[Brief Description Of Drawings]
[0001]
Fig. 1a is a perspective view of the conventional bobbin.
Fig. 1b is a cross sectional view of the conventional bobbin.
Fig. 2a is a perspective view of the conventional bobbin where a coil is wound.
Fig 2b is a cross sectional view of the conventional bobbin where a coil is wound.
Fig. 3 is a perspective view of a core.
Fig. 4 is a perspective view of the conventional high frequency transformer.
Fig. 5a is a perspective view of bobbin of the present invention.
Fig. 5b is a cross sectional view of bobbin of the present invention.
Fig. 6 is an arrangement plan of a core which is installed at the bobbin.
Fig. 7 is cross sectional view of a high frequency transformer of a flyback method
of the present invention.
Fig. 8a is a circuit plan of the high frequency transformer same as the structure
in Fig. 9 and 7.
Fig. 8b is a circuit plan of the high frequency transformer which shows a structure
of forming supporting output power supply by the second supporting coil being wound
at the winding part of the second coil.
Fig. 8c a drawing which shows the physical structure of the second supporting coil
of fig. 8b.
Fig. 9 is a circuit plan of the high frequency transformer showing a winding of a
first coil and of a second coil.
Fig. 10 is a cross sectional view of the high frequency transformer of forward method
of the present invention.
Fig. 11 is a perspective view of the high frequency transformer of the present invention.
Fig. 12 is a perspective view which shows the structure of other coils.
Fig. 13 is a perspective view of bobbin which shows other structures.
*Description of codes referring to important parts of the drawings.
[0002] Bobbin: 1, 101
Prop: 2a, 2b, 102a, 102b
Fixing part which fixes the supporting part of coil: 3, 7, 103, 107
Penetrating hole: 4, 104
Winding part: 6, 106
Connecting element: 8, 108
First coil: 10a, 10b, P1, P2, P-1, P-2
Second coil: 20a, 20b, S1, S2, S-1, S-2
Insulating tape: 25a, 25b, 25c, 25d
Supporting part which supports projecting part of coil: 29, 129, 229, 230
Supporting part of core: 31, 32a, 32b, 131, 132a, 231, 232a, 232b
Core: 30, 130, 200, 300, 400
Barrier tape: 35
Slot of winding part: 150
Partition of slot in winding part: 151
control circuit: 410
Switch: 415
Rectifier: 416
Capacitance: 417
First coil winding: Np
Second coil winding: Ns
Second supporting coil: S2
[Detailed Description Of The Invention]
[Purpose Of The Invention]
[Technical Field Of The Invention And The Conventional Technic Of The Field]
[0003] The present invention relates to a core like EER and EI (see fig to 6 and fig. 12,
respectively) and a high frequency transformer including coil wound at a bobbin in
the transformer which is used at all sorts of electricity and electric circuit device.
Especially, the present invention is about forming plurality of slots at a right angle
to the central axis of cylindrical winding part which is formed at the bobbin of the
transformer, making the method of coil winding automatic by winding the first coil
and second coil at the slot and reducing the manufacturing cost of the high frequency
transformer. First, explanation will be made hereinafter regarding the conventional
high frequency transformer by referring to figures.
[0004] Fig. 1a is a perspective view of bobbin used in the conventional high frequency transformer
and Fig. 1b is a cross sectional view of Fig. 1a. In Figs. 1a and 1b, bobbin 1 is
formed with fixing part 3 which fixes supporting part of the core being located between
two rectangular hexahedron type support 2a and 2b that is formed in parallel. At the
lower side of the support 2a and 2b lead line connecting element 8 of the core is
formed. At the upper part of the fixing part 3 a cylindrical winding part 6 is formed.
A fixing part 7 which fixes the supporting part of the core is formed at the upper
part of the winding part 6 and a penetrating hole 4 which penetrates fixing parts
3 and 7 and winding part 6 simultaneously is formed. Bobbin 1 which has the structure
of the fig. 1a could be changed into a structure shown in fig. 2a and fig. 2b (a plan
view of fig. 1a) when the first coil and second coil is wound at the bobbin 1. In
figs. 2a and 2b, the first coil 10a is wound around the winding part 6 before a certain
length of insulating tape 25a is wound on the first coil for insulation among layers.
Second coil 20a is wound on the insulating tape 25a and insulating tape 25b is wound
on the second coil 20a for insulation among layers. First coil 10b is wound on the
insulating tape 25b and then insulating tape 25c is wound on the first coil 10b. Second
coil 20b is wound on the insulating tape 25c and insulating tape 25d is wound on the
second coil 20b.
[0005] In the above mentioned structure, barrier tape 35 is wound between the first coil
and the second coil which is wound near the edge of the winding part 6 of the bobbin
in order to satisfy the international and domestic standard. The wound first and second
coil is connected to a certain connecting element 8 which is formed at the lower side
of prop part 2a and 2b.
[0006] As shown in figs. 2a and 2b, after winding the coil at the bobbin 1, prepare two
EER type cores 30 that is to say, a core in which projecting portions 32a and 32b
are projected vertically at the both end of the supporting part 29 and a projecting
portion 31 is projected with the same direction of projecting portions 32a and 32b
at the center of the supporting part 29, likewise in the structure of fig. 3 and insert
each of them at the both ends of the penetrating hole of bobbin 1. Then form the conventional
high frequency transformer by fixing the ends of connecting part 32a and 32b of two
core 30 to contact each other as shown in fig. 4.
[0007] Because the first coil and the second coil are wound at a right angle to the center
axis of the cylindrical winding part 6 in the conventional high frequency transformer
as shown in fig. 2b, an insulating tape must be wound at the boundary of the first
coil and second coil at the process of winding the first coil and the second coil
in order to satisfy a certain standard of the transformer. In addition, in order to
satisfy the certain distance between the first coil and second coil at the end of
the first and second coil winding, barrier tape must be wound. In other words, after
winding the first coil at the bobbin, wind insulating tape and barrier tape and then
wind the second coil on the insulating tape.
[0008] Therefore, the winding process of insulating layer and the coil is divided into several
manufacturing steps, winding must be done i'n person and the winding method cannot
be done automatically. Also, when varnish dipping process is done to prevent the shorting
of the wound coil, insulating tape is wound at and protects each of the coil layers
so there is no need for vacuum device in order for the varnish to fully percolate
each of the coil layers.
[Technical Subject Matter Of The Invention]
[0009] The present invention designed and invented to overcome the problems mentioned so
far. This object is achieved by the apparatus according to the features of claim 1.
Preferred embodiments are described in the dependent claims. The aim of the present
invention is to manufacture and provide high frequency slot transformer with a reduced
manufacturing cost than prior arts by removing the insulating layer and the like which
exists between the wound coil. Yet another aim of the present invention is to carry
out the varnish dipping process in order to prevent shorting of the coil in the atmospheric
pressure without vacuum device. In order to achieve the aim of the present invention,
especially to achieve the automatic coil winding method, the geometrical structure
of the conventional bobbin has to be changed.
[0010] As shown in figs. 5a and 5b, bobbin 101 of the present invention comprises fixing
part 103 which fixes supporting part of the core between the prop 102a and 102b that
is formed in parallel and a plurality of connecting element 108 at the lower side
of the prop 102a and 102b. Also, the invention comprises a cylindrical winding part
106 which is at the upper part of the fixing part 103 and a fixing part 107 which
fixes the supporting part of the core and it is at the upper part of the winding part
106. A penetrating hole 104 which penetrates the lower part of the fixing part 103,
the cylindrical winding part 106 and the upper part of the fixing part 107 simultaneously
is also comprised in the present invention. In particular, the cylindrical winding
part 106 should comprise plurality of slots 150 with a certain distance to be at a
right angle to the central axis of the penetrating hole 104 which is formed at the
cylindrical winding part 106. In the bobbin structure of the present invention the
partition 151 which is formed between slot 150 should be formed with insulator and
the thickness of the partition 151 of the slot should be determined after considering
international standard size, characteristics and effects. All the more, the height
of the partition 151 of slot is determined to maintain an appropriate distance along
the coil lead line which is drawn out as connecting element of each of the transformer
and winding height of the total area of the wound coil when the coil is wound at each
slot.
[0011] In the high frequency slot transformer of the present invention which uses flyback
method, a core 130 is included as EER type as shown in the structure of fig. 6 and
projecting parts 132a and 132b which are at a right angle to a supporting part 129
are inserted with a certain length at both ends of the supporting part 129. A projecting
part 131 is fixed with the same direction of projecting parts 132a and 132b at the
central part of the supporting part 129. The length of the projecting part 131 is
formed to be shorter than projecting parts 132a and 132b so that the ends of the projecting
part 131 do not contact each other and maintain a certain distance when projecting
parts 132a and 132b are fixed and two cores are arranged to face each other.
[0012] As shown in fig. 7 which depicts a cross sectional view of the high frequency slot
transformer of the flyback method, the first and second coil is wound at a right angle
to a central axis of the projecting part 131 at the total section where a projecting
part 131 of the core is formed. Due to the t structure in which the first and second
coil winding are arranged separately at each selected slot in parallel with the central
axis of the projecting part 131, the leakage inductance could be higher than the conventional
winding structure as a result of link operation of the magnetic field between wound
coil. Therefore, coil should arranged separately according to a certain rule in order
to maintain an appropriate coupling co-efficient of the first and second coil.
[0013] Also, through the appropriate division of separated first and second coil, they have
to be arranged in a pattern to lower the link magnetic flux.
[0014] In the high frequency transformer slot which uses forward method instead of flyback
method, there is no need to form a core as the structure shown in fig. 6. A core like
EI type could be used to penetrate the penetrating hole of the bobbin of the present
invention as a central core.
[Structure And Operation Of The Invention]
[0015] In the high frequency slot transformer of the present invention, the flyback method
transformer is as shown in figs. 5a , 5b and 7. The flyback method transformer comprises
bobbin 101, upper core 300 and lower core 200. In the bobbin 101, there are winding
part 106, fixing part 103 and 107 which are formed at both ends of the winding part
106, a penetrating hole 104 which penetrates the winding part 106, the fixing part
103 and 107 and a plurality of connecting element 108 formed at the fixing part 103.
In the upper core 300 and lower core 200 there are projecting parts 132a and 132b
are formed in the same direction at both ends of a supporting part 129 and a projecting
part 131 is formed in the same direction with the projection parts 132a and 132b at
the center of the supporting part 129 In the winding part 106 of the bobbin 101, the
first coil, P1, P2,..., P-1, P-2 and the second coil, S1, S2, ..., S-1, S-2 are wound.
[0016] In this high frequency slot transformer, a plurality of slots 150 is included at
the winding part 106 of the bobbin 101, each supporting part 129 of the upper core
300 and lower core 200 are fixed at fixing part 103 and 107 located at both ends of
the bobbin 101, the projecting part 131 of the upper and lower core faces each other
with a certain gap inside the penetrating hole 104 of the bobbin, projecting parts
132a and 132b of the upper and lower core are fixed to each other by contacting at
the outer side of winding part 106 of the bobbin, the first and second coil are wound
at the winding part 106, wherein the windings of the first coil and the windings of
the second coil are wound in turns at each slot 150 taking the certain gap made by
the projecting part 131 as a yardstick and the lead line of the first and second coil
is connected to the connecting element 108 selected at the bobbin. The coil Nf shown
in fig. 7 is feedback coil.
[0017] Another high frequency slot transformer structure of the present invention is a forward
method transformer as shown in figs. 5a, 5b and 10. The forward method transformer
comprises a bobbin and a core. In the bobbin 101 there are winding part 106, fixing
parts 103 and 107 which are formed at both ends of the winding part 106, a penetrating
hole 104 penetrating fixing parts 103 and 107 and the winding part 106 and a plurality
of connecting element 108 formed at the fixing part 103. In the core 400 there are
each projecting part 232a and 232b formed in the same direction at both ends of the
first supporting part 229, projecting parts 232a and 232b are formed in the same direction
with a projecting part 231 at the center of the first supporting part 229 and the
second supporting part 230 which contacts to the projecting parts 231, 232a and 232b.
In the winding part 106 of the bobbin 101 there are the first coil, P1, P2, ..., P-1,
P-2 and the second coil, S1, S2, ..., S-1, S-2 are wound.
[0018] In this high frequency slot transformer, a plurality of slots 150 is included at
the winding part 106 of the bobbin 101, the first supporting part 229 and the second
supporting part 230 of the core 400 are fixed at the fixing parts 103 and 107 located
at both ends of the bobbin 101, the projecting part 231 of the core 400 penetrates
the penetrating hole 104 of the bobbin and is fixed at the center of the second supporting
part 230 and projecting parts 232a and 232b of the core are fixed by contacting at
both ends of the second supporting part 230 from outside of the winding part 106 of
the bobbin, the first and second coil wound at the winding part 106 of the bobbin
wind in turns at each of the slot 150 to be symmetrical putting the center of the
winding part 106 as a yardstick and a lead line of the first and second coil connects
to the selected connecting element 108 of the bobbin 101. More detailed description
of winding method and operation of the high frequency slot transformer of the present
invention will be given hereinafter.
[Preferred Embodiment]
[0019] As shown in figs. 5a and 5b, fixing part 103 which fixes the supporting part of the
core is included between the prop 102a and 102b that are in parallel, a plurality
of connecting element 108 is included in the bottom of the prop 102a and 102b, a cylindrical
winding part 106 is included at the upper part of the fixing part 103, a fixing part
107 which fixes supporting part of the core is included at the upper part of the winding
part 106, a plurality of a slot 150 which has a certain distance are included at the
winding part 106 and a penetrating hole 104 which penetrates lower part of the fixing
part 103, cylindrical winding part 16 and the upper part of the winding part 107 simultaneously
are included to form the bobbin 103.
[0020] All the other materials excluding connecting element 108 of the bobbin 101 use insulator
plastic material and form as one body type.
[0021] In particular, the thickness and height of the partition 151 of the slot 150 which
is included at the winding part 106 is determined after considering international
standard, efficiency and the like.
[0022] Wind the first and second coil in turns at each slot 150 of the winding part 106
of the bobbin. For example, install and fix EER type core 200 and 300 at the bobbin
and form it as a structure in fig.7. The EER type core is not the only core which
can be used. As in the structure shown in fig. 12, EE type core can be used and in
case of using EE type core, it is appropriate to form the structure of winding part
of the bobbin as shown in fig. 13. In the structure of the bobbin 101 in fig. 13,
winding part 106 of the coil and penetrating hole 104 are square shape instead of
cylindrical shape. Therefore, the shape of penetrating hole and the winding part can
be changed according to the type of the core.
[0023] In fig. 7, each end of projecting part 131 of the upper and lower core do not contact
each other at the center part of the penetrating hole 104 of the bobbin and a certain
gap is formed. The first and second coil are wound in turns at each slot 150 which
is formed at the winding part of the bobbin, empty one slot putting the gap formed
between projecting part 131 of the core as a yardstick and wind the first coil at
both slots nearby then wind the second coil at a slot nearby the slot where the first
coil is wound. In other words, putting the gap formed by the core 300 and the projecting
part 131 of the lower core 200 as a yardstick, the first coil P1 and P-1 is wound
at both slots. The second coil S1 is wound at the outer slot of the first coil P1,
second coil S-1 is wound at the outer slot of the first coil P-1, the first coil P2
is wound at the outer slot of the second coil S1, the first coil P-2 is wound at the
outer slot of the second coil S-1, the second coil S2 is wound at the outer slot of
the first coil P2 and the second coil S-2 is wound at the outer slot of the first
coil P-2.
[0024] By forming at least four or five slots to thicken the partition of the slot as the
central part and putting the above mentioned partition or one slot at the central
part as a boundary and winding the first coil at both ends and the second coil at
the outside, the high frequency slot transformer can be formed. However, forming the
high frequency slot transformer with lots of slots 150 and by winding after several
division of coils according to the winding rule, results in a more effective transformer
in technic. As the number of slots are limited in case the size of the winding part
is limited, it is appropriate to determine the number of slots giving consideration
to the size and characteristic of the transformer.(This preferred embodiment is formed
with nine slots.)
[0025] Because the first and second coil is wound in parallel with the central axis of the
projecting part 131, the leakage inductance at each boundary of the first and second
coil or gap part of the projecting part 131 could be higher than the conventional
winding structure. Therefore, in order to maintain appropriate level of coupling coefficient
of the first and second coil, arrange the gap made by the thickness of partition 151
of the slot and the width of the slot in which the second coil is not wound at the
central part or the projecting part 131 of the core coil in appropriate pattern.
[0026] In particular, it is appropriate to wind the coil so that the number of winding between
the P1 and P-1, the P2 and P-2, the S1 and S-1 and the S2 and S-2 is the same. It
is appropriate that the winding ratio between the P1 and P2 is 1.3:1 or above so that
the loss of link magnetic flux is lowered. Also, the height of the partition 151 of
the slot 150 should be determined to maintain a certain space distance after considering
the winding height of the total area of the wound coil and the distance with the coil
which is drawn out as a connecting element when the coil is wound at each slot.
[0027] In case of attaching a switching device which has feedback coil Nf in the structure
of fig. 7, for the reason that the first and second coil are wound in turns in the
direction of a central axis of the cylindrical winding part, the switching device
becomes unstable if the feedback coil Nf is arranged in a symmetrical pattern or a
row pattern and wound due to the disagreement of the geometrical magnetic field. Therefore,
it is appropriate that the feedback coil be wound at one of the P2 or P-2 of the first
coil which is located at the most outer side of the winding part in order to maintain
the safety of the switching device. The reason for winding the feedback coil at the
winding part of the first coil is to maintain the insulating condition between the
feedback coil and the second coil. For the above mentioned reason the feedback coil
Nf is wound at the P-2 of the first coil in fig. 7.
[0028] Another way of winding a different type feedback coil Nf is to wind the feedback
coil on the second coil because the number of slots fewer or it is difficult to obtain
the distance between feedback coil and the gap of core. In case of winding feedback
coil on the second coil, it is appropriate to use feedback coil coated with triple
insulating layer because it is necessary to make the second coil and the feedback
coil Nf to be insulated sufficiently. So, it is appropriate to wind the feedback coil
at the most further winding part of the second coil from the gap of the core in the
above mentioned case.
[0029] The fig. 7 structured as an equivalent circuit is as the structure shown in fig.
8. In fig. 8, a switching device comprising the feedback coil Nf, a switch 415 and
regulating circuit is included and the feedback coil Nf of the switching device is
connected to a high frequency slot transfer 500.
[0030] Np is the first coil winding, Ns is the second coil winding, 416 is a rectifier for
rectifying output power and 417 is a smoothing capacitance. The Np of the first coil
and Ns of the second coil could be wound as shown in fig. 9. In other words, it is
a structure of Pi and P-1 of the first coil are wound at each slot putting the gap
made by the projecting part 131 of upper core 300 and the lower core 200 as a yardstick,
the second coil S-2 is wound at the outer slot of the first coil P-1, the first coil
P2 is wound at the outer slot of the second coil S-2, the first coil P-2 is wound
at the outer slot of the second coil S-2, the second coil S2 is wound at the outer
slot of the first coil P2 and the second coil S-2 is wound at the outer slot of the
first coil P-2 and the equivalent circuit. The first coil and the second coil are
connected to the selected connecting element 108 of the bobbin and especially, the
first coil is connected to the input connecting element and the second coil is connected
to the output connecting element. The method of connecting wire between the first
coil and the second coil can be connected in various ways according to the characteristics
of transformer. For example, connect the P1 and P-1, P2 and P-2 of the first coil
in parallel connection and the S1 and S-1, S2 and S-2 of the second coil in parallel
connection. Furthermore, use lead line so that the parallel connected P1 and P-1 of
the first coil is in series connection to the parallel connected P2 and P-2 of the
first coil and parallel connected S1 and S-1 of the second coil is in series connection
to the parallel connected S2 and S-2 of the second coil are connected to the connecting
element 108.
[0031] The basic flyback structure of the high frequency slot transformer as mentioned above
has the outside structure as shown in fig. 11. The most outstanding difference form
the conventional high frequency slot transformer is the winding part of the bobbin
is separated in several slots and the first and second coil are arranged in turns
at the slot along the central axis of the winding part of the bobbin. By winding a
second supporting coil on top or under the wound second coil in the basic flyback
structure of the high frequency slot transformer, the second supporting coil could
be used as a supporting output power. The above mentioned high frequency slot transformer
where the second supporting coil is wound is equivalent to the circuit in fig. 8a.
[0032] In fig. 8b, Ns is the winding part of the second coil which functions as a main output
power, Nsa, Nsb, Nsc, ...are the winding part of the second support coil which functions
as a supporting output power. The physical structure of the winding of the second
supporting coil is described in fig. 8c as an example.
[0033] In fig. 8c, the S1 and S2 of the second coil and the P2 of the first coil are wound
at the slot of the winding part of the bobbin 101. Here, the S1+S2 of the second coil
forms the main output power and the P2 of the first coil forms the main input power.
S2' which winds on the S2 of the second coil is the second supporting coil. S2' of
the second supporting coil functions as supporting output power as Nsa in fig. 8b.
The second supporting coil S2' could be wound before winding the second coil S2 or
it could be wound on the second coil S1. In other words, the second supporting coil
S2' could be wound at more than one place selectively according to the function of
the transformer in the area where the second coil S1 and S2 are wound and function
as a supporting output power.
[0034] In the high frequency slot transformer of the present invention, even if the coil
is wound in the above mentioned structure, it maintains the same characteristics with
the conventional high frequency slot transformer or has better characteristics. The
change in the structure of the high frequency slot transformer of the present invention
allowed automatic winding of the coil which was impossible in the conventional high
frequency transformer and more than 30% of manufacturing cost was reduced since there
is no need to wind an insulating tape nor barrier tape separately.
[0035] The high frequency slot transformer of the forward method is different from the flyback
high frequency slot transformer and has a structure as shown in fig. 10. The biggest
difference between the flyback method and the forward method is that a projecting
part 231 of the core which is inserted and installed in the penetrating hole 104 is
not disconnected inside the penetrating hole 104 but connected in one body type.
[0036] The assembling steps or the winding steps of the forward method high frequency slot
transformer is similar to the flyback method.
[Effect Of The Invention]
[0037] In the high frequency slot transformer of the present invention, a plurality of slots
150 which have a certain distance are included in the winding part 106 of the bobbin,
so that usage of an insulating tape or barrier tape is not necessary for the first
and second coil are wound in turns at each of the slot and the winding steps of the
coil could be done automatically as shown in figs. 5a and 5b.
[0038] Also, in the conventional high frequency slot transformer it is necessary to have
the varnish dipping step in the vacuum device in order to prevent shorting of the
coil after winding the coil however, in the present invention the insulating tape
is not wound so the varnish dipping process is possible in the atmospheric pressure
without the vacuum device. Therefore, effect of the present invention lies in the
facts that firstly, the winding step of the coil is done automatically, secondly,
cost of the manufactured products are reduced drastically as there is no need to use
an insulating tape which is used in winding and finally, stabilized products are produced
and provided.
1. A high frequency slot transformer which comprises:
• a bobbin (101) which has an elongated winding part (106) having fixing parts (103,
107) provided at both longitudinal ends of the winding part (106) and having a penetrating
hole (104) extending through the winding part (106) and the fixing parts (103, 107)
in longitudinal direction of the winding part (106);
• the bobbin (101) further having a plurality of connecting elements (108) fixed on
at least one side of the fixing elements (103, 107);
• a plurality of slots (150) formed on the winding part (106) of the bobbin (101)
at a right angle to the central axis of the penetrating hole (104) and being spaced
from each other in longitudinal direction of the winding part (106) by partitions
(151), an additional gap being arranged in the longitudinal middle of the slot arrangement,
thereby dividing the slots into two sets of slots;
• a core (130, 400) which comprises a first supporting part (129, 229) and a second
supporting part (129, 230) which are arranged at a respective longitudinal end of
the winding part, a first projecting part (132a, 232a) and a second projecting part
(132b, 232b) arranged on at least one of the first and second supporting parts(129,
229, 230) and projecting in longitudinal direction of the winding part at lateral
sides thereof, and a third projecting part (131, 231) arranged on the at least one
of the first and second supporting parts (129, 229, 230) at a central position thereof
and projecting into the penetrating hole (104) with a certain gap, the first supporting
part (129, 229) and the second supporting part (129, 230) being connected and fixed
to each other by at least the first and second projecting parts (132a, 232a; 132b,
232b).
• first windings (P1...Pn, P-1...P-n) and second windings (S1..Sn, S-1..S-n) which
are wound at the winding part (106), wherein the first windings (P1...Pn, P-1...P-n)
and the second windings (S1...Sn, S-1...S-n) are wound in turns at each of the plurality
of slots (150) taking said certain gap as a yardstick; and
• a lead line of the first and second windings are connected to a selected connecting
element (108) of the bobbin (101).
2. The high frequency slot transformer according to claim 1,
• wherein the first projecting part (132a, 232a), the second projecting part (132b,
232b) and the third projecting part (131, 231) are arranged at the first supporting
part (129, 229),
• wherein the core (400) comprises an upper core (300) and a lower core (200) ;
• wherein the first supporting part (129) is part of one of the upper core (300) and
the lower core (200);
• wherein the second supporting part (129, 230) is part of the other one of the upper
core (300) and the lower core (200), wherein on the second supporting part (129, 230)
a further first projecting part (132a, 232a) and a further second projecting part
(132b, 232b) are arranged and project in longitudinal direction of the winding part
at lateral sides thereof, and a further third projecting part (131, 231) is arranged
on the second supporting part (129, 230) at a central position thereof and projects
into the penetrating hole (104) of the bobbin (101); and
• wherein the upper core (300) and the lower core (200) are connected and fixed to
each other by the first projecting part (132a, 232a) and the further first projecting
part (132a, 232a) as well as by the second projecting part (132b, 232b) and the further
second projecting part (132b, 132b) at the outside of the winding part (106) of the
bobbin (101) while the third projecting part (131, 231) and the further third projecting
part (131, 231) faces each other with a certain middle gap inside the penetrating
hole (104) of the bobbin (101).
3. The high frequency slot transformer according to claim 1 or 2, which is characterized in that the first and second windings (P1, P-1, P2, P-2, S1, S-1, S2, S-2) are alternately
wound in the slots, starting with the first windings (P1, P-1) in the slots adjacent
to the gap.
4. The high frequency slot transformer according to claim 3, which is characterized in that at least one or more slot is empty between the first windings (P1 and P-1).
5. The high frequency slot transformer according to claim 3, which is characterized in winding a feedback coil (Nf) at one outermost slot of the first windings (P2 or P-2)
in respect to the gap.
6. The. high frequency slot transformer according to claim 3, which is characterized in winding a feedback coil (Nf) which is coated with triple insulating layer on one
of the second windings.
7. The high frequency slot transformer according to claim 6, which is characterized in winding a feedback coil (Nf) at one outermost slot of the second windings (S2 or
S-2) in respect to the gap.
8. The high frequency slot transformer according to claim 7, which is characterized in that a partition between the slot is insulating material and the height of the partition
is higher than that of a winding side.
9. The high frequency slot transformer according to claim 8, which is characterized in that, with respect to the middle gap, a number of the winding of the innermost first windings
(P1, P-1) is identical, a number of winding of the innermost second windings (S1,
S-1) is identical, a number of winding of the outermost second windings (S2, S-2)
is identical and a winding ratio between the innermost (P1, P-1) and outermost (P2,
P-2) first windings is 1.3:1 or above.
10. The high frequency slot transformer according to claim 9, which is characterized in that the innermost first windings (P1) and (P-1) are in parallel connection, the outermost
first windings (P2) and (P-2) are in parallel connection, the innermost second windings
(S1) and (S-1) are in parallel connection and the outermost second windings (S2) and
(S-2) are in parallel connection.
11. The high frequency slot transformer according to claim 10, which is characterized in that the parallel connected innermost first windings (P1) and (P-1) is in series connection
to the parallel connected outermost first windings (P2) and (P-2) and the parallel
connected innermost second windings (S1) and (S-1) is in series connection to the
parallel connected outermost second windings (S2) and (S-2).
12. The high frequency slot transformer according to claim 2, which is characterized in that a second supporting winding is wound at more than one slot of the slots where the
second windings (S1...Sn, S-1...S-n) are wound.
1. Hochfrequenz-Schlitztransformator, welcher aufweist:
eine Spule (101), welche einen verlängerten Wicklungsabschnitt (106) hat, welcher
Fixierteile (103, 107) aufweist, welche an beiden Längsenden des Wicklungsabschnittes
(106) bereitgestellt sind und welche ein Durchgangsloch (104) hat, welches sich durch
den Wicklungsabschnitt (106) und die Fixierteile (103, 107) hindurch in Längsrichtung
des Wicklungsabschnittes (106) erstreckt;
wobei die Spule (101) ferner eine Mehrzahl von Koppelelementen (108) aufweist,
welche zumindest an einer Seite der Fixierelemente (103, 107) befestigt sind;
eine Mehrzahl von Schlitzen (150), welche in einem rechten Winkel zu der Zentralachse
des Durchgangsloches (104) an dem Wicklungsabschnitt (106) der Spule (101) ausgebildet
sind, und welche in Längsrichtung des Wicklungsabschnittes (106) durch Trennwände
(151) in einem Abstand zueinander angeordnet sind,
wobei eine zusätzliche Lücke in der Längsmitte der Schlitzanordnung vorgesehen ist,
womit die Schlitze in zwei Sätze von Schlitzen geteilt werden;
ein Mittelstück (130, 400), welches einen ersten Stützteil (129, 229) und einen
zweiten Stützteil (129, 230), welche an einem jeweiligen Längsende des Wicklungsabschnittes
angeordnet sind, einen ersten hervorstehenden Teil (132a, 232a) und einen zweiten
hervorstehenden Teil (132b, 232b), welche an zumindest einem von dem ersten und zweiten
Stützteil (128, 229, 230) angeordnet sind und welche in Längsrichtung des Wicklungsabschnittes
zu Lateralseiten davon hervorstehen, und einen dritten hervorstehenden Teil (131,
231) aufweist, welcher an dem zumindest einem von dem ersten und zweiten Stützteil
(129, 229, 230) an einer Zentralposition davon angeordnet ist und mit einer gewissen
Lücke in das Durchgangsloch (104) hineinsteht, wobei der erste Stützteil (129, 229)
und der zweite Stützteil (129, 230) zumindest mittels des ersten und des zweiten hervorstehenden
Teils (132a, 232a, 132b, 232b) miteinander verbunden und aneinander befestigt sind;
erste Wicklungen (P1..Pn, P-1...P-n) und zweite Wicklungen (S1...Sn, S-1...S-n),
welche am Wicklungsabschnitt (106) gewickelt sind, wobei die ersten Wicklungen (P1..Pn,
P-1...P-n) und die zweiten Wicklungen (S1...Sn, S-1...S-n) abwechselnd in jedem der
Mehrzahl von Schlitzen (150) gewickelt sind, wobei die gewisse Lücke als ein Maßstab
genommen ist; und
wobei eine Zuführleitung der ersten und der zweiten Wicklungen an ein ausgewähltes
Koppelelement (108) der Spule (101) gekoppelt ist.
2. Hochfrequenz-Schlitztransformator gemäß Anspruch 1,
wobei der erste hervorstehende Teil (132a, 232a), der zweite hervorstehende Teil
(132b, 232b) und der dritte hervorstehende Teil (131, 231) an dem ersten Stützteil
(129, 229) angeordnet sind,
wobei das Mittelstück (400) ein oberes Mittelstück (300) und ein unteres Mittelstück
(200) aufweist;
wobei der erste Stützteil (129) Teil eines von dem oberen Mittelstück (300) und
von dem unteren Mittelstück (200) ist;
wobei der zweite Stützteil (129, 230) Teil des anderen von dem oberen Mittelstück
(300) und von dem unteren Mittelstück (200) ist, wobei am zweiten Stützteil (129,
230) ein zusätzlicher erster hervorstehender Teil (132a, 232a) und ein zusätzlicher
zweiter hervorstehender Teil (132b, 232b) angeordnet sind und in Längsrichtung des
Wicklungsabschnitts zu Lateralseiten davon hervorstehen, und ein zusätzlicher dritter
hervorstehender Teil (131, 231) an dem zweiten Stützteil (129, 230) an einer Zentralposition
davon angeordnet ist und in das Durchgangsloch (104) der Spule (101) hineinsteht;
und
wobei das obere Mittelstück (300) und das untere Mittelstück (200) an der Außenseite
des Wicklungsabschnittes (106) der Spule (101) sowohl mittels des ersten hervorstehenden
Teils (132a, 232a) und des zusätzlichen ersten hervorstehenden Teils (132a, 232a)
als auch mittels des zweiten hervorstehenden Teils (132b, 232b) und des zusätzlichen
zweiten hervorstehenden Teils (132b, 232b) miteinander verbunden und aneinander befestigt
sind, während der dritte hervorstehende Teil (131, 231) und der zusätzliche dritte
hervorstehende Teil (131, 231) sich mit einer gewissen Mittellücke innerhalb des Durchgangslochs
(104) der Spule (101) gegenüberstehen.
3. Hochfrequenz-Schlitztransformator gemäß Anspruch 1 oder 2, welcher dadurch gekennzeichnet ist, dass die ersten und zweiten Wicklungen (P1, P-1, P2, P-2, S1, S-1, S2, S-2) abwechselnd
in den Schlitzen gewickelt sind, beginnend mit den ersten Wicklungen in den Schlitzen
benachbart zu der Lücke.
4. Hochfrequenz-Schlitztransformator gemäß Anspruch 3, welcher dadurch gekennzeichnet ist, dass zumindest einer oder mehrere Schlitz(e) zwischen den ersten Wicklungen (P1 und P-1)
leer ist/sind.
5. Hochfrequenz-Schlitztransformator gemäß Anspruch 3, welcher dadurch gekennzeichnet ist, dass eine Feedback-Spule (Nf) im, bezogen auf die Lücke, äußersten Schlitz der ersten
Wicklungen (P2 oder P-2) gewickelt ist.
6. Hochfrequenz-Schlitztransformator gemäß Anspruch 3, welcher dadurch gekennzeichnet ist, dass eine Feedback-Spule, welche mit einer dreifachen Isolationsschicht beschichtet ist,
(Nf) auf einer der zweiten Wicklungen gewickelt ist.
7. Hochfrequenz-Schlitztransformator gemäß Anspruch 6, welcher dadurch gekennzeichnet ist, dass eine Feedback-Spule (Nf) im, bezogen auf die Lücke, äußersten Schlitz der zweiten
Wicklungen (S2 oder S-2) gewickelt ist.
8. Hochfrequenz-Schlitztransformator gemäß Anspruch 7, welcher dadurch gekennzeichnet ist, dass eine Trennwand zwischen dem Schlitz Isolationsmaterial ist und dass die Höhe der
Trennwand größer als jene eines Wicklungsfachs ist.
9. Hochfrequenz-Schlitztransformator gemäß Anspruch 8, welcher dadurch gekennzeichnet ist, dass, im Bezug auf die Mittellücke, eine Anzahl von Wicklungen der innersten ersten Wicklungen
(P1, P-1) gleich ist, eine Anzahl von Wicklungen der innersten zweiten Wicklungen
(S1, S-1) gleich ist, eine Anzahl von Wicklungen der äußersten zweiten Wicklungen
(S2, S-2) gleich ist und ein Wicklungsverhältnis zwischen den innersten (P1, P-1)
ersten Wicklungen und äußersten (P2, P-2) ersten Wicklungen 1,3:1 oder höher ist.
10. Hochfrequenz-Schlitztransformator gemäß Anspruch 9, welcher dadurch gekennzeichnet ist, dass die innersten ersten Wicklungen (P1) und (P-1) parallel geschaltet sind, dass die
äußersten ersten Wicklungen (P2) und (P-2) parallel geschaltet sind, dass die innersten
zweiten Wicklungen (S1) und (S-1) parallel geschaltet sind und dass die äußersten
zweiten Wicklungen (S2) und (S-2) parallel geschaltet sind.
11. Hochfrequenz-Schlitztransformator gemäß Anspruch 10, welcher dadurch gekennzeichnet ist, dass die parallel geschalteten innersten ersten Wicklungen (P1) und (P-1) in Reihe mit
den parallel geschalteten äußersten ersten Wicklungen (P2) und (P-2) geschaltet sind
und dass die parallel geschalteten innersten zweiten Wicklungen (S1) und (S-1) in
Reihe mit den parallel geschalteten äußersten zweiten Wicklungen (S2) und (S-2) geschaltet
sind.
12. Hochfrequenz-Schlitztransformator gemäß Anspruch 2, welcher dadurch gekennzeichnet ist, dass eine zweite Hilfswicklung in mehr als einem Schlitz der Schlitze gewickelt ist, wo
die zweiten Wicklungen (S1...Sn, S-1...S-n) gewickelt sind.
1. Transformateur à fentes haute fréquence qui comprend :
- une bobine (101) qui a une partie d'enroulement allongée (106) ayant des parties
de fixation (103, 107) prévues aux deux extrémités longitudinales de la partie d'enroulement
(106) et ayant un orifice de pénétration (104) traversant la partie d'enroulement
(106) et les parties de fixation (103, 107) dans la direction longitudinale de la
partie d'enroulement (106) ;
- la bobine (101) ayant de plus une pluralité d'éléments de connexion (108) fixés
sur au moins un côté des éléments de fixation (103, 107);
- une pluralité de fentes (150) formées sur la partie d'enroulement (106) de la bobine
(101) à angle droit par rapport à l'axe central de l'orifice de pénétration (104)
et espacées l'une de l'autre dans la direction longitudinale de la partie d'enroulement
(106) par des cloisons (151), un espace supplémentaire étant disposé au milieu longitudinal
de la disposition de fentes, ce qui divise les fentes en deux ensembles de fentes
;
- un noyau (130, 400) qui comprend une première partie de support (129, 229) et une
deuxième partie de support (129, 230) qui sont disposées à une extrémité longitudinale
respective de la partie d'enroulement, une première partie en saillie (132a, 232a)
et une deuxième partie en saillie (132b, 232b) disposées sur au moins une des première
et deuxième parties de support (129, 229, 230) et sortant dans la direction longitudinale
de la partie d'enroulement aux côtés latéraux de celle-ci, et une troisième partie
en saillie (131, 231) disposée sur l'une au moins des première et deuxième parties
de support (129, 229, 230) au milieu de celle-ci et rentrant dans l'orifice de pénétration
(104) avec un certain espace, la première partie de support (129, 229) et la deuxième
partie de support (129, 230) étant connectées et fixées l'une à l'autre par au moins
les première et deuxième parties en saillie (132a, 232a; 132b, 232b).
- des enroulements primaires (P1...Pn, P-1...P-n) et des enroulements secondaires
(S1...Sn, S-1...S-n) qui sont enroulés à la partie d'enroulement (106), dans lequel
les enroulements primaires (P1...Pn, P-1...P-n) et les enroulements secondaires (S1...Sn,
S-1...S-n) sont enroulés en spires à chacune de la pluralité de fentes (150) prenant
ledit certain espace comme une mesure ; et
- une ligne principale des enroulements primaires et secondaires est connectée à un
élément de connexion sélectionné (108) de la bobine (101).
2. Transformateur à fentes haute fréquence selon la revendication 1,
- dans lequel la première partie en saillie (132a, 232a), la deuxième partie en saillie
(132b, 232b) et la troisième partie en saillie (131, 231) sont disposées au niveau
de la première partie de support (129, 229),
- dans lequel le noyau (400) comprend un noyau supérieur (300) et un noyau inférieur
(200) ;
- dans lequel la première partie de support (129) fait partie d'un d'entre le noyau
supérieur (300) et le noyau inférieur (200) ;
- dans lequel la deuxième partie de support (129, 230) fait partie de l'autre d'entre
le noyau supérieur (300) et le noyau inférieur (200), dans lequel sur la deuxième
partie de support (129, 230) une première partie en saillie supplémentaire (132a,
232a) et une deuxième partie en saillie supplémentaire (132b, 232b) sont disposées
et sortent dans la direction longitudinale de la partie d'enroulement des côtés latéraux
de celle-ci, et une troisième partie en saillie supplémentaire (131, 231) est disposée
sur la deuxième partie de support (129, 230) au centre de celle-ci et rentre dans
l'orifice de pénétration (104) de la bobine (101); et
- dans lequel le noyau supérieur (300) et le noyau inférieur (200) sont connectés
et fixés l'un à l'autre par la première partie en saillie (132a, 232a) et la première
partie en saillie supplémentaire (132a, 232a) de même par la deuxième partie en saillie
(132a, 232a) et la deuxième partie en saillie supplémentaire (132b, 232b) à l'extérieur
de la partie d'enroulement (106) de la bobine (101) alors que la troisième partie
en saillie (131, 231) et la troisième partie en saillie supplémentaire (131, 231)
sont l'une en face de l'autre avec un certain espace moyen à l'intérieur de l'orifice
de pénétration (104) de la bobine (101).
3. Transformateur à fentes haute fréquence selon la revendication 1 ou 2, qui est caractérisé en ce que les enroulements primaires et secondaires (P1, P-1, P2, P-2, S1, S-1, S2, S-2) sont
alternativement enroulés dans les fentes, en commençant avec les enroulements primaires
(P1, P-1) dans les fentes adjacentes à l'espace.
4. Transformateur à fentes haute fréquence selon la revendication 3, qui est caractérisé en ce qu'au moins une fente ou plus est vide entre les enroulements primaires (P1 et P-1).
5. Transformateur à fentes haute fréquence selon la revendication 3, qui est caractérisé par l'enroulement d'une bobine de réaction (Nf) à une fente la plus à l'extérieur des
enroulements primaires (P2 ou P-2) par rapport à l'espace.
6. Transformateur à fentes haute fréquence selon la revendication 3, qui est caractérisé par l'enroulement d'une bobine de réaction (Nf) qui est recouverte d'une triple couche
isolante sur un des enroulements secondaires.
7. Transformateur à fentes haute fréquence selon la revendication 6, qui est caractérisé par l'enroulement d'une bobine de réaction (Nf) à une fente la plus à l'extérieur des
enroulements secondaires (S2 ou S-2) par rapport à l'espace.
8. Transformateur à fentes haute fréquence selon la revendication 7, qui est caractérisé en ce qu'une cloison entre la fente est un matériau isolant et la hauteur de la cloison est
supérieure à celle d'un côté d'enroulement.
9. Transformateur à fentes haute fréquence selon la revendication 8, qui est caractérisé en ce que, par rapport à l'espace moyen, un nombre d'enroulement des enroulements primaires
les plus à l'intérieur (P1, P-1) est identique, un nombre d'enroulement des enroulements
secondaires les plus à l'intérieur (S1, S-1) est identique, un nombre d'enroulement
des enroulements secondaires les plus à l'extérieur (S2, S-2) est identique et un
rapport d'enroulement entre les enroulements primaires les plus à l'intérieur (P1,
P-1) et les plus à l'extérieur (P2, P-2) est 1,3:1 ou supérieur.
10. Transformateur à fentes haute fréquence selon la revendication 9, qui est caractérisé en ce que les enroulements primaires les plus à l'intérieur (P1) et (P-1) sont connectés en
parallèle, les enroulements primaires les plus à l'extérieur (P2) et (P-2) sont connectés
en parallèle, les enroulements secondaires les plus à l'intérieur (S1) et (S-1) sont
connectés en parallèle et les enroulements secondaires les plus à l'extérieur (S2)
et (S-2) sont connectés en parallèle.
11. Transformateur à fentes haute fréquence selon la revendication 10, qui est caractérisé en ce que les enroulements primaires les plus à l'intérieur connectés en parallèle (P1) et
(P-1) sont connectés en série avec les enroulements primaires les plus à l'extérieur
connectés en parallèle (P2) et (P-2) et les enroulements secondaires les plus à l'intérieur
connectés en parallèle (S1) et (S-1) sont connectés en série avec les enroulements
secondaires les plus à l'extérieur connectés en parallèle (S2) et (S-2).
12. Transformateur à fentes haute fréquence selon la revendication 2, qui est caractérisé en ce qu'un enroulement de support secondaire est enroulé à plus d'un fente des fentes où les
enroulements secondaires (S1...Sn, S-1...S-n) sont enroulés.