
European Patent Office
^ ̂ ̂ ^ I ̂ ̂ ̂ ̂ II ̂ II ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ I ̂

�
Office europeen des brevets E P 0 9 1 8 2 9 5 A 2

(12) EUROPEAN PATENT A P P L I C A T I O N

(43) Date of publication: (51) |nt CI.6: G 06 F 1 7 / 3 0
26.05.1999 Bulletin 1999/21

(21) Application number: 98308957.4

(22) Date of filing: 02.11.1998

(84) Designated Contracting States: (72) Inventor: Wu, Jiong
AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU Fremont, California 94555 (US)
MC NL PT SE
Designated Extension States: (74) Representative:
AL LT LV MK RO SI Cross, Rupert Edward Blount et al

BOULT WADE TENNANT,
(30) Priority: 03.11.1997 US 963372 27 Furnival Street

London EC4A1PQ (GB)
(71) Applicant: Yahoo, Inc.

Santa Clara, California 95051 (US)

(54) Information retrieval from hierarchical compound documents

(57) A search query is applied to documents in a
document repository wherein the documents are organ-
ized into a hierarchy. A search engine searches the hi-
erarchy to return documents which match a query term
either directly or indirectly. A specific embodiment of the

search engine organizes the query term into individual
subterms and matches the subterms against docu-
ments, returning only those documents which indirectly
match the entire search query term and directly match
at least one of the query subterms.

Printed by Jouve, 75001 PARIS (FR)

1 EP 0 918 295 A2 2

Description

COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent docu-
ment contains material which is subject to copyright pro-
tection. The copyright owner has no objection to the xe-
rographic reproduction by anyone of the patent docu-
ment or the patent disclosure in exactly the form it ap-
pears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to the field of
electronic document storage and management. More
specifically, one embodiment of the invention provides
for a system of storing compound documents and
searching the stored compound documents.
[0003] Information has recently undergone a transi-
tion from a scarce commodity to an overabundant com-
modity. With a scarce commodity, efforts are centered
on acquiring the commodity, whereas with an overabun-
dant commodity, efforts are centered on filtering the
commodity to make it more valuable. The prime exam-
ple of this phenomenon is the explosion of information
resulting from the growth of the global internetwork of
networks known as the "Internet." Networks and com-
puters connected to the Internet pass data using the
TCP/IP (Transport Control Protocol/Internet Protocol)
for reliably passing data packets from a source node to
a destination node. A variety of higher level protocols
are used on top of TCP/IP to transport objects of digital
data, the particular protocol depending on the nature of
the objects. For example, e-mail is transported using the
Simple Mail Transport Protocol (SMTP) and the Post Of-
fice Protocol 3 (POP3), while files are transported using
the File Transfer Protocol (FTP). Hypertext documents
and their associated effects are transported using the
Hypertext Transport Protocol (HTTP).
[0004] When many hypertext documents are linked to
other hypertext documents, they collectively form a
"web" structure, which led to the name "World Wide
Web" (often shortened to "WWW" or "the Web") for the
collection of hypertext documents that can be transport-
ed using HTTP. Of course, hyperlinks are not required
in a document for it to be transported using HTTP. In
fact, any object can be transported using HTTP, so long
as it conforms to the requirements of HTTP.
[0005] In a typical use of HTTP, a browser sends a
uniform resource locator (URL) to a Web server and the
Web server returns a Hypertext Markup Language
(HTML) document for the browser to display. The brows-
er is one example of an HTTP client and is so named
because it displays the returned hypertext document
and allows the user an opportunity to select and display
other hypertext documents referenced in the returned

document. The Web server is an Internet node which
returns hypertext documents requested by HTTP cli-
ents.
[0006] Some Web servers, in addition to serving static

5 documents, can return dynamic documents. A static
document is a document which exists on a Web server
before a request for the document is made and for which
the Web server merely sends out the static document
upon request. A static page URL is typically in the form

10 of "host. subdomain. domain. TLD/path/file" or the like.
That static page URL refers to a document named "file"
which is found on the path "/path/" on the machine which
has the domain name "host. subdomain. domain. TLD".
An actual domain "www.yahoo.com", refers to the ma-

15 chine (or machines) designated "www" at the domain
"yahoo" in the ".com" top-level domain (TLD). By con-
trast, a dynamic document is a document which is gen-
erated by the Web server when it receives a particular
URL which the server identifies as a request for a dy-

20 namic document.
[0007] Many Web servers operate "Web sites" which
offer a collection of linked hypertext documents control-
led by a single person or entity. Since the Web site is
controlled by a single person or entity, the hypertext doc-

25 uments, often called "Web pages" in this context, have
a consistent look and subject matter. Especially in the
case of Web sites put up by commercial interests selling
goods and services, the hyperlinked documents which
form a Web site will have few, if any, links to pages not

30 controlled by the interest. The terms "Web site" and
"Web page" are often used interchangeably, but herein
a "Web page" refers to a single hypertext document
which forms part of a Web site and "Web site" refers to
a collection of one or more Web pages which are con-

35 trolled (i.e., modifiable) by a single entity or group of en-
tities working in concert to present a site on a particular
topic.
[0008] With all the many sites and pages that the
many millions of Internet users might make available

40 through their Web servers, it is often difficult to find a
particular page or determine where to find information
on a particular topic. There is no "official" listing of what
is available, because anyone can place anything on
their Web server and need not report it to an official

45 agency and the Web changes so quickly. In the absence
of an official "table of contents", several approaches to
indexing the Web have been proposed.
[0009] One approach is to index all of the Web docu-
ments found everywhere. While this approach is useful

so to find a document on a rarely discussed topic or a ref-
erence to a person with an uncommon first or last name,
it often leads to excessive numbers of "hits." Another
approach is to summarize and categorize web docu-
ments and make the summaries searchable by catego-

55 ry.
[0010] In either case, atypical search engine search-
es for search terms in each candidate document and
returns a list of the documents which meet the search

25

30

35

40

45

50

2

3 EP 0 918 295 A2 4

criteria. Unfortunately, the information to be gained from
the interrelationships of documents is lost. From the
above it is seen that an improved search system which
takes into account the interrelationships between docu-
ments is needed.

SUMMARY OF THE INVENTION

[0011] An improved search system which takes into
account interrelationships among documents by
searching across links is provided by virtue of the
present invention. In one embodiment of the present in-
vention, the documents are references in a hierarchical
document repository used for keyword and topical
searches. A search query is applied to the hierarchy,
which returns documents which directly match a search
query term or indirectly match the search query term by
being a child document in the hierarchy from a parent
document matching all or part of the query term. In a
preferred embodiment, a returned document matches
at least one subterm of the query term directly.
[001 2] One advantage of the present invention is that
it provides for efficient storage of hierarchical data while
allowing searches to be performed taking into account
relationships among data elements in a hierarchy.
[0013] A further understanding of the nature and ad-
vantages of the inventions herein may be realized by
reference to the remaining portions of the specification
and the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 is a schematic diagram of a client-server
system having a search engine according to one em-
bodiment of the present invention.
[0015] FIG. 2 is a tree graph of documents corre-
sponding to parts of the document repository.
[0016] FIG. 3 is a more detailed view of elements of
the client-server system shown in FIG. 1, showing fur-
ther details of a document repository, a word index and
a search engine.
[0017] FIGS. 4(a)-(c) are examples of match lists
used by the search engine shown in FIG. 3.
[0018] FIG. 5 is a screen shot of a browser display of
search results according to one embodiment of the
present invention.
[0019] FIG. 6 is a flow chart of an AND operation per-
formed by a search engine.
[0020] FIG. 7 is a flow chart of an OR operation per-
formed by a search engine.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0021] The present invention relates to an apparatus
for searching for selected documents in a document re-
pository containing a large number of documents. A
search engine according to one embodiment of the

present invention receives a search expression and,
based on that search expression, searches for matching
documents in the document repository and returns ei-
ther the matching documents or a list of references to

5 each of the matching documents. Where the search ex-
pression is a complex logical function of two or more
subterms, the search engine will return documents
which match some of the subterms only indirectly. For
example, the search expression may be an "AND" of

10 three subterms. Instead of only returning documents
containing all three subterms, the search engine will al-
so return documents which only have one or two of the
subterms, if the remaining subterms are found any-
where in documents along the hierarchical path from the

is document to a root node. In some variations, documents
with only indirect matches for all of the subterms are re-
turned, but in the preferred embodiment, a returned doc-
ument must match directly at least one subterm.
[0022] The present invention is described herein with

20 reference to a particular type of document, however it
should be understood that the present invention and the
embodiments described herein are usable with many
other types of documents.
[0023] The documents described in the main example

25 herein are records in a search database. The search da-
tabase is organized as a hierarchical structure of cate-
gories and site references. The structure might be au-
tomatically generated, but in the embodiment known as
the Yahoo! search database, the categories and site ref-

30 erences are placed in appropriate locations in the hier-
archy by an editorial staff using the experience and sug-
gestions from site submitters.
[0024] The categories and site references are collec-
tively referred to as the nodes of the structure. Some

35 category nodes are parent nodes, in that they point to
other category nodes (child nodes) representing more
specific subcategories of the category represented by
the parent node. Site nodes are child nodes from a cat-
egory node (although a particular site might be listed in

40 multiple categories and be a child node in several sub-
trees).
[0025] Herein, a node might be described as being a
parent, child, ancestor or descendant node of another
node. Relative to a node N, a parent node is the node

45 one level above node N in the hierarchy, N's child nodes
are nodes one level below node N in the hierarchy, N's
ancestor nodes are nodes at any level above node N,
and N's descendant nodes are nodes at any level below
node N. Typically, the hierarchy has a root node which

so has no ancestor nodes and has all other nodes as de-
scendant nodes.
[0026] In the embodiment described here, a category
node can have category nodes, site nodes or both as
child nodes, but site nodes do not have child nodes.

55 Some category nodes might have no child nodes, but
such empty categories are preferably deleted or hidden.
Also, not all category nodes are required to have child
nodes, but preferably empty categories are deleted or

3

5 EP 0 918 295 A2 6

hidden to avoid unnecessary clutter.
[0027] FIG. 1 shows an example of a client-server
system 10 in which such a search database is queried.
System 10 is shown comprising an HTTP client 12 con-
nected to a search server 14 via Internet 16. Search
server 1 4 is coupled to a document repository 20 and a
word index 22 and responds to a search request 30 with
a search result 32.
[0028] In this specific example, HTTP client 12 is a
browser, but other HTTP clients, such as search back-
end processors, could be used instead of a browser. Al-
so, it should be understood that system 1 0 could be im-
plemented with Internet 16 replaced with an alternate
communications channel between HTTP client 12 and
search server 14. Furthermore, it should be understood
that while search server 14 is an HTTP server, it could
handle requests using an entirely different protocol, so
long as the different protocol is understood by HTTP cli-
ent 1 2 or its substitute. For brevity, only one HTTP client,
one request and one response is shown, but it should
be understood that, in practice, many clients will be ac-
cessing search server 14 substantially simultaneously,
each with one or more search requests. In fact, if war-
ranted, the tasks of search server 14 might be spread
over multiple machines. If the tasks are spread over mul-
tiple machines, the preferred arrangement is to have the
multiple machines presented to the clients as a single
logical machine, to simplify client access.
[0029] In operation, a user at a browser, or other HT-
TP client, sends a request 30 containing a search ex-
pression to search server 14 where search server 14
parses the search expression and, if the search expres-
sion is in a valid format, uses the search expression to
find documents in document repository 20 which match
the search expression. Search server 14 responds with
either a list of matching documents or the documents
themselves. Word index 22 is used to speed up the
search for documents in document repository 20.
[0030] FIG. 2 shows how the documents in document
repository 20 are logically arranged. In this example,
documents are elements of a search database which is
used to locate WWW sites of interest. Each document
represents a topical category or a site and each docu-
ment is shown as a record 38 in a hierarchical structure
being in parent or child relation with other records. Each
record 38 is shown with a document number 40 and con-
tent 46. In the case of a document which is a category,
content 46 is the title of the category and other text (not
shown), such as hidden keywords, synonyms, descrip-
tions, etc., while the content of documents which refer
to sites includes a title, a URL, a description, hidden key-
words, synonyms, etc. Of course, some of these ele-
ments can be blank, where appropriate or desired. As
explained above, in the Yahoo! search database, the
documents are positioned in the hierarchical structure
by an editorial staff. In a typical procedure, a site pro-
moter will submit site information to the editorial staff,
such as a site title, site URL, proposed location in the

hierarchy, description, etc. The editorial staff then eval-
uates the submission, changing the suggested location
if a more appropriate location exists, cross links as
needed, and adds, in some cases, hidden keywords,

5 synonyms and/or a document importance weighting val-
ue.
[0031] Links between records are shown in FIG. 2,
with each link connecting a more general topic (parent
node) with a more specific topic or a site reference (child

10 node). For example, document #5 is a site reference to
a WWW site relating to "Go", which is a board game and
therefore a subtopic of the "Board Games" topic, which
is a subtopic of the "Games" topic, which is a subtopic
of the "Recreation" topic, and so on.

is [0032] While some site references, such as docu-
ments #5 and #6, are nodes off of a leaf category (i.e.,
one with no child category nodes), other documents,
such as document #21 , is a node off of a nonleaf cate-
gory. Collectively, the links define trees and subtrees

20 which, as explained below, are numbered so that the
documents in any subtree are consecutively numbered
following the document number of the document at the
top of the subtree.
[0033] Referring now to FIG. 3, a different view of the

25 information shown in FIG. 2 is presented. FIG. 3
presents the information as it is likely to be stored, with
records 38 in a data table corresponding to nodes of the
tree structure in FIG. 2. It should be understood that the
data structures of FIG. 3 represent one of many possible

30 data arrangements. Only a few records 38 are shown,
but in practice many millions of records might be
present.
[0034] The fields shown for records 38 are a docu-
ment number 40, a subtree pointer 42 to a last node in

35 a subtree (which can either be stored, generated on the
fly as needed or obtained from a memory array), a par-
ent pointer 44 to a parent node, the text of the document
represented by the record (shown here as a title 46 and
a description 47), an optional set 48 of one or more key-

40 words associated with the document, and a boolean in-
dication 50 of whether a record is for a category or a
site. As with the view of FIG. 2, some nodes point to
WWW sites and other nodes represent categories in a
hierarchical topical category structure in which site ele-

45 ments are associated with one or more category ele-
ments. It should be apparent from this description, that
while the example is a tree structure of topics and site
references, the system described herein can search
more complex documents.

so [0035] For category nodes, record 38 includes a title
46, a description 47 of the category, and possibly a set
of hidden keywords 48. For site nodes, the record in-
cludes a title, a description of the cite (possibly blank),
and a URL pointing to the site/page referenced. Togeth-

55 er, document number 40, subtree pointer 42 and parent
pointer 44 describe the linkage between records. For ex-
ample, document #2 has "8" as its subtree pointer, indi-
cating that all the documents numbered from 3 (the doc-

4

7 EP 0 918 295 A2 8

ument number plus one) to 8 (the subtree pointer value)
are in the subtree below document 2, and "1 " as its par-
ent pointer, indicating that document 1 is the parent doc-
ument of document 2. The other fields of the record 38
for document #2 indicate that its content is "Games", it
has no keywords listed and it is a category (as opposed
to a site reference). The specification of an entire sub-
tree using just the last document number in the subtree
is possible because of the particular assignment order
of document numbers.
[0036] Document repository 20 includes the neces-
sary processing logic to return documents requested by
document number and either document repository 20 or
search engine 36 contains processing logic to search a
record for an instance of a field value which matches a
query term.
[0037] Referring now to word index 22 shown in FIG.
3, a small subset of the contents of word index 22 is
there shown. Word index 22 is organized as a plurality
of records, with one record per word occurring in the
documents of document repository 20, sorted in alpha-
betical order by word. Each record 52 in word index 22
is shown with a tag identifying the word, followed by a
list of document numbers. These document numbers
represent the list of documents containing the word.
Where a word is so common as to be a search term of
limited usefulness, such as the word "the", its record
does not list all of the documents containing the word,
but just an indication that the word should be ignored.
[0038] In the preferred embodiment, search engine
36 uses a document profile array 49 to improve search
speed. Typically, array 49 is stored in memory for quick
access. Array 49 has one record per document and
each record includes fields for a document number, a
document repository pointer, a time stamp, a child
record range and an importance weighting value. The
document numbers correspond to document numbers
of document repository 20 and the document repository
pointers correspond to physical disk locations of the
documents in document repository 20, so that array 49
can be used to perform some operations on documents
which don't require an access of document repository
20 itself. The time stamp identifies the time that the doc-
ument was last modified. The range of children field in-
dicates which records are below the instant document
in the hierarchy, so that search engine 36 can quickly
build a match list without having to refer to document
repository 20 too often.
[0039] The importance weighting value is a value set
automatically, or by an editorial staff, to indicate how val-
uable and/or relevant a particular category or site is rel-
ative to other categories and sites. The importance
weighting value of a record might be adjusted based on
external events or the significance of a site. For exam-
ple, a site related to a particular group which is currently
in the news might be given a higher weighting, or a site
might be given a higher weighting if the editorial staff
determines that the site is a popular or well-designed.

Although the category records in array 49 shown in FIG.
3 do not have weighted categories, weighted categories
might be useful. For example, during boating season,
the weighting for document #9 (category "boating"),

5 might be increased. A record's weighting comes into
play when multiple documents are being displayed as a
search result, as the display documents are display in
order by their weighting values. Of course, other weight-
ing factors, as described below, might override the im-

10 portance weighting or be combined with it to form an
overall weighting.
[0040] The use of document repository 20 and word
index 22 will now be described with reference to an ex-
ample. In this example, a user is searching for docu-

15 ments and presents a search request with a query string
"The game of Go". Search engine 36 looks up each of
the terms in word index 22. Because they are so com-
mon, "the" and "of" are either ignored by search engine
36 or word index 22 returns instructions to ignore those

20 words, as described above. Search engine 38 then
reads the document lists for "game" and "go", generates
a match list for each term and applies an "AND" operator
to the match lists as described below in connection with
FIG. 6.

25 [0041] A match list is a list of all the documents that
contain the list's match tag either directly or indirectly. A
match tag is a word or other search term or search ele-
ment, depending on what the query term is. FIG. 2 illus-
trates why indirect matches are important. The example

30 used throughout this description is a search for catego-
ries and sites related to the game of "Go", a well-known
board game using black and white markers. Since the
name of the game happens to be the same as a common
word in the English language, searching for "go" would

35 result in too many unrelated matches. However, as can
be seen, searching for "go" and "game" in the same doc-
ument would result in no matches. Therefore, each doc-
ument needs to be searched as if it contained all of the
searchable elements (the searchable elements are

40 words in this case) of all of its ancestor documents. Of
course, the content of all ancestor documents can be
inserted into each of the descendant documents in its
subtree, but with large trees, this approach is wasteful
and impractical.

45 [0042] Referring again to FIGS. 2-3, each item on a
match list refers to single document, in the case of a
direct match, or a range of documents, in the case of an
indirect match. FIG. 4 shows several examples of match
lists. The first, FIG. 4(a) is a match list 60 which corre-

50 sponds to the particular documents shown in FIGS. 2-3.
Match list 60 contains three items, or match records.
The first is a direct match record indicating that docu-
ment #3 matches the match tag and the second is an
indirect match record indicating that documents #4

55 through #8 indirectly match the match tag.
[0043] In this example, since the match tags are text,
"matching" occurs when the document contains the
match tag as a string or substring in the document's con-

5

9 EP 0 918 295 A2 10

tent. In some cases, the only form of substrings which
are recognized are "right hand wildcard" substrings,
which are of the form of "word*". As can be seen from
FIGS. 2-3, document #3 does indeed directly match the
match tag, "board", of match list 60. Documents #4
through #8 do not contain the word "board" directly, but
they are child documents/nodes from a document/node
which does contain the word. Because they are children
from a parent which contains the word and the children
do not contain the word, they are therefore indirect
matches.
[0044] Match list 60 has a third match record, "null",
which simply indicates the end of the match list. The use
of a null item at the end of a list is a well-known comput-
ing technique and many other list handling techniques
can be used in place of the particular one described
here.
[0045] The direct match records in a match list come
from word index 22. The indirect match records are ob-
tained by examining the document record in document
repository 20 or a document summary record in array
49 for each direct match. If a direct match document
record indicates that the document has a subtree, an
indirect match record is created for the document range
in the subtree. Where a document in the subtree is also
a direct match, it is excluded from the indirect match
range (which may result in a range being split over two
indirect match records). As each direct match is added
to a match list, the match list is checked to determine if
an indirect match (a range) already on the match list
overlaps the direct match. This occurs where the match
term appears in both an ancestor document and a de-
scendant document. Because ancestor documents
have lower document numbers than their descendants,
the ancestor document is processed first. A direct match
record is created for the ancestor document and then
an indirect match record is created for the group of de-
scendant documents below the direct match document.
When the descendant direct match document is proc-
essed, it too will be listed in a direct match record, and
therefore should not be included in the range of an indi-
rect match. To keep each indirect march associated with
only one range of documents, the indirect match record
is split into two indirect match records, one on each side
of, and excluding, the descendant direct match docu-
ment. Of course, if the descendant document is at one
border of the indirect range, only one new indirect match
record will be created. That one new indirect match
record would simply be the indirect range reduced by
one document number at the border.
[0046] This is illustrated in FIGS. 4(b)-(c). A match
record 62, shown in FIG. 4(b), has a direct match record
for document 12 and an indirect match record for docu-
ments #13 to #17. If documents #15 and #16 were
changed such that they contained the match tag directly,
the subtree would be represented by two indirect match-
es, one on each side of the direct match. Of course, if
there were no matches on one side of the direct match,

only one indirect match record would be necessary.
[0047] It should be noted that one of the document
ranges, "17-17", contains only one document. This is to
distinguish indirect match records from direct match

5 records. Of course, alternatives arrangements can be
used. For example, in a simple case, each match record
could comprise just a flag and a document number,
where the flag indicates whether the document number
refers to a direct or indirect match. For direct matches,

10 the single number would be the number of the matching
document and for indirect matches, the number is the
number of the last document of the range. This is not
ambiguous where the first number of the range is the
number following the number of the immediately pre-

15 ceding direct match record. This will be the case unless
document numbers are missing, because the docu-
ments were ordered so as to have this property.
[0048] Referring backto FIG. 3, in some systems, de-
pending on how often documents are changed and how

20 often search terms are used, both direct matches and
indirect matches might be precalculated and stored in
records 52. Otherwise, they are created on the fly as
needed. If that is done, search engine 36 need not ac-
cess document repository 20 unless a search query re-

25 quires an examination of the position of words in the
documents or other field information which cannot be
obtained from word index 22. An advantage of using
word index 22 is that the match tags are in order for quick
searching given a search request.

30 [0049] Once a match list is obtained or generated by
search engine 36, it returns an output list 31 . Output list
31 can be the listed documents themselves, or just the
document numbers. If output list 31 is the documents
themselves, and it is appropriately formatted, output list

35 31 might be the search result 32 which is sent to browser
12 (see FIG. 1).
[0050] FIG. 5 shows an example of a display 53 of a
search result which might result from the query string:
"The game of go". On display 53, matching category

40 documents 54 are shown above, and separated from,
matching site documents 58, shown with their paths 56
through the category tree. FIG. 5 represents an actual
search through the category structure and site listings
of Yahoo!, Inc., the assignee of the present application.

45 For clarity, not all the matches shown in FIG. 5 are rep-
resented in other figures and not all of the actual 177
site matches found are shown in FIG. 5.
[0051] Several ease-of-use features of display 53
should be noted. Each of the "hits" or matches (54, 58)

so are shown with a concatenation of titles of categories
defining a path to the match. This provides the user with
context. Examples of this are shown by matching cate-
gory documents 54 shown in FIG. 5. To further improve
readability, matching documents which are children

55 nodes from a matching document are not shown. If they
were, all of the records under matching category docu-
ments 54 would have been shown.
[0052] Now that match lists, with direct and indirect

6

11 EP 0 918 295 A2 12

match records, and their generation have been de-
scribed, the application of operations, such as "AND",
"OR", "ADD" and "SUBTRACT" on match lists to form
other match lists will now be described. These opera-
tions are useful where a search engine needs to gener-
ate a match list for a complex search expression which
contains a plurality of search subterms where a match
list is available for each of the search subterms. Contin-
uing the example described above, the search engine
might combine the match lists for the search terms "go"
and "game" using an AND operator to arrive at a match
list (or document list) for the search expression "go AND
game".
[0053] FIG. 6 is a flow chart of a process of "AND"ing
two or more match lists to generate a new match list. As
will be apparent, the resulting match list can then be
used to generate search results or can be used as an
input to subsequent logical operations on match lists. If
subsequent logical operations are not going to be done,
the output could simply be a list of documents. In FIG.
6, the steps are labeled S1, S2, and so on, generally
representing the order of execution of the steps. As will
be apparent from reading this description, other ar-
rangements of the steps may perform substantially the
same function to achieve substantially the same results.
[0054] The need for "AND"ing two or more match lists
might come about where a search string contains an ex-
pression of the form "expression_A AND expression_B
AND One match list is obtained for "expression_A"
indicating the documents that contain that subterm, an-
other for "expression_B", and so on. The resulting
match list is a list of all the documents which contain all
of the "AND"ed expressions and directly contain at least
one of the search subterms. It should be apparent that
other variations of these requirements can be handled
by modifications of this process which should be appar-
ent after reading this description.
[0055] In broad terms, the process described in FIG.
6 is an efficient process for scanning a plurality of match
lists to find which documents are found in all of the match
lists and found in at least one direct match record. To do
this, the process involves first locating a direct match
record in one match list and then checking all other
match lists to determine if the document is found on
those lists. When one match list is found not to have the
document on it, a document cursor is incremented to the
next document in the match list.
[0056] Referring again to FIG. 6, process variables
are initialized at step S1. A loop counter, LOOP_CNT,
is initialized to zero. The use of the loop counter is ex-
plained below. In addition, a document cursor (D_CUR)
which points to documents in the match lists, is set equal
to one, a collection counter (COLL_CNT) which counts
the number of matches found, is set to zero, and a list
pointer (L_PTR) which points to one of the match lists,
is set to point to one of the match lists. L_PTA may, but
need not, be pointed to the match list for the first listed
subterm being "AND"ed. The match list pointed to by

L_PTR is referred to herein as the "current match list"
or the "current list".
[0057] At step S2, the current match record is ob-
tained from the current list. This is referred to herein as

5 the "current match record". The current match record is
the match record in the current list which has the lowest
document number greater than or equal to D_CUR. If
the current match list is empty, the process simply ends,
because no documents will be found. The first time

10 through step S2, D_CUR will be 1 , so the current match
record will be the first record in the current match list.
[0058] In step S3, the current match record is checked
to determine if it is a direct match or a group match. As
should be apparent from the description of FIG. 4, it is

is a simple matter to determine if a match record is a direct
match or not, because indirect, or group, matches are
expressed as ranges of one or more document num-
bers. If the current match record is a direct match, that
satisfies the requirement that there beat least one direct

20 match for the document represented by the current
match record. Prior to the first direct match being found,
COLL_CNT is zero, indicating that the process has not
yet begun "collecting" a document from the match lists.
If COLL_CNT is zero at step S4 and a direct match

25 record is found, COLL_CNT is set to 1 (S5) to indicate
that a direct match has been found.
[0059] Once the first direct match is found,
LOOP_CNT is reset to zero at step S6 (LOOP_CNT is
used to prevent infinite loops which might otherwise oc-

30 cur in some situations; its use is explained below),
L_PTR is rotated to point to a next match list (S7). Fol-
lowing that, the process loops back to step S2 with the
next match list being the current match list. At step S2,
a current match record is found in the now current match

35 list. As described above, the record found is the one with
the lowest document number equal or greater than
D_CUR and if none is found, the process terminates.
[0060] If COLL_CNT is nonzero at S4, indicating a
state of document collection, D_CUR is checked (S8)

40 against the document number of the current match
record. If they are the same, that indicates that the doc-
ument being collected from the prior match list is the
same as for the now current match list. If that is the case,
COLL_CNT is incremented (S9) to indicate that another

45 match has been found. If less than all of the N match
lists have been processed, COLL_CNT will be less than
N, so the process continues at steps S6/S7 where the
next match list is made the current match list. This may
continue until COLL_CNT is equal to N.

so [0061] When COLL_CNT reaches N, it means that the
document number equal to D_CUR was found in all N
of the match lists and therefore is a document number
which should be in the output match list. Consequently,
the current match record is output (S10) and the process

55 continues at steps S6/S7 (although the process could
also continue by looping back to step S2 without chang-
ing the current match list). At step S10, COLL_CNT is
reset to zero for the next cycle of document number

7

13 EP 0 918 295 A2 14

searching.
[0062] If, at step S8, the document number of the cur-
rent match record is not equal to D_CUR, it is because
the current match list did not have a match record with
a document number equal to D_CUR and a greater doc-
ument number was chosen. In that case, a current doc-
ument is still being collected, but it is the new, greater
document number. D_CUR is set to that new document
number (S11). To keep track of how many match lists
have this new document number, COLL_CNT is reset
to one (S5) and the process continues as described
above.
[0063] If, at step S3, the current match record is a
group match instead of a direct match, the processing
of the record depends on the state of the process, i.e.,
whether or not a document is being "collected". This is
determined by checking COLL_CNT (512). If
COLL_CNT is nonzero, a document is being collected,
in which case the current match record is compared to
D_CUR (S13). If D_CUR is within the range of the cur-
rent match record (which must be a group record to get
to this step), then COLL_CNT is incremented (S9) and
the next list is checked, as described above.
[0064] If, at step S1 2, COLL_CNT is zero, the process
continues at step S14. Also, if at step S13, D_CUR is
not within the range of the match record, the process
continues at step S1 4 after setting COLL_CNT to zero,
to indicate that no document is being collected. At step
S14, LOOP_CNT is incremented and compared to N
(S1 5). If LOOP_CNT is not equal to N, the process con-
tinues with the next list at step S7. If LOOP_CNT is equal
to N, it is an indication that all N lists were examined and
a match was found in each, but none of the matches
were direct matches; otherwise COLL_CNT would be
nonzero.
[0065] If LOOP_CNT is equal to N, it means that a
group (indirect) match record enclosing D_CUR was
found in each of the match lists and therefore no direct
match is present for D_CUR. Each of the groups enclos-
ing D_CUR is examined to find the group with the lowest
ending document number.
Alternatively, the search engine might just keep track of
the lowest ending document number as each matchlist
is examined. D_CUR is set to one greater than the low-
est ending document number (S16) and the search for
documents continues at step S6, where LOOP_CNT is
set to zero. Step S6 is positioned to reset LOOP_CNT
when a direct match is found, an output record is output
or LOOP_CNT reaches N and an infinite loop is avoided
by moving D_CUR past the end of a current group. In
the preferred embodiment, at least one direct match is
required. However, in an embodiment where a direct
match is not required, the process might output a match
record when LOOP_CNT reaches N.
[0066] Following this process to its conclusion, when
the end of a current match list is reached when passing
through step S2, the match records for documents
meeting the requirements of the AND operation would

have been output in the passes through step S10. Al-
ternatively, if no further logical operations are to be
done, the output could just be a listing of the document
numbers of matching documents.

5 [0067] Referring now to FIG. 7, a process for gener-
ating an output list of documents which match a search
expression of the form "A OR B OR ..." from the match
lists for the subterms A, B, etc., is there shown. In broad
terms, this process involves parsing the search expres-

10 sion into its subterms and identifying a match list for
each subterm, then combining the match lists into an
output list where each document on the output list con-
tains at least one of the subterms.
[0068] In the preferred embodiment, an additional re-

's quirement is imposed that each document on the output
list have at least one direct match, so there will be no
indirect matches, as a document meeting the additional
requirement will necessarily directly match the OR ex-
pression. In the preferred embodiment, the output list is

20 a list of direct matches each having an associated match
count. A match count indicates how many of the OR sub-
terms are matched, directly or indirectly, and therefore
is an indication of relative relevance of a particular doc-
ument.

25 [0069] In the flow chart of FIG. 7, the steps of the proc-
ess are labelled S30, S31 , etc., and are executed in nu-
merical order except where indicated. The process be-
gins at step S30, where the subterms are extracted from
the search expression and the match list counter, N, is

30 set equal to the number of subterms. At step S31 , one
match list is generated for each subterm, or the lists are
retrieved if they are preexisting lists.
[0070] At step S32, one cursor is initialized for each
match list with the cursor pointing to the first document

35 in its associated list. At step S33, the first document from
each list is added to an N-member heap.
[0071] Next, the heap contents are ordered by docu-
ment number (S34). In the preferred embodiment,
where the heap contains a direct match for a particular

40 document number and an indirect match with a range
beginning at that same document number, the direct
matches are ordered before the indirect matches. If the
heap has more than one indirect match with the same
starting document number, they are sorted by their end-

45 ing document number.
[0072] Once the heap is sorted, the top heap item is
removed from the heap (S35). If the top heap item is a
direct match item and the document number of that di-
rect match item is not already in the output list, it is added

so to the output list (S36) and the process continues by
adding another item to the heap from the match list of
the just removed item (S37). If the match list has no
more items, no new item is added to the heap. Eventu-
ally, the heap will empty out. If at step S38, the heap is

55 empty the process is done and terminates. Otherwise,
the process loops back to step S34, where the heap is
again ordered.
[0073] If the removed item is a direct match record

8

15 EP 0 918 295 A2 16

with a document number of a document already on the
output list, a match count for that document number is
incremented (S39) and the process continues at step
S34, as described above. If the removed item is an in-
direct match record, it is not placed on the output list,
but the match count is incremented (S39) for each doc-
ument which is within the document range of the indirect
match record and the process continues at step S34.
The indirect match is not added to the output list, be-
cause any documents in the document range for that
indirect match which meet the requirement of having at
least one direct match will already be on the output list.
This is because match records are taken from their
match list in order when they are placed on the heap
and the items on the heap are also taken off in order,
and direct matches are taken before indirect matches
which start at the same number.
[0074] When the heap is empty, the output list will con-
tain all of the documents which match the OR criteria.
All of the output list entries will be direct matches and
will have an associated match count. If the requirement
that each match contain at least one subterm directly is
not imposed, the output list might be in the form of a
match list suitable for further processing. The match
count can be used, alone or in combination with impor-
tance weighting, to order documents according to rele-
vance.
[0075] Turning now to the "ADD" and "SUBTRACT"
operations, these are much simpler. For "ADD" opera-
tions, the document numbers to be added to a list are
simply inserted. Of course, if a direct match is to be add-
ed to a list containing an indirect, group match enclosing
the document number of he direct match, the group
match record is split as described above. For "SUB-
TRACT" operations, match records are simply deleted
from the match list. If a document number is to be sub-
tracted where the document is within a range of a group
match record, the group match record is split as de-
scribed above.
[0076] The above description is illustrative and not re-
strictive. Many variations of the invention will become
apparent to those of skill in the art upon review of this
disclosure. For example, the hierarchical structure of
documents might be a web of documents on the Internet
instead of the hierarchical search structure described
above. The scope of the invention should, therefore, be
determined not with reference to the above description,
but instead should be determined with reference to the
appended claims along with their full scope of equiva-
lents.

Claims

1. A method of searching for documents stored in a
document repository, wherein documents contain
searchable elements and are organized into a doc-
ument hierarchy, the method comprising the steps

of:

providing a search expression to a search en-
gine, wherein the search expression is a logical

5 function describing a set of searchable ele-
ments;
generating a list of at least one match, where a
match over multiple documents is expressed as
a path in the hierarchy which links the multiple

10 documents; and
outputting the list as a search result.

2. The method of claim 1 , wherein the searchable el-
ements are words and documents and comprise at

is least some text.

3. The method of claim 1 , further comprising a step of
searching for direct matches or indirect matches,
wherein a direct match is a document which match-

20 es the search expression and an indirect match is
a document which only matches the search expres-
sion when contents of the indirectly matching doc-
ument are combined with contents of the indirectly
matching document's ancestor documents in the hi-

25 erarchy.

4. The method of claim 1 . wherein the step of search-
ing comprises a step of searching for components
of the search expression in an element index.

30
5. The method of claim 1 , further comprising a step of

assigning a document number to each document in
a hierarchical tree such that the document numbers
within any branch of the hierarchical tree are con-

35 secutive.

6. The method of claim 1 , wherein the search expres-
sion is a formula comprising operands and opera-
tors, wherein the operands comprise specified

40 searchable elements or wild cards and wherein the
operators comprise AND, OR, ADD or MINUS.

7. The method of claim 1, wherein a document is a
string representing a specific topic and the hierar-

45 chy is a hierarchy of topics.

8. A method of efficiently storing and searching hier-
archical data, comprising the steps of:

so organizing data elements into a hierarchy,
wherein each data element has a position in the
hierarchy and has ancestor data elements
above the position or descendant data ele-
ments below the position or both;

55 assigning a data element number to each data
element such that the data element number of
a data element is greater than a data element
number of any ancestor data element and is

9

17 EP 0 918 295 A2

less than a data element number of any other
data element which is not a descendant of the
ancestor data element and has a data element
number greater than the ancestor data element
number; and s
applying a search expression to the hierarchy
to identify data elements which match the
search expression either directly or indirectly,
wherein the search expression is matched di-
rectly when content of the data element alone 10
matches the search expression and is matched
indirectly when the data element does not
match directly, but the content of the data ele-
ment and at least one ancestor data element
together match the search expression. 15

20

25

30

35

40

45

50

55

10

EP 0 918 295 A2

HTTP Client

F I G . 1

11

k CO
\ m CQ

EP 0 918 295 A2

40 42 44 46 47 48 50

20

Document
Repository

Document

1 9 - Recreation Desc. Fun Cat.

2 8 1 Games Desc. - Cat.

3 8 2 Board Games Desc. - Cat.

4 6 3 Go Desc. - Cat.

5 - 4 Title /URL Desc. - Site

6 - 4 Title /URL Desc. - Site

7 8 3 Chess Desc. - Cat.

8 ... 7 Tournaments Desc. Contests Cat.

9 ... 1 Boating Desc. Sailing Cat.

38

38

38

Game: 2, 3. 19,21, Null

Gamele: 10, 12, Null

Gander: 39, 67, 102, Null

Go: 4, 20, 21 ,22 ,

Gobble: 82, 102, Null

The: Ignore

.52

.52

.52

,52

,52

, 5 2

49

The Game
of Go

Doc# DRPTR Time Stamp chMrerf lmPortance

1 xxx 00/00/0000 2-9
00:00

2 xxx . . . 3-8
3 xxx • • • 4-8
4 xxx ■ • • 5-6
5 xxx . . . 0 10
6 xxx . . . 0 5

7 ° - °

F I G . 3

13

EP 0 918 295 A2

6 0

Board: 3 — ► 4-8 Null (A)

6 2

X: 12 — ► 13-17 Null (B)

62*

X: 12 — 13-1 4 - * - 1 5 - * - 16 — M 7 - 1 7 — ►Null

F I G . 4

I4

EP 0 918 295 A2

^ - 5 3

FOUND 4 CATEGORY AND 177 SITE MATCHES FOR GO GAMES.

M
YAHOO! CATEGORY MATCHES (1-4 OF 4)

^RECREATION; GAMES; BOARD GAMES: GQ
^ ̂ -RECREATION; GAMES; BOARD GAMES; GO; INTERNET GO SERVERS
5KREGI0NAL; COUNTRIES: AUSTRALIA: RECREATION AND SPORTS: GAMES: BOARD SAMFS- m
^REGIONAL; COUNTRIES; UNITED KINGDOM; RECREATION AND SPORTS; GAMES; BOARD GAMES; 60

YAHOO! SITE MATCHES (1-21 OF 177)
3 ^BUSINESS AND ECONOMY; COMPANIES; GAMES

5fl
^GAME SELLERS -SELLERS OF CHESS, CHECKERS, GO AND OTHERS.

TeiiojLjj^s-reopie beorch- y j t y j ^ - 6 e j _ ^ - T o d o y s Web Events tChots- More jghoos

wp/r/0fQ) BW-3fYohoo! All rights reserved Send comments I bug reports to seanhjohooaik

EP 0 918 295 A2

Initialization: Set Loop Counter(LOOP_CNT) to 0,
Document Cursor (D_CUR) to 1 , Collection

Counter (COLL_CNT) to 0 and Point List Pointer
(L_PTR) to a Match List

If End of Current
List is Reached

J -

i

S1

Get Current Match Record
from Current List

Set D_CUR to
Current Match

COLL_CNT=1
S5

Output Current
Match Record and
Reset COLL_CNT

Increment LOOP CNT

S16

Set D-CUR Past Lowest
Ending Document

Number

S6

Reset LOOP_CNT to 0 Increment L_PTR to
Point to Next List

F I G . 6

I6

EP 0 918 295 A2

Start J
I

Parse OR Terms; Set N= Number of Subterms

Generate a Match List for Each "OR" Subterm

Assign a Cursor to Each Match List; Point
Cursor to First Document in Each List

S30

S31

S32

(Direct)

*aa Document to
Output List

- I G . 7

Ada hirst Document in Each List to
N-Member Heap

t

S33

Order Heap by Document Number

L

Remove Top Item from Heap

S34

S35

Y (Group)

increment Matching Score for
Referenced Documents

L
Add Next Item to Heap From
the List of the Moved Item, If

Available

S39

S37

S38

H e a p ^ ^ N
E m p t y ? /

7

	bibliography
	description
	claims
	drawings

