschale 14 hin erweitert. Dafür hat es sich als besonders vorteilhaft erwiesen, einen etwa 7 mm langen Bereich der Lauffläche sich nach unten unter einem Winkel von insgesamt 5° öffnen zu lassen, wobei sich nach oben ein etwa 2 bis 3 mm langer gerader zylindrischer Bereich der Lauffläche anschließt. Damit werden innerhalb gewisser Grenzen Schieflagen der Abtriebswelle 50 erlaubt, ohne daß die Funktion des Schabers beeinträchtigt wird, bzw. ohne daß das Gleitlager 40 dadurch beschädigt oder zerstört würde.

[0068] Die untere Gehäuseschale 14 zeigt deutlich die Gegenringkeilfläche 63, an der sich der Ringkeil 57 am Bund 55 der Lagerbuchse 56 abstützt, so daß bei Drehen der Lagerbuchse 56 entgegen dem Uhreigersinn sich diese axial verschiebt. Da sich die Abtriebswelle 50 gemäß den Figuren 1, 2 und 5 axial an der Lagerbuchse abstützt, wird sie beim Drehen der Lagerbuchse 56 axial mitgenommen, so daß dadurch das Einstellen des Axialspiels der Abtriebswelle 50 gegenüber der oberen Gehäuseschale 12 bzw. gegenüber der Kugel 46, der Scheibe 44 und dem Dorn 41 möglich ist. [0069] Außerdem ist an der Gehäuseschale 14 nahe der Öffnung 34 eine Ringnut 25 zum Festhalten der Dichtkappe 86 (Fig. 1) erkennbar und ein Aufnahmetunnel 33 mit einer Einsatzöffnung 35 zum Einschub und zum Festhalten der hier nicht dargestellten Längsfüh-

rung 82, die sich an den Rippen 37 39 spielfrei festklemmt. Erkennbar ist auch die Öffnung 60 zur Führung und Aufnahme der Drucktaste 76 (Fig. 1). [0070] Das Verstellmittel in Gestalt der Lagerbuchse 56 könnte auch anstatt in der unteren Gehäuseschale 14 in der oberen Gehäuseschale 12 angeordnet sein,

wobei dann anstelle des Nadellagers 73 das Gleitlager

40 in der Lagerbuchse 56 sitzen könnte.

Patentansprüche

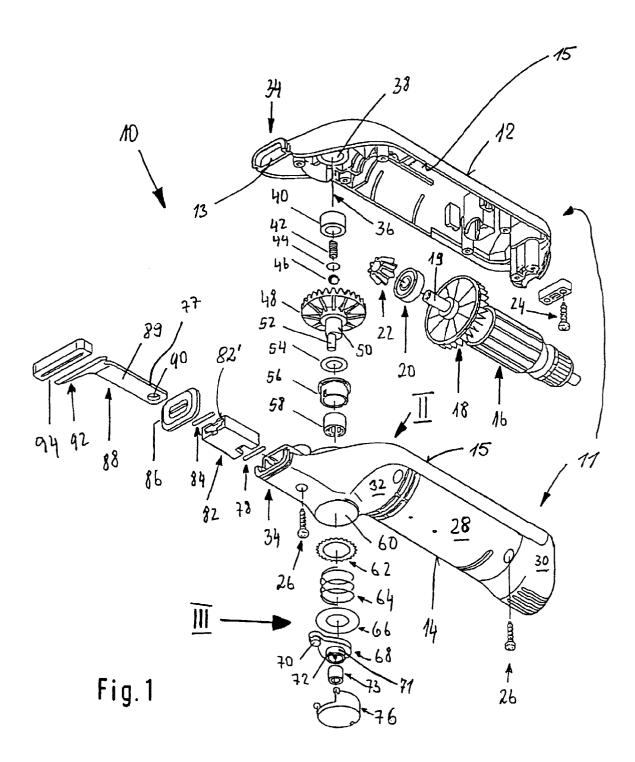
1. Handwerkzeugmaschine mit einem aus längsge-

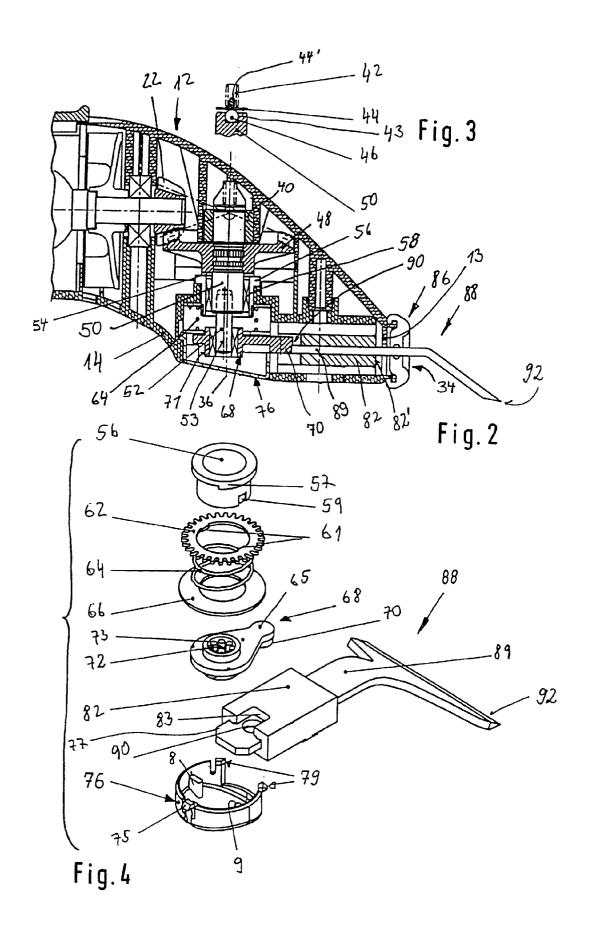
teilten Schalen (12, 14) bestehenden Gehäuse (11), das ein Winkelgetriebe mit einer beidenends gelagerten Abtriebswelle (50) aufnimmt, dadurch gekennzeichnet, daß das Gehäuse (11) aus zwei mit in Arbeitsposition waagerecht verlaufender Teilungsebene zusammengesetzten Gehäuseschalen (12, 14) gebildet wird, wobei die Abtriebswelle (50) in beiden Gehäuseschalen (12, 14) in je einem Lager (40, drehbar gelagert ist.

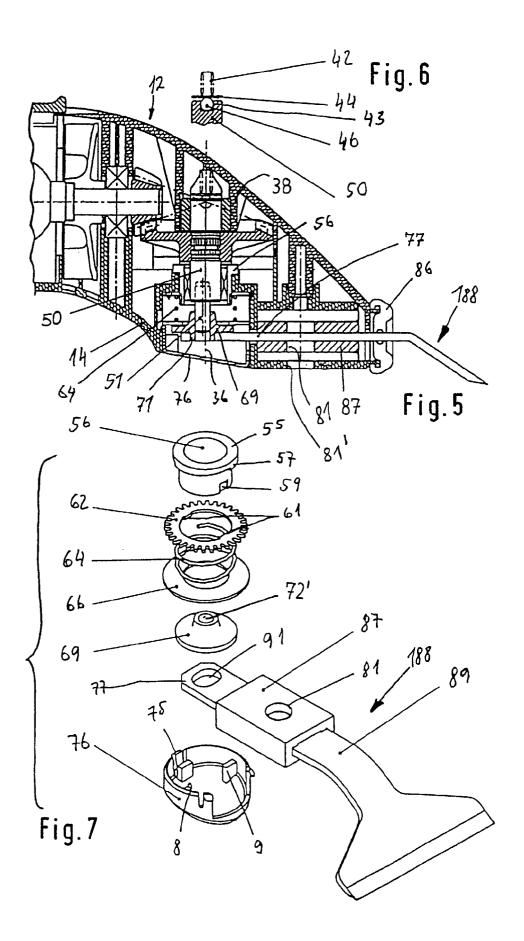
- Maschine nach Anspruch 1, dadurch gekennzeichnet, daß das Gehäuse (11) mit den beiden Gehäuseschalen (12, 14) und die durch Teilungskanten (15) gebildete Teilungsebene, insbesondere im Bereich des Halses (32), in Arbeitsposition s-förmig nach unten abgeknickt verlaufen.
- 3. Maschine nach Anspruch 2, dadurch gekennzeichnet, daß eine, vorzugsweise die werkzeugzugewandte, Lagerstelle (58) der Abtriebswelle (50) mit mindestens einem die Abtriebswelle (50) gegenüber dem Gehäuse (11) axial verstellbaren Stellmittel (56) in Wirkverbindung steht.
- 4. Maschine nach Anspruch 3, dadurch gekennzeichnet, daß das Stellmittel (56) als, insbesondere mit einem Steilgewinde (57, 63), im Gehäuse (11) axial verstellbare Lagerbuchse (56) ausgestaltet ist.
- 5. Maschine nach Anspruch 2, dadurch gekennzeichnet, daß als Steilgewinde die Lagerbuchse (56) an der Unterseite eines oberen, radialen Bundes (55) mindestens einen Ringkeil (57) trägt, dem ein gehäuseseitiger Gegen-Ringkeil (63) als Abstützfläche zugeordnet ist.
- 6. Maschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Lagerbuchse (56) mit einer Verdrehsicherung (62) gegenüber dem Gehäuse (11) lagesicherbar ist.
- 7. Maschine nach Anspruch 6, dadurch gekennzeichnet, daß die Verdrehsicherung als außenverzahnter Klemmring (62) ausgestaltet ist, der verdrehsicher, insbesondere innen mit mindestens einem Innenzahn (61) in mindestens eine Nut (59) auf der unteren Außenseite der Lagerbuchse (56) eingreift und die Lagerbuchse (56), insbesondere von der dem Ringkeil (57) zugewandten Seite her, übergreift.
- 8. Maschine nach Anspruch 7, dadurch gekennzeichnet, daß sich der Klemmring (62) mit seiner Außenverzahnung an Vorsprüngen des Gehäuses (11), insbesondere an Nocken (67) am Boden der Öffnung (60) der Gehäuseschale (12), einrastend festhält.
- 9. Maschine nach Anspruch 8, dadurch gekennzeich-

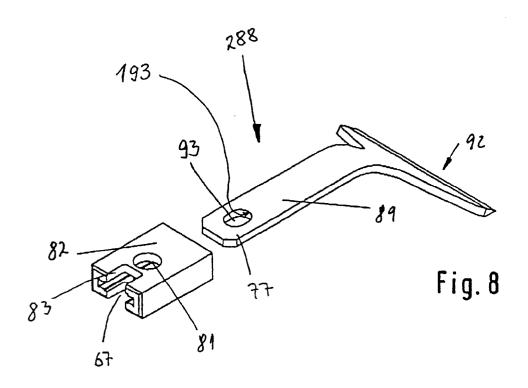
- net, daß sich eine Druckfeder (64) am Klemmring (62) abstützt und diesen gegenüber der Lagerbuchse (56) bzw. dem Gehäuse (11) festhält.
- 5 10. Maschine nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Verdrehsicherung (62) auf einer, insbesondere werkzeugzugewandten, von außen zugänglichen Seite des Gehäuses (11) aus seiner Festhalteposition lösbar angeordnet ist.
- 11. Maschine nach Anspruch 8, 9 oder 10, dadurch gekennzeichnet, daß eine Drucktaste (76) zum Lösen des Einsatzwerkzeugs (88) sich an der Druckfeder (64) abstützt, so daß diese zugleich als Rückstellfeder für den Mitnehmer (68) und die Drucktaste (76) dient, wobei die Drucktaste (76) gegen Herausfallen aus der Maschine (10) gesichert ist.
 - 12. Maschine nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Abtriebswelle (50) sich an der werkzeugfernen Seite axial federnd gegenüber dem Gehäuse (11) abstützt.
- 13. Maschine nach Anspruch 11, dadurch gekennzeichnet, daß sich die Abtriebswelle (50) über eine federnd gelagerte, axialverschiebliche Kugel (46) gegenüber dem Gehäuse (11) abstützt.
- 30 14. Maschine nach Anspruch 13, dadurch gekennzeichnet, daß in der oberen Gehäuseschale (12) eine Druckfeder (42) angeordnet ist, die einenends einen gehäuseseitigen Dorn (41) und andernends einen eine Stützscheibe (44) tragenden Zapfen (44') umgreift und sich über die Stützscheibe (44) gegenüber der Kugel (46) abstützt, die in einer stirnseitigen Ausnehmung (43) im oberen, werkzeugfernen Ende der Abtriebswelle (50) sitzt und über den Rand der Ausnehmung (43) hinausragt.
 - 15. Maschine nach Anspruch 14, dadurch gekennzeichnet, daß in der oberen Gehäuseschale (12) ein ringartiges Gleitlager (40) zur Lagerung des oberen Endes der Abtriebswelle (50) angeordnet ist, dessen Lauffläche (47) zumindest bereichsweise, konisch ausgestaltet ist, so daß Schieflagen der Abtriebswelle (50) gegenüber der Mittelachse des Gleitlagers (40) ausgeglichen werden.
- 16. Maschine nach Anspruch 14, dadurch gekennzeichnet, daß die Lauffläche (47) des Gleitlagers (40) in ihrem oberen Bereich (47"), vorzugsweise über eine Länge von etwa 2 bis 3 mm, zylindrisch verläuft und sich nach unten daran anschließend in einen sich unter einem Winkel von etwa 5° öffnenden konischen, vorzugsweise etwa 7 mm langen Bereich (47") übergeht.

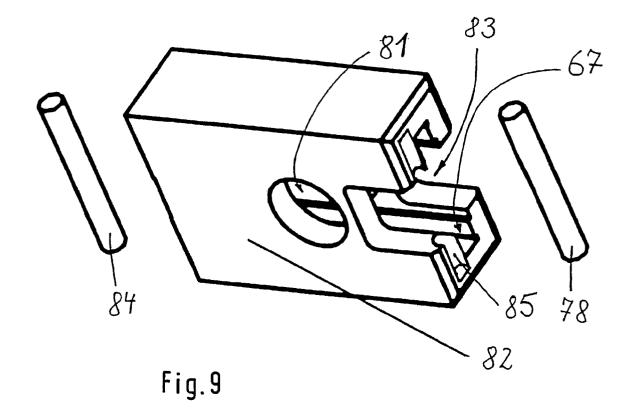
40


- 17. Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Mitnehmer (68, 69) durch Verschieben mittels einer Drucktaste (76, 176) außer Eingriff zum Einsatzwerkzeug (88, 188, 288) bringbar ist, wodurch das Einsatzwerkzeug (88, 188, 288) vom Antrieb getrennt und dadurch leicht entnehmbar ist.
- 18. Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Einsatzwerkzeug (88, 188, 288) in einer Längsführung (82) im Gehäuse (11) axialverschieblich führbar ist, wobei dessen flaches Einspannende (77) von Führungselementen (82) spielarm umgriffen wird.
- 19. Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Einsatzwerkzeug (88, 188, 288) aus einer durch eine Dichtkappe (86) abgedeckten Öffnung (34) des vorderen Bereichs des Gehäuses (11) herausragt, wobei sich die Dichtkappe (86), insbesondere dichtend, am Einsatzwerkzeug (88, 188, 288) abstützt.
- 20. Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Einsatzwerkzeug (88, 188, 288) eine quer zu seiner Bewegungsrichtung verlaufende Schneide trägt und als Meißel, Spachtel oder dergl. dient.
- 21. Maschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine der Gehäuseschalen (12, 14) ein eine Längsführung (82) umgreifendes, kastenartiges Profil mit einem hinten und vorn zum Durchtritt des Einsatzwerkzeugs (88, 188, 288) offenen Aufnahmetunnel (33) enthält.


50


35


40


45

