Europäisches Patentamt **European Patent Office** Office européen des brevets

EP 0 918 132 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 26.05.1999 Patentblatt 1999/21 (51) Int. Cl.6: **E06B 7/215**

(11)

(21) Anmeldenummer: 98122264.9

(22) Anmeldetag: 24.11.1998

(84) Benannte Vertragsstaaten:

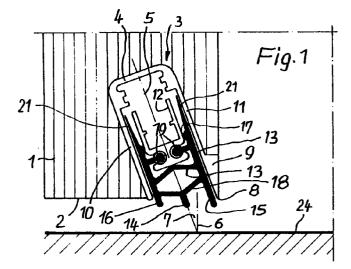
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 25.11.1997 DE 29720854 U

(71) Anmelder: Kross, Manfred 29683 Fallingbostel (DE)


(72) Erfinder: Kross, Manfred 29683 Fallingbostel (DE)

(74) Vertreter:

Eisenführ, Speiser & Partner Martinistrasse 24 28195 Bremen (DE)

(54)Automatische Tür-Bodendichtung

Es wird eine automatische Tür-Bodendichtung im unteren horizontalen Randbereich eines Türblatts angegeben, welches im Schließzustand entlang seines horizontalen Oberrandes und seiner vertikalen Seitenränder dichtend an in einer Ebene liegenden ortsfesten Anschlagflächen anliegt, und eine ein leistenförmiges Abdichtelement tragende Schiene aufweist, die mit Hilfe einer beim Schließen des Türblatts betätigten Mechanik gegen Federkraft aus einer nach oben zurückgezogenen Ruhestellung (Fig. 1, 4) in eine abgesenkte Dichtstellung (Fig. 2, 5) bewegbar ist. Die Schiene ist mit dem Abdichtelement um ihre Längsachse gegenüber der Türebene gekippt am Türblatt befestigt, derart, daß die Bewegungsebene der Schiene einen spitzen Winkel mit der Türebene einschließt und das Abdichtelement im Schließzustand in die Ebene der ortsfesten Anschlagflächen ragt.

25

Beschreibung

[0001] Die Erfindung betrifft eine automatische Tür-Bodendichtung im unteren horizontalen Randbereich eines Türblatts, welches im Schließzustand entlang seines horizontalen Oberrandes und seiner vertikalen Seitenränder dichtend an in einer Ebene liegenden ortsfesten Anschlagflächen anliegt, mit einer ein leistenförmiges Dichtelement tragenden Schiene, die mit Hilfe einer beim Schließen des Türblatts betätigten Mechanik gegen Federkraft aus einer nach oben zurückgezogenen Ruhestellung in eine abgesenkte Dichtstellung bewegbar ist.

[0002] Bodendichtungen dieser Art insbesondere für Drehtüren sind seit langem und vielfältig bekannt. Beim 15 Schließen der Tür kommt in der Regel ein seitlich aus dem Türblatt ragender Stift der Betätigungsmechanik in Anlage an die Türzarge o. dgl., wird beim weiteren Schließvorgang von der Türzarge eingedrückt und bewegt seinerseits mit Hilfe der Mechanik die Schiene 20 mit dem Abdichtelement in ihre Dichtstellung. Beim Öffnen der Tür zieht die Federkraft die Schiene mit dem Abdichtelement in die Ruhestellung zurück.

[0003] Bekannte Bodendichtungen dieser Art sind an der Unterseite des Türblatts regelmäßig derart befestigt, daß sie in das - zumeist aus Holz bestehende -Türblatt von unten her senkrecht eingelassen sind und demgemäß auch die Schiene mit dem Abdichtelement beim Schließvorgang senkrecht aus der Unterseite der Tür herausfährt. Das hat zur Folge, daß wegen der erforderlichen Materialdicken einerseits des Türblatts im Einbaubereich, andererseits der Schiene und des diese üblicherweise umgebenden Einbauprofils das Abdichtelement in seiner an den Boden gepreßten Dichtstellung horizontalen Abstand von der Ebene der ortsfesten Anschlagflächen hat, welche üblicherweise Teile einer Türzarge sind und auch ihrerseits (ebenso ortsfeste) Abdichtprofil tragen. Der horizontale Abstand zwischen jenen Anschlagflächen und dem Bodendichtungs-Abdichtelement (senkrecht zur Türebene) bildet zwangsläufig Durchlässe, welche die Dichtwirkung gegenüber Geräuschen etc. beeinträchtigen.

[0004] Es ist das Ziel der Erfindung, diesem Mißstand zu begegnen. Ausgehend von dem eingangs geschilderten Stand der Technik besteht die Erfindung darin, daß die Schiene mit dem Abdichtelement um ihre Längsachse gegenüber der Türebene gekippt am Türblatt befestigt ist, derart, daß die Bewegungsebene der Schiene einen spitzen Winkel mit der Türebene einschließt und das Abdichtelement im Schließzustand in die Ebene der ortsfesten Anschlagflächen ragt. Auf diese Weise entsteht im Schließzustand der Tür, also in der Dichtstellung des Abdichtelements, ein dem Außenumfang des Türblatts entsprechend umlaufender, praktisch ununterbrochener Dichtungsschluß, welcher 'Leckagen' ausschließt und die Dichtwirkung entscheidend verbessert.

[0005] Vorteilhafte Weiterbildungen der Erfindung

sind Gegenstand von Unteransprüchen.

[0006] Die Zeichnung veranschaulicht die Erfindung an Ausführungsbeispielen. Es zeigt:

- Fig. 1 im Ausschnitt den unteren Bereich eines (geöffneten) Türblatts mit der Querschnittsdarstellung der erfindungsgemäßen Bodendichtung in deren Ruhestellung;
- Fig. 1a ein abgewandeltes Einbauprofil der Bodendichtung in einer der Fig. 1 entsprechenden Darstellung;
- Fig. 2 eine der Fig. 1 entsprechende Darstellung im Schließzustand der Tür und somit Dichtstellung der Bodendichtung;
- Fig. 3 einen (teilweisen) Querschnitt gemäß der Linie III-III in Fig. 2;
- Fig. 4 eine der Fig. 1 entsprechende Darstellung eines abgewandelten Ausführungsbeispiels;
- Fig. 5 eine der Fig. 2 entsprechende Darstellung dieses abgewandelten Ausführungsbeispiels; und
 - Fig. 6 im Querschnitt nur die Bodendichtung (Öffnungsstellung) in vergrößerter Darstellung.

[0007] In den unteren horizontalen Randbereich eines Türblatts 1 ist - von dessen Unterseite 2 her - eine im ganzen mit 3 bezeichnete Bodendichtung eingesetzt, und zwar mit Hilfe eines Einbauprofils 4 in eine entsprechende Ausfräsung des Türblatts 1. Wie die Fig. 1, 1a und 4 deutlich machen, ist dabei die vertikale Mittelund Bewegungsebene 5 der Bodendichtung 3 gegenüber der vertikalen Türebene 6 (des Türblatts 1) um einen spitzen Winkel 7 gekippt, wobei die benachbarte Unterkante des Türblatts 1 mit der entsprechenden Kante 8 des Einbauprofils 4 zusammenfällt. In diesem Bereich ist das Einbauprofil durch einen im Querschnitt dreiecksförmigen Ansatz 9 erweitert und ersetzt dort den anderenfalls beschädigungsgefährdeten Abschnitt des Türblatts 1. Der schrägen Einbaulage des Einbauprofils 4 entsprechend sind dessen Schenkel 10 und 11 (mit dem Ansatz 9) unterschiedlich lang, um im Einbauzustand mit der Unterseite 2 des Türblatts 1 zu fluchten. [0008] Fig. 1a zeigt eine Abwandlung des Ansatzes 9. Der Schenkel 11 ist im Abstand von der Kante 8 zum Abschnitt 9a abgeknickt und trägt einen Schwalbenschwanz 9c, auf den ein Profil 9b beispielsweise aus Kunststoff in Form einer Leiste oder auch nur von Endstücken (im Bereich der Anschlagflächen der Türzarge) aufgesteckt ist. Die Optik dieser Ausbildung kann Vorteile haben, außerdem ist das Profil 9b auswechselbar. Im Einbauprofil 4 ist in üblicher Weise eine -[0009]

15

ebenso wie das Einbauprofil 4 regelmäßig aus Aluminium bestehende - Schiene 12 angeordnet und trägt ein im Querschnitt komplex konfiguriertes, aus elastischem Werkstoff (Gummi o. dgl.) bestehendes Abdichtelement 13. Die Schiene 12 und das Abdichtelement 13 sind innerhalb des Einbauprofils 4 in Richtung der Ebene 5 beweglich und stehen in herkömmlicher Art unter dem mechanischen, zwischen dem Einbauprofil 4 und der Schiene 12 wirksamen Einfluß einerseits von - nicht dargestellten - Federn, welche die Schiene 12 mit dem Abdichtelement 13 in die in Fig. 1 dargestellte Ruhelage ziehen, andererseits einer - ebenfalls nicht dargestellten - Mechanik, welche beim Schließen der Tür die Schiene 12 mit dem Abdichtelement 13 in die in Fig. 2 dargestellte Dichtstellung bewegt.

[0010] Das Abdichtelement 13 hat in dem in den Figuren 1 und 2 dargestellten Ausführungsbeispiel drei flache, streifen- oder leistenförmige Zungen, von denen sich eine mittlere Zunge 14 in der Bewegungsebene 5 erstreckt, während die äußeren Zungen 15 und 16 im Ruhezustand parallel dazu verlaufen. Zwischen den Zungen 14 bis 16 sowie zwischen der Unterseite der Schiene 12 und der Zunge 14 ist das Abdichtelement 13 zu einem im wesentlichen rautenförmigen Mittelstück 18 geformt, welches gemäß Fig. 4 zur Vergrößerung der Schalldämmung mit einem spezifisch schweren Material, beispielsweise in Form eines Stahlstabes 17. gefüllt sein kann. Die Länge der Schenkel 16, 14 und 15 ist - ähnlich der der Schenkel 10, 11 des Einbauprofils 4 wegen der Schräglage der Bodendichtung 3 abgestuft. [0011] Gehalten wird das Abdichtelement 13 mit Hilfe von zwei kopfverdickten Rippen 19, welche in entsprechende Nuten 20 (Fig. 6) in der Schiene 12 eingeschoben sind. Nach oben setzen sich die außenliegenden Zungen 15, 16 des Abdichtelements 13 - gewissermaßen jenseits der Rippen 19 - in ähnlich zungenförmigen, aber im Querschnitt spitz zulaufenden Ansätzen 21 fort, welche an den Innenflächen der Schenkel 10, 11 des Einbauprofils 4 mit Anlagenocken 26 anliegen und sich im Schließzustand der Tür, also in der Dichtstellung der Bodendichtung, durch entsprechende Formgebung einerseits der Schiene 12, andererseits des Abdichtelements 13 infolge einer auswärts gerichteten, spreizenden Schwenkbewegung noch dichter an jene Innenflächen anlegen und einen umgelenkten Schalldurchtritt durch die Bodendichtung unterbinden. Fig. 6 zeigt diese Maßnahme in vergrößertem Maßstab und die erwähnte Funktion (nicht die tatsächliche Lage der Ansätze 21) in gestrichelter Darstellung.

[0012] Die Fig. 2 und 5 machen deutlich, daß im Schließzustand der Tür die den Dichtungen 22 (Fig. 3) zugewandte Zunge 15 des Abdichtelements 13 jedenfalls im Bereich dieser Dichtungen abknickt und damit in der Ebene der Anschlagflächen 23 dichtend an diesen bzw. den darauf angebrachten Dichtprofilen 22 anliegt, zugleich aber mit ihrem Unterrand - ebenso wie die Zungen 14 und 16 mit ihren Unterrändern - an den Boden 24 gedrückt wird. Auf diese Weise ist umlaufend

und nicht unterbrochen ein Dichtschluß zwischen den Dichtprofilen 22 im Bereich des die Anschlagflächen 23 tragenden Bauelements - etwa einer Türzarge 25 - und dem Abdichtelement 13 der Bodendichtung 3 erzielt.

[0013] Die Bodendichtung der Fig. 4 und 5 unterscheidet sich von der der Fig. 1 und 2 nur durch die oben erwähnte Füllung des Mittelstücks 18 des Abdichtelements 13 mittels eines Stahlstabes 17 zwecks besserer Schalldämmung. In Fig. 6 ist die Zunge 16 verkürzt, um sicherzustellen, daß die Zunge 15 im Schließzustand Kontakt zum Boden 24 bekommt; die Zunge 14 kann mit Hilfe des Mittelstücks 18 einfedern.

Patentansprüche

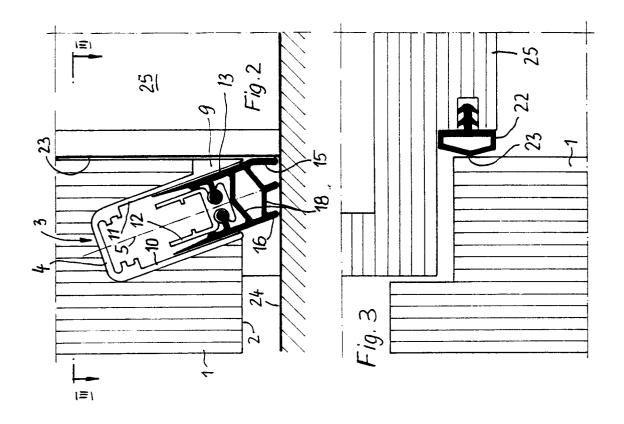
 Automatische Tür-Bodendichtung (3) im unteren horizontalen Randbereich eines Türblatts (1), welches im Schließzustand entlang seines horizontalen Oberrandes und seiner vertikalen Seitenränder dichtend an in einer Ebene liegenden ortsfesten Anschlagflächen (23) anliegt,

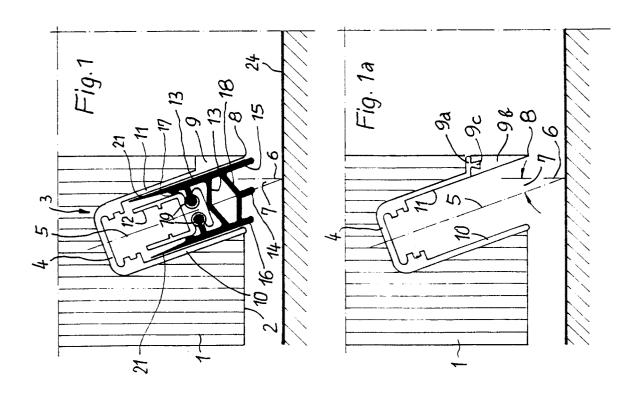
mit einer ein leistenförmiges Abdichtelement (13) tragenden Schiene (12), die mit Hilfe einer beim Schließen des Türblatts (1) betätigten Mechanik gegen Federkraft aus einer nach oben zurückgezogenen Ruhestellung (Fig. 1, 4) in eine abgesenkte Dichtstellung (Fig. 2, 5) bewegbar ist,

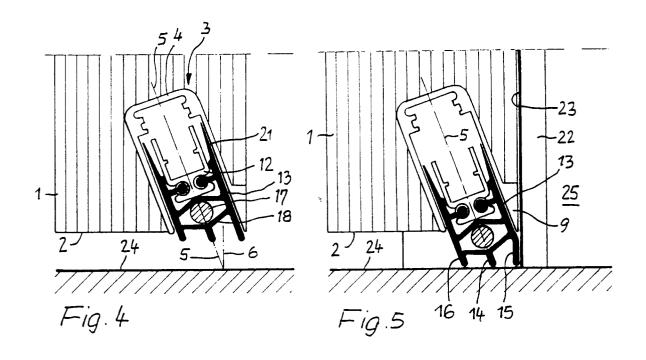
dadurch gekennzeichnet, daß die Schiene (12) mit dem Abdichtelement (13) um ihre Längsachse gegenüber der Türebene gekippt am Türblatt (1) befestigt ist, derart, daß die Bewegungsebene (5) der Schiene (12) einen spitzen Winkel (7) mit der Türebene (6) einschließt und das Abdichtelement (13) im Schließzustand in die Ebene der ortsfesten Anschlagflächen (23) ragt.

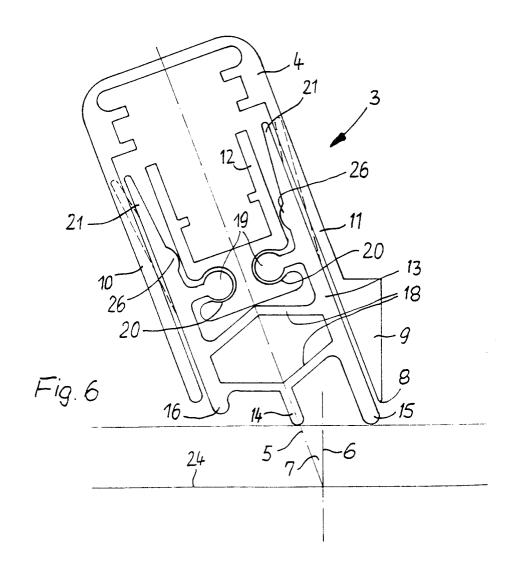
- 40 2. Bbdendichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Schiene (12) mit der Mechanik in einem Einbauprofil (4) geführt und dieses in das Türblatt (1) von dessen Unterseite (2) her schräg eingelassen ist.
 - Bbdendichtung nach Anspruch 2, dadurch gekennzeichnet, daß die den Anschlagflächen (23) zugewandte Unterkante des Türblatts (1) mit der entsprechenden Kante (8) des Einbauprofils (4) zusammenfällt.
 - Bbdendichtung nach Anspruch 3, dadurch gekennzeichnet, daß der die Unterkante (8) aufweisende Randbereich des Türblatts durch einen im Querschnitt dreieckförmigen Ansatz (9) am Schenkel (11) des Einbauprofils (4) ersetzt ist.
 - 5. Bbdendichtung nach Anspruch 4,

45


dadurch gekennzeichnet, daß der Ansatz (9) aus einer von der Kante (8) beabstandeten, abgeknickten Abschnitt (9a) des Schenkels (11) des Einbauprofils (4) und einem an diesem befestigten Formstreifen oder Endstücken (9b) aus Kunststoff oder dergleichen besteht.


- 6. Bodendichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das aus elastischem Werkstoff bestehende Abdichtelement (13) mehrere Zungen (14 bis 16) aufweist, die sich in Längsrichtung parallel zueinander von einem Mittelstück (18) nach unten erstrecken und in der Bewegungsrichtung (Ebene 5) eine ihrer Position am Mittelstück (18) sowie der Schräglage der Schiene (12) 15 entsprechende Länge haben.
- Bodendichtung nach Anspruch 6, dadurch gekennzeichnet, daß am Abdichtelement (13) zwischen den äußeren Zungen (15, 16) ein 20 Stützprofil (Mittelstück 18) angeformt ist, welches die mittlere Zunge (14) trägt.
- 8. Bodendichtung nach Anspruch 7, dadurch gekennzeichnet, daß die den Anschlagflächen (23) zugewandte äußere Zunge (15) beim Schließvorgang und Absenken des Abdichtelements (13) an den Anschlagflächen (23) elastisch abknickt und an die Anschlagflächen anlegt.
- Bodendichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die den Anschlagflächen (23) abgewandte Zunge (16) etwas verkürzt ist.
- 10. Bodendichtung insbesondere nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die außenliegenden Zungen (15, 16) des Abdichtelements (13) sich über formschlüssige Befestigungsansätze (Rippen 19), mit denen sie an der Schiene (12) gehalten sind, hinaus nach oben in ebenfalls zungenförmigen Ansätzen (21) fortsetzen, welche in Zwischenräume zwischen der Schiene (12) und dem Einbauprofil (4) ragen und sich im Schließzustand an die Innenflächen der Schenkel (10, 11) des Einbauprofils (4) anlegen.
- Bodendichtung nach Anspruch 10, dadurch gekennzeichnet, daß an den Ansätzen (21) innenseitig Anlagenocken (26) angeformt sind, welche sie am Einbauprofil (4) abstützen.


55


30

35

