

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 921 909 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see page(s) 16, 18

(48) Corrigendum issued on:
05.01.2005 Bulletin 2005/01

(45) Date of publication and mention
of the grant of the patent:
25.08.2004 Bulletin 2004/35

(21) Application number: **97930148.8**

(22) Date of filing: **23.06.1997**

(54) HIGH PERMEABILITY GRINDING WHEELS

SCHLEIFSCHEIBE MIT HOHER PERMEABILITÄT
MEULES A PERMEABILITE ELEVEE

(84) Designated Contracting States: AT BE CH DE ES FI FR GB IT LI NL SE	(51) Int Cl.7: B24D 3/18				
(30) Priority: 26.07.1996 US 687884	(86) International application number: PCT/US1997/010687				
(43) Date of publication of application: 16.06.1999 Bulletin 1999/24	(87) International publication number: WO 1998/004386 (05.02.1998 Gazette 1998/05)				
(73) Proprietor: Saint-Gobain Abrasives, Inc. Worcester, Massachusetts 01615-0138 (US)	(52) Inventors: <ul style="list-style-type: none">• FOX, Stephen, E. Worcester, MA 01602 (US)• ELLINGSON, Thomas Worcester, MA 01606 (US)• CARMAN, Lee, A. Worcester, MA 01604 (US)				
(72) Inventors: <ul style="list-style-type: none">• WU, Mianxue Worcester, MA 01606 (US)• CORBIN, Normand, D. Northboro, MA 01532 (US)	(53) Representative: Richebourg, Michel François Cabinet Michel Richebourg, "Le Clos du Golf", 69, rue Saint-Simon 42000 Saint Etienne (FR)				
	(56) References cited: <table border="0"><tr><td>EP-A- 0 474 092</td><td>DE-A- 4 300 417</td></tr><tr><td>US-A- 3 847 568</td><td>US-A- 5 114 438</td></tr></table>	EP-A- 0 474 092	DE-A- 4 300 417	US-A- 3 847 568	US-A- 5 114 438
EP-A- 0 474 092	DE-A- 4 300 417				
US-A- 3 847 568	US-A- 5 114 438				

EP 0 921 909 B9

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

DescriptionBACKGROUND OF THE INVENTION

5 **[0001]** The invention relates to abrasive articles made by utilizing elongated abrasive grains and other materials having an elongated shape to achieve high permeability characteristics useful in high-performance grinding applications. The abrasive articles have unprecedented permeability, interconnected porosity, openness and grinding performance.

10 **[0002]** Pores, especially those of which are interconnected in an abrasive tool, play a critical role in two respects. Pores provide access to grinding fluids, such as coolants for transferring the heat generated during grinding to keep the grinding environment constantly cool, and lubricants for reducing the friction between the moving abrasive grains and the workpiece surface and increasing the ratio of cutting to tribological effects. The fluids and lubricants minimize the metallurgical damage (e.g., burn) and maximize the abrasive tool life. This is particularly important in deep cut and modern precision processes (e.g., creep feed grinding) for high efficiency grinding where a large amount of material is removed in one deep grinding pass without sacrificing the accuracy of the workpiece dimension. Therefore, the structural openness (i.e., the pore interconnection) of the wheel, quantified by its permeability to fluids (air, coolants, lubricants, etc.), becomes very critical.

15 **[0003]** Pores also supply clearance for material (e.g., metal chips or swarf) removed from an object being ground. Debris clearance is essential when the workpiece material being ground is "difficult-to-machine" ductile, or gummy, such as aluminum or some alloys, or where the metal chips are long and the grinding wheel is easy to load up in the absence of pore interconnections.

20 **[0004]** To make an abrasive tool meeting both of the pore requirements, a number of methods have been tried over the years.

25 **[0005]** United States Patent No.-A-5,221,294 of Carman, et al., discloses abrasive wheels having 5-65% void volume achieved by utilizing a one step process in which an organic pore-forming structure is impregnated with an abrasive slurry and then burnt out during heating to yield a reticulated abrasive structure.

30 **[0006]** Japanese Patent No.-A-91-161273 of Gotoh, et al., discloses abrasive articles having large volume pores, each pore having a diameter of 1-10 times the average diameter of the abrasive grain used in the article. The pores are created using materials which burn out during cure.

35 **[0007]** Japanese Patent No.-A-91-281174 of Satoh, et al., discloses abrasive articles having large volume pores, each pore having a diameter of at least 10 times the average diameter of the abrasive grain used in the article. A porosity of 50% by volume is achieved by burn out of organic pore inducing materials during cure.

40 **[0008]** United States Patent No.-A-5,037,452 of Gary, et al., discloses an index useful to define the structural strength needed to form very porous wheels.

45 **[0009]** United States Patent No.-A-5,203,886 of Sheldon, et al., discloses a combination of organic pore inducers (e.g., walnut shells) and closed cell pore inducers (e.g., bubble alumina) useful in making high porosity vitrified bond abrasive wheels. A "natural or residual porosity" (calculated to be about 28-53%) is described as one part of the total porosity of the abrasive wheel.

50 **[0010]** United States Patent No.-A-5,244,477 of Rue, et al., discloses filamentary abrasive particles used in conjunction with pore inducers to produce abrasive articles containing 0-73%, by volume, pores.

55 **[0011]** United States Patent No.-A-3,273,984 of Nelson teaches that an abrasive article containing an organic or resinous bond and at least 30%, by volume, abrasive grain, may contain, at most, 68%, by volume, porosity.

60 **[0012]** United States Patent No.-A-5,429,648 of Wu discloses vitrified abrasive wheels containing an organic pore inducer which is burned out to form an abrasive article having 35-65%, by volume, porosity.

65 **[0013]** These and other, similar efforts to increase porosity have failed to create sufficient levels of structural permeability in the wheels. For this reason, wheel porosity has not been a reliable predictor of wheel performance.

70 **[0014]** German Patent N° A 43 00 417 discloses a main body structure consisting of rods to which abrasive particles are bonded and with a volume porosity content of above 80%.

75 **[0015]** United States Patent N° A 5, 114,438 describes a backing consisting of a microporous material having 35-80% porosity. A layer of abrasive grain is deposited onto the backing which has been coated with an adhesive material to form a make coat. When the make coat is hardened, the abrasive grains are firmly bound to the backing.

80 **[0016]** In addition, where high porosity pore structures have been created by organic pore inducing media (such as walnut shells or naphthalene), certain auxiliary problems are created. These media thermally decompose upon firing the green body of the abrasive tool, leaving voids or pores in the cured abrasive tool. Problems of this method include: moisture absorption during storage of the pore inducer; mixing inconsistency and mixing separation, partially due to moisture, and partially due to the density difference between the abrasive grain and pore inducer; molding thickness growth or "springback" due to time-dependent strain release on the pore inducer upon unloading the mold, causing uncontrollable dimension of the abrasive tool; incompleteness of burn-out of pore inducer or "coring" or "blackening"

of an fired abrasive article if either the heating rate is not slow enough or the softening point of a vitrified bonding agent is not high enough; exothermic reactions causing difficulties in controlling heating rates, fires and cracked products; and air borne emissions and odors when the pore inducer is thermally decomposed, often causing negative environmental impact.

5 [0017] Introducing closed cell bubbles, such as bubble alumina into an abrasive tool induces porosity without the manufacturing problems of organic burnout methods. However, the pores created by the bubbles are internal and closed, so the pore structure is not permeable to passage of coolant and lubricant.

10 [0018] To overcome these drawbacks, and maximize the permeability of abrasive articles, this invention takes advantage of elongated shape or fiber-like abrasive grains with an aspect ratio of length to diameter, (L/D) of at least 5:1 in abrasive tools and selected fillers, having a filamentary form, alone or in combination with, the filamentary abrasive grain. In the alternative, permeability may be created within the tool during manufacture by heating the green abrasive article to burn or melt temporary elongated materials (e.g., organic fibers or fiberglass) and yield an elongated, interconnected network of open channels within the finished abrasive article.

15 [0019] The elongated materials and shapes in the abrasive article compositions yield high-porosity, high-permeability and high-performance abrasive tools.

SUMMARY OF THE INVENTION

20 [0020] The invention is an abrasive article, comprising about 55% to about 80%, by volume, interconnected porosity, and abrasive grain and bond in amounts effective for grinding, and having an air permeability measured in $\text{cm}^3/\text{second}\cdot\text{KPa}$ of at least 1,77 times (in cc air/second/inch of water of at least 0,44 times) the cross-sectional width in micrometers of the abrasive grain, wherein the interconnected porosity provides an open structure of channels permitting passage of fluid or debris through the abrasive article during grinding.

25 [0021] The invention also includes an abrasive article, comprising about 40% to about 54%, by volume, interconnected porosity, and abrasive grain and bond in amounts effective for grinding, and having an air permeability measured in $\text{cm}^3/\text{second}\cdot\text{KPa}$ of at least 0,88 times (in cc air/second/inch of water of at least 0,22 times) the cross-sectional width in micrometers of the abrasive grain, wherein the interconnected porosity provides an open structure of channels permitting passage of fluid or debris through the abrasive article during grinding.

30 [0022] The abrasive article preferably contains a vitrified bond and fibrous particles of abrasive grain having a L/D ratio of at least 5:1. The abrasive grain may be a sintered seeded sol gel alumina filamentary grain. The abrasive article may be made with or without added pore inducer. Fibrous filler material may be used, alone or in combination with fibrous abrasive grain, to create interconnected porosity in the abrasive article.

DETAILED DESCRIPTION OF THE INVENTION

35 [0023] The abrasive article comprises effective amounts of abrasive grain and bond needed for grinding operations and, optionally, fillers, lubricants or other components. The abrasive articles preferably contain the maximum volume of permeable porosity which can be achieved while retaining sufficient structural strength to withstand grinding forces. Abrasive articles include tools such as grinding wheels, hones and wheel segments as well as other forms of bonded abrasive grains designed to provide abrasion to a workpiece. The abrasive article may comprise about 40 to 80%, preferably 55 to 80% and most preferably 60% to 70%, by volume, interconnected porosity. Interconnected porosity is the porosity of the abrasive article consisting of the interstices between particles of bonded abrasive grain which are open to the flow of a fluid.

40 [0024] The balance of the volume, 20% to 60%, is abrasive grain and bond in a ratio of about 20:1 to 1:1 grain to bond. These amounts are effective for grinding, with higher amounts of bond and grain required for larger abrasive wheels and for formulations containing organic bonds rather than vitrified bonds. Relative to conventional abrasive grain, superabrasive grain in vitrified bond typically requires a higher bond content. In a preferred embodiment, the abrasive articles are formed with a vitrified bond and comprise 15% to 43% abrasive grain and 3% to 15% bond.

45 [0025] In order to exhibit the observed significant improvements in wheel life, grinding performance and workpiece surface quality, the abrasive articles of the invention must have a minimum permeability capacity for permitting the free flow of fluid through the abrasive article. As used herein, the permeability of an abrasive tool is Q/P , where Q means flow rate expressed as cc of air flow, and P means differential pressure. Q/P is the pressure differential measured between the abrasive tool structure and the atmosphere at a given flow rate of a fluid (e.g., air). This relative permeability Q/P is proportional to the product of the pore volume and the square of the pore size. Larger pore sizes are preferred. 50 Pore geometry and abrasive grain size or grit are other factors affecting Q/P , with larger grit size yielding higher relative permeability. Q/P is measured using the apparatus and method described in Example 6, below.

55 [0026] Thus, for an abrasive tool having about 55% to 80% porosity in a vitrified bond, using an abrasive grain grit size of 80 to 120 grit (132-194 micrometers) in cross-sectional width, an air permeability of at least 160.6 cm^3/sec -

ond·KPa (40 cc/second/inch of water) is required to yield the benefits of the invention. For an abrasive grain grit size greater than 80 grit (194 micrometers), a permeability of at least 200.8. cm³/second·KPa (50 cc/second/inch of water) is required.

[0027] The relationship between permeability and grit size for 55% to 80% porosity may be expressed by the following equation:

$$\text{minimum permeability in cm}^3/\text{second} \cdot \text{kPa} = 1,77 \times \text{cross-sectional width (in cc/}$$

$$\text{air/second/inch of water} = 0,44 \times \text{cross-sectional width)}$$

in micrometers of the abrasive grain. A cross-sectional width of at least 220 grit (70 micrometers) is preferred.

[0028] For an abrasive tool having from about 40% to less than about 55% porosity in a vitrified bond, using an abrasive grain size of 80 to 120 grit (132-194 micrometers), an air permeability of at least 116.5 cm³/second·KPa (29 cc/second/inch of water) is required to yield the benefits of the invention. For an abrasive grit size greater than 80 grit (194 micrometers), a permeability of at least 168.7 cm³/second·KPa (42 cc/second/inch of water) is required.

[0029] The relationship between permeability and grit size for from about 40% to less than 55% porosity may be expressed by the following equation:

$$\text{minimum permeability in cm}^3/\text{second} \cdot \text{kPa} = 0,88 \times \text{cross-sectional width (in cc/}$$

$$\text{air/second/inch of water} = 0,22 \times \text{cross-sectional width)}$$

in micrometers of the abrasive grain.

[0030] Similar relative permeability limits for other grit sizes, bond types and porosity levels may be determined by the practitioner by applying these relationships and D'Arcy's Law to empirical data for a given type of abrasive article.

[0031] Smaller cross-sectional width grain requires the use of filament spacers (e.g., bubble alumina) to maintain permeability during molding and firing steps. Larger grit sizes may be used. The only limitation on increasing grit size is that the size be appropriate for the workpiece, grinding machine, wheel composition and geometry, surface finish and other, variable elements which are selected and implemented by the practitioner in accordance with the requirements of a particular grinding operation.

[0032] The enhanced permeability and improved grinding performance of the invention results from the creation of a unique, stable, interconnecting porosity defined by a matrix of fibrous particles ("the fibers"). The fibers may consist of abrasive grain or filler or a combination of the two and may have a variety of shapes and geometric forms. The fibers may be mixed with the bond components and other abrasive tool components, then pressed and cured or fired to form the tool. In another preferred embodiment, a mat of fibers, and optionally, other tool components is preformed and, optionally, infused with other mix components, then cured or fired to make the tool in one or more steps.

[0033] If the fibers are arranged even more loosely by adding closed cell or organic pore inducer to further separate particles, even higher permeabilities can be achieved. Upon firing, the article comprised of the organic particles will shrink back to result in an article having a smaller dimension because the fibers have to interconnect for integrity of the article. The final dimension after firing of the abrasive tool and the resultant permeability created is a function of aspect ratio of fibers. The higher the L/D is, the higher the permeability of a packed array will remain.

[0034] Any abrasive mix formulation may be used to prepare the abrasive articles herein, provided the mix, after forming the article and firing it, yields an article having these minimum permeability and interconnected porosity characteristics.

[0035] In a preferred embodiment, the abrasive article comprises a filamentary abrasive grain particle incorporating sintered sol gel alpha alumina based polycrystalline abrasive material, preferably having crystallites that are no larger than 1-2 microns, more preferably less than 0.4 microns in size. Suitable filamentary grain particles are described in United States Patent Nos.-A-5,244,477 to Rue, et al.; A-5,129,919 to Kalinowski, et al.; A-5,035,723 to Kalinowski, et al.; and A-5,009,676 to Rue, et al., which are hereby incorporated by reference. Other types of polycrystalline alumina abrasive grain having larger crystallites from which filamentary abrasive grain may be obtained and used herein are disclosed in, e.g., United States Patent Nos. A-4,314,705 to Leitheisen, et al.; and A-5,431,705 to Wood, which are hereby incorporated by reference. Filamentary grain obtained from these sources preferably has a L/D aspect ratio of at least 5:1. Various filamentary shapes may be used, including, e.g., straight, curved, corkscrew and bent fibers. In a preferred embodiment, the alumina fibers are hollow shapes.

[0036] In a preferred embodiment the filamentary abrasive grain particles have a grit size greater than 220 grit (i.e., a particle size of greater than 79µm in diameter). In the alternative, filamentary abrasive grain particles having a grit

size of 400 to 220 grit (23 to 79 micrometers) may be used in an agglomerated form having an average agglomerated particle diameter of greater than 79 μm . In a second alternative preferred embodiment, filamentary abrasive grain particles having a grit size of 400 to 220 grit may be used with pore inducer (organic material or closed cell) in an amount effective to space the filaments during firing, and thereby maintain a minimum permeability of at least about 160.6 $\text{cm}^3/\text{second.kPa}$ 40 cc/second/inch water in the finished wheel.

[0037] Any abrasive grain may be used in the articles of the invention, whether or not in filamentary form, provided minimum permeability is maintained. Conventional abrasives, including, but not limited to, aluminum oxide, silicon carbide, zirconia-alumina, garnet and emery may be used in a grit size of about 0.5 to 5,000 micrometers, preferably about 2 to 200 micrometers. Superabrasives, including, but not limited to, diamond, cubic boron nitride and boron suboxide (as described in United States Patent No.-A-5.135,892) may be used in the same grit sizes as conventional abrasive grain.

[0038] While any bond normally used in abrasive articles may be employed with the fibrous particles to form a bonded abrasive article, a vitrified bond is preferred for structural strength. Other bonds known in the art, such as organic or resinous bonds, together with appropriate curing agents, may be used for, e.g., articles having an interconnected porosity of about 40% to 80%.

[0039] The abrasive article can include other additives, including but not limited to fillers, preferably as filamentary or matted or agglomerated filamentary particles, pore inducers, lubricants and processing adjuncts, such as antistatic agents and temporary binding materials for molding and pressing the articles. As used herein, "fillers" excludes pore inducers of the closed cell and organic material types. The appropriate amounts of these optional abrasive mix components can be readily determined by those skilled in the art.

[0040] Suitable fillers include secondary abrasives, solid lubricants, metal powder or particles, ceramic powders, such as silicon carbides, and other fillers known in the art.

[0041] The abrasive mixture comprising the filamentary material, bond and other components is mixed and formed using conventional techniques and equipment. The abrasive article may be formed by cold, warm or hot pressing or any process known to those skilled in the art. The abrasive article may be fired by conventional firing processes known in the art and selected for the type and quantity of bond and other components. In general, as the porosity content increases, the firing time and temperature decreases.

[0042] In addition to the traditional methods of forming abrasive articles, the articles of the invention may be prepared by one step methods, such as is disclosed in United States Patent No.-A-5,221,294 to Carman, et al., which is hereby incorporated by reference. When using a one step method, a porous structure is initially obtained by selecting a mat or foam structure having interconnected porosity and consisting of an organic (e.g., polyester) or inorganic (e.g., glass) fiber or ceramic fiber matrix, or a ceramic or glass or organic honeycomb matrix or a combination thereof and then infiltrating the matrix with abrasive grain, and bond, followed by firing and finishing, as needed, to form the abrasive article. In a preferred embodiment, layers of polyester fiber mats are arranged in the general shape of an abrasive wheel and infiltrated with an alumina slurry to coat the fibers. This construction is heated to 1510°C for 1 hour to sinter the alumina and thermally decompose the polyester fiber, and then further processed (e.g., infiltrated with other components) and fired to form the abrasive article. Suitable fiber matrices include a polyester nylon fiber mat product obtained from Norton Company, Worcester, Massachusetts.

[0043] In another preferred embodiment, woven mats of resin coated fiberglass are layered into an abrasive wheel mold along with an abrasive mix containing abrasive grain, vitrified bond components and optional components. This structured mix is processed with conventional methods to form an abrasive article having regularly spaced pores in the shape of large channels transversing the wheel.

[0044] Abrasive articles prepared by any of these methods exhibit improved grinding performance. In wet grinding operations such abrasive tools have a longer wheel life, higher G-ratio (ratio of metal removal rate to wheel wear rate) and lower power draw than similar tools prepared from the same abrasive mix but having lower interconnected porosity and permeability and/or having the same porosity, but less interconnected porosity and lower permeability. The abrasive tools of the invention also yield a better, smoother workpiece surface than conventional tools.

Example 1

[0045] This example demonstrates the manufacture of grinding wheels using long aspect ratio, seeded sol-gel alumina (TARGA™) grains obtained from Norton Company (Worcester, Massachusetts) with an average L/D ~ 7.5, without added pore inducer. The following Table 1 lists the mixing formulations:

Table 1

Composition of Raw Material Ingredients for Wheels 1-3			
	Parts by Weight		
Ingredient	(1)	(2)	(3)
Abrasive grain*	100	100	100
Pore inducer	0	0	0
Dextrin	3.0	3.0	3.0
Aromer Glue (animal based)	4.3	2.8	1.8
Ethylene glycol	0.3	0.2	0.2
Vitrified bonding agent	30.1	17.1	8.4

*(120 grit, $\sim 132 \times 132 \times 990 \mu\text{m}$)

[0046] For each grinding wheel, the mix was prepared according to the above formulations and sequences in a Hobart® mixer. Each ingredient was added sequentially and was mixed with the previous added ingredients for about 1-2 minutes after each addition. After mixing, the mixed material was placed into a 7.6 cm (3 inch) or 12.7 cm (5 inch) diameter steel mold and was cold pressed in a hydraulic molding press for 10-20 seconds resulting in 1.59 cm (5/8 inch) thick disk-like wheels with a hole of 2.22 cm (7/8 inch). The total volume (diameter, hole and thickness) as-molded wheel and total weight of ingredients were pre-determined by the desired and calculated final density and porosity of such a grinding wheel upon firing. After the pressure was removed from the pressed wheels, the wheel was taken away manually from the mold onto a batt for drying 3-4 hours before firing in a kiln, at a heating rate of 50°C/hour from 25°C to the maximum 900°C, where the wheel was held for 8 hours before it was naturally cooled down to room temperature in the kiln.

[0047] The density of the wheel after firing was examined for any deviation from the calculated density. Porosity was determined from the density measurements, as the ratio of the densities of abrasive grain and vitrified bonding agent had been known before batching. The porosities of three abrasive articles were 51%, 58%, and 62%, by volume, respectively.

Example 2

[0048] This example illustrates the manufacture of two wheels using TARGA™ grains with an L/D ~ 30 , without any pore inducer, for extremely high porosity grinding wheels.

[0049] The following Table 2 list the mixing formulations. After molding and firing, as in Example 1, vitrified grinding wheels with porosities (4) 77% and (5) 80%, by volume, were obtained.

Table 2

Composition of raw material ingredients for wheels 4-5		
	Parts by Weight	
Ingredient	(4)	(5)
Abrasive grain*	100	100
Pore inducer	0	0
Dextrin	2.7	2.7
Aromer (animal) glue	3.9	3.4
Ethylene glycol	0.3	0.2
Vitrified bonding agent	38.7	24.2

*(120 grit, $\sim 135 \times 80 \times 3600 \mu\text{m}$)

Example 3

[0050] This example demonstrates that this process can produce commercial scale abrasive tools, i.e., 500 mm (20 inch) in diameter. Three large wheels (20 x 1 x 8 inch, or 500 x 25 x 200 mm) were made using long TARGA™ grains having an average L/D ~ 6.14 , 5.85, 7.6, respectively, without added pore inducer, for commercial scale creep-feed grinding wheels.

[0051] The following Table 3 lists the mixing formulations. At molding stage, the maximum springback was less than 0.2% (or 0.002 inch or 50 μm , compared to the grain thickness of 194 μm) of the wheel thickness, far below grinding wheels of the same specifications containing pore inducer. The molding thickness was very uniform from location to location, not exceeding 0.4% (or 0.004 inch or 100 μm) for the maximum variation. After molding, each grinding wheel was lifted by air-ring from the wheel edge onto a batt for overnight drying in a humidity-controlled room. Each wheel was fired in a kiln with a heating rate of slight slower than 50°C/hour and holding temperature of 900°C for 8 hours, followed by programmed cooling down to room temperature in the kiln.

[0052] After firing, these three vitrified grinding wheels were determined to have porosities: (6) 54%, (7) 54% and (8) 58%, by volume. No cracking was found in these wheels and the shrinkage from molded volume to fired volume was equal to or less than observed in commercial grinding wheels made with bubble alumina to provide porosity to the structure. The maximum imbalances in these three grinding wheels were 13.6 g (0.48 oz), 7.38 g (0.26 oz), and 11.08 g (0.39 oz), respectively, i.e., only 0.1%-0.2% of the total wheel weight. The imbalance data were far below the upper limit at which a balancing adjustment is needed. These results suggest significant advantages of the present method in high-porosity wheel quality consistency in manufacturing relative to conventional wheels.

15

Table 3

Composition of Raw Material Ingredients for Wheels 6-8			
Ingredient	Parts by Weight		
	(6)	(7)	(8)
Abrasive grain*	100	100	100
Pore inducer	0	0	0
Dextrin	4.0	4.5	4.5
Aromer Glue (animal based)	2.3	3.4	2.4
Ethylene glycol	0.2	0.2	0.2
Vitrified bonding agent	11.5	20.4	12.7

*(80 grit, $\sim 194 \times 194 \times [194 \times 6.14] \mu\text{m}$)

30

Example 4

[0053]

35

(I) Abrasive wheels comprising an equivalent volume percentage open porosity were manufactured on commercial scale equipment from the following mixes to compare the productivity of automatic pressing and molding equipment using mixes containing pore inducer to that of the invention mixes without pore inducer.

Wheel 9Mix Formulations			
Ingredient	Percent by Weight		
	(A) Invention	(B) Conventional	
Abrasive grain*	100		100
Pore inducer (walnut shell)	0		8.0
Dextrin	3.0		3.0
Glue	0.77		5.97
Ethylene glycol	0		0.2
Water	1.46		0
Drying agent	0.53		0
Vitrified bonding agent	17.91		18.45

* (A) 120 grit, 132 X 132 X 990 μm .

(B) 50% sol gel alumina 80 grit/50% 38A alumina 80 grit, abrasive grain obtained from Norton Company, Worcester, Massachusetts.

55

A productivity (rate of wheel production in the molding process per unit of time) increase of 5 times was observed for the mix of the invention relative to a conventional mix containing pore inducer. The invention mix exhibited free flow characteristics permitting automatic pressing operations. In the absence of pore inducer, the mix of the

invention exhibited no springback after pressing and no coring during firing. The permeability of the wheels of the invention was 43 cc/second/inch water.

(II) Abrasive wheels comprising an equivalent volume percentage of open porosity were manufactured from the following mixes to compare the firing characteristics of mixes containing pore inducer to that of the invention mixes.

5

Wheel 10Mix Formulations		
Ingredient	Percent by Weight	
	(A) Invention	(B) Conventional
Abrasive grain*	100	100
Pore inducer (walnut shell)	0	8.0
Dextrin	2.0	2.0
Glue	1.83	2.7
Animal Glue	4.1	5.75
Ethylene glycol	0	0.1
Bulk agent (Vinsol powder)	0	1.5
Vitrified bonding agent	26.27	26.27

* (A) 80 grit, 194 X 194 X 1360 μm .

(B) 50% sol gel alumina 36 grit/50% 38A alumina 36 grit, abrasive grain obtained from Norton Company, Worcester, Massachusetts.

[0054] The wheels of the invention showed no signs of slumping, cracking or coring following firing. Prior to firing, the green, pressed wheels of the invention had a high permeability of 22 cc/second/inch water, compared to the green, pressed wheels made from a conventional mix containing pore inducer which was 5 cc/second/inch water. The high green permeability is believed to yield a high mass/heat transfer rate during firing, resulting in a higher heat rate capability for the wheels of the invention relative to conventional wheels. Firing of the wheels of the invention was completed in one-half of the time required for conventional wheels utilizing equivalent heat cycles. The permeability of the fired wheels of the invention was 45 cc/second/inch water.

Example 5

[0055] This example demonstrates that high-porosity grinding wheels may be made by using pre-agglomerated grains. The pre-agglomerated grain was made during extrusion of elongated sol gel alpha-alumina grain particles by a controlled reduction in the extrusion rate. The reduction in rate caused agglomerates to form as the material exited the extruder die prior to drying the extruded grain.

[0056] High-porosity wheels were made as described in Example 1 from agglomerated and elongated TARGA™ grain without using any pore inducer (an average agglomerate had \sim 5-7 elongated grains, and the average dimension of each was \sim 194 x 194 x (194 x 5.96) μm . The nominal aspect ratio was 5.96, and the LPD was 0.99 g/cc. The following Table 5 lists the mixing formulations. After molding and firing, vitrified grinding wheels were made with a porosity of 54%, by volume.

Wheel 11 Mix Formulation	
	Parts by Weight
Abrasive grain*	100
Pore inducer	0
Dextrin	2.7
Aromer Glue	3.2
Ethylene glycol	2.2
Vitrified bonding agent	20.5

* (agglomerates of 80 grit, \sim 194 x 194 x 1160 μm)

55

Example 6

[0057] This example describes the permeability measurement test and demonstrates that the permeability of abrasive

articles can be increased greatly by using abrasive grains in the form of fibrous particles.

Permeability Test

5 [0058] A quantitative measurement of the openness of porous media by permeability testing, based on D'Arcy's Law governing the relationship between the flow rate and pressure on porous media, was used to evaluate wheels. A non-destructive testing apparatus was constructed. The apparatus consisted of an air supply, a flowmeter (to measure Q, the inlet air flow rate), a pressure gauge (to measure change in pressure at various wheel locations) and a nozzle connected to the air supply for directing the air flow against various surface locations on the wheel.

10 [0059] An air inlet pressure P_0 of 1.76 kg/cm² (25 psi), inlet air flow rate Q_0 of 14 m³/hour (500 ft³/hour) and a probing nozzle size of 2.2 cm were used in the test. Data points (8-16 per grinding wheel) (i.e., 4-8 per side) were taken to yield an accurate average.

Wheel Measurements

15 [0060] Table 4 shows the comparison of permeability values (Q/P, in cc/sec/inch of water) of various grinding wheels.

Table 4

Wheel Permeability			
Abrasives Wheel Sample	Porosity (Vol.%)	Permeability ^a Q/P cc/sec/inch H ₂ O	
		Invention	Control
Example 1			
(1)	51	45	23
(2)	58	75	28
(3)	62	98	31
Example 2			
(4)	77	225	n/a
(5)	80	280	n/a
Example 3			
(6)	54	71	30
(7)	54	74	30
(8)	58	106	34
Example 4			
(9)	50	45	22
(10)	47	47	28
Example 5			
(11)	54	43	25

45 [0061] Data was standardized by using wheels, of at least one-half inch (1.27 cm) in thickness, typically one inch (2.54 cm) thick. It was not possible to make wheels to serve as controls for Example 2 because the mix could not be molded into the high porosity content of the wheels of the invention (achieved using elongated abrasive grain in an otherwise standard abrasive mix). The control wheels were made using a 50/50 volume percent mixture of a 4:1 aspect ratio sol gel alumina abrasive grain with a 1:1 aspect ratio sol gel or 38A alumina abrasive grain, all obtained from Norton Company, Worcester, Massachusetts.

50 [0062] Wheel 11 comprised agglomerated elongated abrasive grain, therefore, the data does not lend itself to a direct comparison with non-agglomerated elongated grain particles nor to the permeability description provided by the equation:

$$\text{permeability in cm}^3/\text{second.kPa} = 1.77 \times \text{cross-sectional width (in cc/ air/second/inch}$$

of water = 0,44 x cross-sectional width)

5 width in micrometers of the abrasive grain. However, the permeability of the wheel of the invention compared very favorably to the control and was approximately equal to the predicted permeability for a wheel containing an otherwise equivalent type of non-agglomerated elongated grain.

[0063] The data show that the wheels made by the process of the invention have about 2-3 times higher permeability than conventional grinding wheels having the same porosity.

10 Example 7

[0064] This example demonstrates how the L/D aspect ratio of abrasive grain changes the grinding performance in a creep feed grinding mode. A set of grinding wheels having 54% porosity and equal amounts of abrasive and bonding agent, made in a Norton Company manufacturing plant to a diameter of 50.8 x 2.54 x 20.32 cm (20 x 1 x 8 inch), were 15 selected for testing, as shown in Table 5, below.

Table 5

Properties differences among wheels				
Grain ^a	Control Grain Mixture	Control Grain	Elongated Grain 1	Elongated Grain 2
(L/D)	50% 4.2:1 50% 1:1 (vol)	4.2:1	5.8:1	7.6:1
Inducer Type	bubble alumina + walnut shell	Piccotac® resin	none	none
Air permeability cm ³ /second·KPa (cc/sec/inch H ₂ O)	78.3 (19.5)	151.0 (37.6)	202.0 (50.3)	221.3 (55.1)

a. All grain was 120 grit seeded sol gel alumina grain obtained from Norton Company, Worcester, MA.

[0065] These wheels were tested for grinding performance. The grinding was carried out on blocks of 20.32 x 10.66 x 5.33 cm (8 x 4 x 2 inch) of 4340 steel (Rc 48-52) by a down-cut, non-continuous dress creep feed operation on a Blohm machine along the longest dimension of the blocks. The wheel speed was 30.5 meters/sec (6000 S.F.P.M.), the depth of cut was 0.318 cm (0.125 inch) and the table speed was from 19.05 cm/min (7.5 in/min) at an increment of 6.35 cm/min (2.5 inch/min) until workpiece burn. The grinding performance was greatly improved by using elongated Targa grains to make abrasive wheels having 54% porosity and an air permeability of at least about 50 cc/second/inch water. Table 6 summarizes the results of various grinding aspects. In addition to the benefits of interconnected porosity, the grinding productivity (characterized by metal removal rate) and grindability index (G-ratio divided by specific energy) are both a function of the aspect ratio of abrasive grain: the performance increases with increasing L/D.

Table 6

Grinding differences among 4 wheels				
Grinding Parameter	Control Grain Mixture	Control Grain	Elongated Grain 1	Elongated Grain 2
Maximum table speed without burn	17.5	22.5	25	32.5
G-ratio @15 in/min speed	25.2	23.4	32.7	37.2
G-ratio @25 in/min speed	burn	burn	24.2	31.6

Table 6 (continued)

Grinding differences among 4 wheels					
	Grinding Parameter	Control Grain Mixture	Control Grain	Elongated Grain 1	Elongated Grain 2
5	Power @15 in/min speed (HP/in)	22	20.8	18.8	15.7
10	Power @25 in/min speed (HP/in)	burn	burn	30.6	24.4
15	Force F_v @15 in/min speed (lbf/in)	250	233	209	176
20	Force F_v @25 in/min speed (lbf/in)	burn	burn	338	258
25	Grindability Index @15 in/min speed	2.12	2.08	3.23	4.42
	Grindability Index @25 in/min speed	burn	burn	2.43	4.00

[0066] Speed in cm/minute is equal to 2.54 X speed in in/min. Force in Kg/cm is equal to 5.59 X force in lbf/in.

[0067] Similar grinding performance results were obtained for wheels containing 80 to 120 grit abrasive grain. For the smaller grit sizes, significant grinding improvements were observed for wheels having a permeability of at least about 40 cc/second/inch water.

Example 8

[0068] This example illustrates the preparation of permeable abrasive articles utilizing fibrous thermally decomposable materials in a mat structure to generate high interconnected porosity in the cured abrasive article.

[0069] Using the formulation shown below, the components were mixed as described in Example 1 and the mix was layered into a mold (5.0 X 0.53 X 0.875 inch) and pressed to form green wheels. Wheels 12 and 13 contained 5 layers of equally spaced abrasive mix separated by 4 layers of resin coated fiber glass mat (30% resin on 70%, by weight, E glass, obtained from Industrial Polymer and Chemicals as product #3321 and #57). A fine mesh mat with 1 mm square openings (#3321) was used for wheel 12 and a coarse mesh mat with 5 mm square openings (#57) was used for wheel 13. Wheel 14, the control, contained no fiber glass mesh.

Composition of Raw Material Ingredients for Wheels 12-14				
	Parts by Weight			
Ingredient	(12)	(13)	(14)	
Abrasive grain*	100	100	100	
Fiber mat	4 layers	4 layers	none	
Dextrin	0.8	0.8	0.8	
Glue (AR30)	1.94	1.94	1.94	
Vitrified bonding agent	13.56	13.56	13.56	

*(80 grit, sol gel alpha-alumina grain)

[0070] The green wheels were removed from the press, dried and fired as in Example 1. After firing, the outer diameter of the wheels were ground to expose the pore channels formed by decomposition of the fiber glass mat. The wheels

were unitary structures suitable for grinding operations. X-ray radiographic images were taken and confirmed the existence of an internal network of large fluid-permeable channels approximating the size and location of the fiber glass mesh in wheels 12 and 13 and no channels in wheel 14. Thus, wheels 12 and 13 were suitable for use in the invention.

5 Example 9

[0071] This example illustrates the preparation of permeable abrasive articles utilizing laminates of a non-woven matt of an organic substrate which has been coated with an alumina slip. The laminate was heat-treated to sinter the alumina and then used as a matrix for forming a permeable abrasive article.

10 **[0072]** The alumina slip components were mixed in a high intensity mixer (Premier Mill Corporation Laboratory Disperator model) by mixing at 500 rpm 100 g boehmite sol (Condea, Desperal sol 10/2 liquid obtained from Condea Chemie, GmbH), 0.15 mls Nalco defoamer and 300 g alpha-alumina powder (Ceralox-APA-0.5 μ m, with MgO, obtained from Ceralox Corporation), increasing the mixing speed to 2500-3000 rpm as the viscosity increased. The mixture was milled with 99.97% purity alumina oxide 0.5 inch cylindrical milling media in a 1000 ml Nalgene container mounted

15 on a Red Devil paint shaker for 15 minutes, then screened on a 10 U.S. mesh Tyler screen to yield the alumina slip.

[0073] The alumina slurry was used to coat six (3.75 X 0.25 inch) polyester/nylon non-woven fibrous matting discs (obtained from Norton Company). The coated discs were stacked onto an alumina batt covered with a paper disc, another paper disc and alumina batt was placed onto the stack and two 1 inch high blocks were placed at either side of the stack. Pressure was applied to the top batt to compress the stack to the same height as the blocks. The stacked discs were dried at room temperature for 4 hours and in an 80°C oven for 4 hours. The coated discs were fired using a temperature ramp cycle to a maximum temperature of 1510°C to form an alumina matrix.

20 **[0074]** Following firing, the alumina matrix was infiltrated with a dispersion of vitrified bond materials. The dispersion was prepared in the same high intensity mixer used for the alumina slip by setting the mixer to 500-700 rpm and mixing 70 g of deionized water at 50°C, 0.3 mls of Darvan 821A dispersing agent (obtained from R. T. Vanderbilt Co., Inc), 0.15 mls of Nalco defoamer, 30 g of a frit bond powder (a raw bond mixture was melted into a glass, cooled, ground and screened to yield a frit having a mean particle size of 10-20 μ m), and 1 g Gelloid C 101 polymer (FMC Corporation). The dispersion temperature was adjusted to 40-45°C with constant stirring to minimize viscosity for infiltration of the alumina matrix. The alumina matrix (containing 115 g of alumina) was placed in a petri dish and submerged with the bond dispersion, placed in a vacuum chamber and a vacuum was drawn to insure complete infiltration 25 of the glass frit bond dispersion into the matrix. Upon cooling, the bond dispersion formed a gel and excess gel was scraped from the outside of the alumina matrix. The infiltrated alumina matrix (containing 42.8 g bond) was fired in a temperature ramp firing cycle at a maximum temperature of 900°C to yield an abrasive article having the bond composition described in Example 1 of United States Patent No. 5,035,723, which is hereby incorporated by reference. The abrasive article was a highly permeable, unitary structure, having 70-80%, by volume porosity, with suitable 30 strength for grinding operations.

35 Example 10

40 **[0075]** This example illustrates the preparation of a permeable abrasive article utilizing a fibrous material comprising the abrasive grain and the bond in proportions suitable for the cured abrasive article. The fibrous material was made from a slurry mixture of 5.75 to 1.0 volumetric ratio of sol gel alpha-alumina grain to vitrified bond components by injection molding and sintering. The wheel (3 inch diameter) was made as described in Example 1, but using the mix formulation shown below.

45

Wheel 15 Mix Formulation	
	Parts by Weight
Fibrous grain material	100
Pore inducer	0
Dextrin	3.17
Aromer Glue	8.32
Ethylene glycol	0.17
Vitrified bonding agent	8.28

50 **[0076]** The wheels had 80%, by volume, porosity, an air permeability of 350 cc/second/inch water, and were unitary structures suitable for soft grinding operations.

Claims

1. An abrasive article, comprising about 55% to about 80%, by volume, interconnected porosity, and abrasive grain and bond in amounts effective for grinding, and having an air permeability measured in $\text{cm}^3/\text{second}\cdot\text{KPa}$ of at least 1,77 times (in cc air/second/inch of water of at least 0,44 times) the cross-sectional width in micrometers of the abrasive grain, wherein the interconnected porosity provides an open structure of channels permitting passage of fluid or debris through the abrasive article during grinding.
2. The abrasive article of claim 1 comprising 60 to 70%, by volume, interconnected porosity.
3. The abrasive article of claim 1, wherein the bond is a vitrified bond.
4. The abrasive article of claim 3, wherein the abrasive article comprises 3 to 15 %, by volume, vitrified bond.
5. The abrasive article of claim 1, comprising 15 to 43 %, by volume, abrasive grain.
6. The abrasive article of claim 1, wherein the interconnecting porosity is defined by a matrix of fibrous particles, the fibrous particles having a length to diameter aspect ratio of at least 5:1.
7. The abrasive article of claim 6, wherein the abrasive article is substantially free of porosity inducer.
8. The abrasive article of claim 6, wherein the fibrous particles consist of materials selected from the group consisting of abrasive grain, filler, combinations thereof, and agglomerates thereof.
9. The abrasive article of claim 8, wherein the abrasive grain is sintered sol gel alpha alumina abrasive grain having a length to diameter aspect ratio of at least 5:1.
10. The abrasive article of claim 8, wherein the filler is selected from the group consisting of ceramic fiber, glass fiber, organic fiber, combinations thereof, and agglomerates thereof.
11. The abrasive article of claim 6, wherein the fibrous particles have a length to diameter aspect ratio of at least 6:1.
12. The abrasive article of claim 9, wherein the abrasive article comprises about 16 to 34 %, by weight, abrasive grain.
13. The abrasive article of claim 1, wherein the interconnected porosity is defined by at least one layer of structured filler selected from the group consisting of glass mat, organic mat, ceramic fiber mat, and combinations thereof
14. The abrasive article of claim 13, wherein the ceramic fiber mat is coated with a vitrified bond material.
15. The abrasive article of claim 13, wherein the organic fiber mat is a polyester fiber mat having a coating of an alumina slurry.
16. The abrasive article of claim 15, wherein the alumina slurry is sintered by heating the coated mat to 1500° C prior to forming the abrasive article.
17. The abrasive article of claim 6, wherein the fibrous particles comprise abrasive grain and bond in amounts effective for grinding.
18. The abrasive article of claim 17, wherein the fibrous particle comprises about 16 to 34%, by volume, abrasive grain and about 3 to 15%, by volume, bond.
19. An abrasive article, comprising about 40% to about 54%, by volume, interconnected porosity, and abrasive grain and bond in amounts effective for grinding, and having an air permeability measured in $\text{cm}^3/\text{second}\cdot\text{KPa}$ of at least 0,88 times (in cc air/second/inch of water of at least 0,22 times) the cross-sectional width in micrometers of the abrasive grain, wherein the interconnected porosity provides an open structure of channels permitting passage of fluid or debris through the abrasive article during grinding.
20. The abrasive article of claim 19 comprising 50 to 54%, by volume, interconnected porosity.

21. The abrasive article of claim 19, wherein the bond is a vitrified bond.

22. The abrasive article of claim 21, wherein the abrasive article comprises 3 to 15 %, by volume, vitrified bond.

5 23. The abrasive article of claim 19, comprising 31 to 57%, by volume, abrasive grain.

24. The abrasive article of claim 19, wherein the interconnecting porosity is defined by a matrix of fibrous particles, the fibrous particles having a length to diameter aspect ratio of at least 5:1.

10 25. The abrasive article of claim 24, wherein the abrasive article is substantially free of porosity inducer.

26. The abrasive article of claim 24, wherein the fibrous particles consist of materials selected from the group consisting of abrasive grain, filler, combinations thereof, and agglomerates thereof.

15 27. The abrasive article of claim 26, wherein the abrasive grain is sintered sol gel alpha alumina abrasive grain having a length to diameter aspect ratio of at least 5:1.

28. The abrasive article of claim 26, wherein the filler is selected from the group consisting of ceramic fiber, glass fiber, organic fiber, combinations thereof, and agglomerates thereof.

20 29. The abrasive article of claim 24, wherein the fibrous particles have a length to diameter aspect ratio of at least 6:1.

30. The abrasive article of claim 27, wherein the abrasive article comprises about 31 to 57%, by volume, abrasive grain.

25 31. The abrasive article of claim 19, wherein the interconnected porosity is defined by at least one layer of structured filler selected from the group consisting of glass mat, organic mat, ceramic fiber mat, and combinations thereof

32. The abrasive article of claim 31, wherein the ceramic fiber mat is coated with a vitrified bond material.

30 33. The abrasive article of claim 31, wherein the organic fiber mat is a polyester fiber mat having a coating of an alumina slurry.

34. The abrasive article of claim 33, wherein the alumina slurry is sintered by heating the coated mat to about 1500° C prior to forming the abrasive article.

35 35. The abrasive article of claim 34, wherein the fibrous particles comprise abrasive grain and bond in amounts effective for grinding.

40 36. The abrasive article of claim 35, wherein the fibrous particle comprises about 16 to 34%, by volume, abrasive grain and about 3 to 15%, by volume, bond.

Patentansprüche

45 1. Ein Schleifkörper, dessen miteinander verbundene Poren circa 55 % bis circa 80 % des Volumens entsprechen und der Schleifkörper und Bindungen in einem für das Schleifen ausreichenden Maße umfasst und eine Luftdurchlässigkeit gemessen in cm³/Sekunde • KPa aufweist, die mindestens dem 1,77-fachen (in cm³ Luft/Sekunde/Zoll Wasser mindestens dem 0,44-fachen) der Querschnittsbreite der Schleifkörper in Mikrometern entspricht, wobei die miteinander verbundenen Poren eine offene Struktur von Kanälen bilden, die während des Schleifens das Durchlassen von Flüssigkeit oder Abrieb durch den Schleifkörper erlauben.

50 2. Der Schleifkörper gemäß Anspruch 1, in dem die miteinander verbundenen Poren 60 bis 70 % des Volumens ausmachen.

55 3. Der Schleifkörper gemäß Anspruch 1, in dem die Bindung eine verglaste Bindung ist.

4. Der Schleifkörper gemäß Anspruch 3, in dem verglaste Bindungen 3 bis 15 % des Volumens des Schleifkörpers umfassen.

5. Der Schleifkörper gemäß Anspruch 1, in dem die Schleifkörner 15 bis 43 % des Volumens umfassen.

6. Der Schleifkörper gemäß Anspruch 1, in dem die miteinander verbundenen Poren durch eine Matrix faserförmiger Partikel definiert werden, wobei die faserförmigen Partikel ein Verhältnis von Länge zu Durchmesser von mindestens 5:1 haben.

7. Der Schleifkörper gemäß Anspruch 6, in dem der Schleifkörper im wesentlichen frei von Porositätsauslöser (porosity inducer) ist.

10. Der Schleifkörper gemäß Anspruch 6, in dem die faserförmigen Partikel aus Materialien bestehen, die aus der Gruppe bestehend aus Schleifkörnern, Füllstoffen, Kombinationen dieser und Agglomeraten dieser ausgewählt sind.

15. Der Schleifkörper gemäß Anspruch 8, in dem das Schleifkorn ein gesintertes Sol-Gel Alpha-Aluminium-Schleifkorn mit einem Längen zu Durchmesser-Verhältnis von mindestens 5:1 ist.

10. Der Schleifkörper gemäß Anspruch 8, in dem der Füllstoff aus der Gruppe bestehend aus Keramikfasern, Glasfasern, organischen Fasern, Kombinationen dieser und Agglomeraten dieser ausgewählt ist.

20. Der Schleifkörper gemäß Anspruch 6, in dem die faserförmigen Partikel ein Längen zu Durchmesser-Verhältnis von mindestens 6:1 haben.

25. Ein Schleifkörper gemäß Anspruch 9, in dem die Schleifkörner circa 16 bis 34 Gew.-% des Schleifkörpers ausmachen.

13. Der Schleifkörper gemäß Anspruch 1, in dem die miteinander verbundenen Poren durch mindestens eine Schicht strukturierter Füllstoffe, ausgewählt aus der Gruppe bestehend aus Glasmatten, organischen Matten, keramischen Fasermatten und Kombinationen dieser, definiert sind.

30. Der Schleifkörper gemäß Anspruch 13, in dem die keramische Fasermatte mit einem verglasten Bindungsmaterial beschichtet ist.

15. Der Schleifkörper gemäß Anspruch 13, in dem die organische Fasermatte eine Polyesterfasermatte ist, die eine Beschichtung aus einem Aluminiumschlamm hat.

35. Der Schleifkörper gemäß Anspruch 15, in dem der Aluminiumschlamm durch Erhitzen der beschichteten Matte auf 1500 °C vor der Ausbildung des Schleifkörpers gesintert wird.

17. Der Schleifkörper gemäß Anspruch 6, in dem die faserförmigen Partikel Schleifkörner und Bindungen in einem für das Schleifen ausreichendem Maße umfassen.

40. Der Schleifkörper gemäß Anspruch 17, in dem die faserförmigen Partikel circa 16 bis 34 Vol.-% Schleifkörner und circa 3 bis 15 Vol.-% Bindungen umfassen.

45. Ein Schleifkörper, dessen miteinander verbundene Poren circa 40 bis circa 54 % des Volumens entsprechen und der Schleifkörper und Bindungen in einem für das Schleifen ausreichendem Maße umfasst und eine Luftdurchlässigkeit gemessen in cm³/Sekunde • KPa aufweist, die mindestens dem 0,88-fachen (in cm³ Luft/Sekunde/Zoll Wasser mindestens dem 0,22-fachen) der Querschnittsbreite der Schleifkörner in Mikrometern entspricht, wobei die miteinander verbundenen Poren eine offene Struktur von Kanälen bilden, die während des Schleifens das Durchlassen von Flüssigkeit oder Abrieb durch den Schleifkörper erlauben.

50. Der Schleifkörper gemäß Anspruch 19, in dem miteinander verbundene Poren 50 bis 54 % des Volumens ausmachen.

55. Der Schleifkörper gemäß Anspruch 19, in dem die Bindung eine verglaste Bindung ist.

22. Der Schleifkörper gemäß Anspruch 21, in dem die verglaste Bindung 3 bis 15 Vol.-% des Schleifkörpers umfasst.

23. Der Schleifkörper gemäß Anspruch 19, in dem die Schleifkörner 31 bis 57 % des Volumens ausmachen.

24. Der Schleifkörper gemäß Anspruch 19, in dem die miteinander verbundenen Poren durch eine Matrix von faserförmigen Partikeln definiert werden, bei dem die faserförmigen Partikel ein Verhältnis von Länge zu Durchmesser von mindestens 5:1 haben.

5 25. Der Schleifkörper gemäß Anspruch 24, in dem der Schleifkörper weitestgehend frei von Porositätsauslöser (porosity inducer) ist.

10 26. Der Schleifkörper gemäß Anspruch 24, in dem die faserförmigen Partikel aus Materialien bestehen, die aus der Gruppe bestehend aus Schleifkörnern, Füllstoffen und Kombinationen dieser und Agglomeraten dieser ausgewählt sind.

15 27. Der Schleifkörper gemäß Anspruch 26, bei dem das Schleifkorn ein gesintertes Sol-Gel Alpha-Aluminium-Schleifkorn ist, das ein Längen zu Durchmesserverhältnis von mindestens 5:1 aufweist.

20 28. Der Schleifkörper gemäß Anspruch 26, in dem der Füllstoff aus der Gruppe bestehend aus Keramikfasern, Glasfasern, organischen Fasern, Kombinationen dieser und Agglomeraten dieser ausgewählt ist.

25 29. Der Schleifkörper gemäß Anspruch 24, in dem die faserförmigen Partikel ein Längen zu Durchmesser-Verhältnis von mindestens 6:1 haben.

30 30. Der Schleifkörper gemäß Anspruch 27, in dem die Schleifkörner circa 31 bis 57 % des Volumens des Schleifkörpers ausmachen.

35 31. Der Schleifkörper gemäß Anspruch 19, in dem die miteinander verbundenen Poren durch mindestens eine Schicht strukturierter Füllstoffe, ausgewählt aus der Gruppe bestehend aus Glasmatten, organischen Matten, keramischen Fasermatten und Kombinationen dieser, definiert werden.

32. Der Schleifkörper gemäß Anspruch 31, in dem die keramische Fasermatte mit einem verglasten Bindungsmaterial beschichtet ist.

33. Der Schleifkörper gemäß Anspruch 31, in dem die organische Fasermatte eine Polyesterfasermatte ist, die eine Beschichtung aus einem Aluminiumschlamm hat.

35 34. Der Schleifkörper gemäß Anspruch 33, in dem der Aluminiumoxidschlamm durch Erhitzen des beschichteten Matte bei ungefähr 1500 °C vor der Ausbildung des Schleifkörpers gesintert wird.

40 35. Der Schleifkörper gemäß Anspruch 24, in dem die faserförmigen Partikel Schleifkörner und Bindungen in einem für das Schleifen ausreichendem Maße umfassen.

36. Der Schleifkörper gemäß Anspruch 35, in dem die faserförmigen Partikel circa 16 bis 34 Vol.-% Schleifkörner und circa 3 bis 15 Vol.-% Bindungen umfassen.

45 Revendications

1. Article abrasif, comprenant environ 55 % à environ 80 % en volume de porosité interconnectée, et des grains abrasifs et du liant en quantités efficaces pour le meulage, et ayant une perméabilité à l'air mesurée en $\text{cm}^3/\text{seconde.KPa}$ d'au moins 1,77 fois (en cc d'air/seconde/pouce d'eau d'au moins 0,44 fois) la largeur en section transversale en micromètres des grains abrasifs, **caractérisé en ce que** la porosité interconnectée assure une structure ouverte des canaux permettant le passage de fluide ou de débris dans l'article abrasif pendant le meulage.

55 2. Article abrasif selon la revendication 1 comprenant 60 à 70 % en volume de porosité interconnectée.

3. Article abrasif selon la revendication 1, **caractérisé en ce que** le liant est un liant vitrifié.

4. Article abrasif selon la revendication 3, **caractérisé en ce que** l'article abrasif comprend 3 à 15 % en volume de

liant vitrifié.

5. Article abrasif selon la revendication 1, comprenant 15 à 43 % en volume de grains abrasifs.
6. Article abrasif selon la revendication 1, **caractérisé en ce que** la porosité interconnectée est définie par une matrice de particules fibreuses, les particules fibreuses ayant un rapport d'aspect longueur/diamètre d'au moins 5 :1.
- 10 7. Article abrasif selon la revendication 6, **caractérisé en ce que** l'article abrasif est pratiquement exempt d'inducteur de porosité.
- 15 8. Article abrasif selon la revendication 6, **caractérisé en ce que** les particules fibreuses consistent en matériaux choisis dans le groupe comprenant les grains abrasifs, la matière de charge, des combinaisons de ceux-ci et des agglomérats de ceux-ci.
9. Article abrasif selon la revendication 8, **caractérisé en ce que** les grains abrasifs sont des grains abrasifs d'alumine alpha sol gel frittée ayant un rapport d'aspect longueur/diamètre d'au moins 5 :1.
- 20 10. Article abrasif selon la revendication 8, **caractérisé en ce que** la matière de charge est choisie dans le groupe comprenant la fibre céramique, la fibre de verre, la fibre organique, des combinaisons de celles-ci, et des agglomérats de celles-ci.
11. Article abrasif selon la revendication 6, **caractérisé en ce que** les particules fibreuses ont un rapport d'aspect longueur/diamètre d'au moins 6 :1.
- 25 12. Article abrasif selon la revendication 9, **caractérisé en ce que** l'article abrasif contient environ 16 à 34 % en poids de grains abrasifs.
13. Article abrasif selon la revendication 1, **caractérisé en ce que** la porosité interconnectée est définie par au moins une couche de matière de charge structurée choisie dans le groupe comprenant de la natte de verre, natte organique, natte de fibre céramique, et des combinaisons de celles-ci.
- 30 14. Article abrasif selon la revendication 13, **caractérisé en ce que** la natte de fibre céramique est enduite d'une matière de liant vitrifiée.
- 35 15. Article abrasif selon la revendication 13, **caractérisé en ce que** la natte de fibre organique est une natte de fibre polyester ayant un revêtement d'une barbotine d'alumine.
16. Article abrasif selon la revendication 15, **caractérisé en ce que** la barbotine d'alumine est frittée en chauffant la natte enduite à 1500°C avant de former l'article abrasif.
- 40 17. Article abrasif selon la revendication 6, **caractérisé en ce que** les particules fibreuses comprennent des grains abrasifs et du liant en quantités efficaces pour le meulage.
18. Article abrasif selon la revendication 17, **caractérisé en ce que** les particules fibreuses comprennent environ 16 à 34 % en volume de grains abrasifs et environ 3 à 15 % en volume de liant.
- 45 19. Article abrasif, comprenant environ 40 % à environ 54 % en volume de porosité interconnectée, et des grains abrasifs et du liant en quantités efficaces pour le meulage, et ayant une perméabilité à l'air mesurée en $\text{cm}^3/\text{seconde.KPa}$ d'au moins 0,88 fois (en cc d'air/seconde/pouce d'eau d'au moins 0,22 fois) la largeur en section transversale en micromètres des grains abrasifs, **caractérisé en ce que** la porosité interconnectée assure une structure ouverte des canaux permettant le passage de fluide ou débris dans l'article abrasif pendant le meulage.
20. Article abrasif selon la revendication 19 comprenant 50 à 54 % en volume de porosité interconnectée.
- 55 21. Article abrasif selon la revendication 19, **caractérisé en ce que** le liant est un liant vitrifié.
22. Article abrasif selon la revendication 21 **caractérisé en ce que** l'article abrasif comprend 3 à 15 % en volume de

liant vitrifié.

23. Article abrasif selon la revendication 19, comprenant 31 à 57 % en volume de grains abrasifs.

5 24. Article abrasif selon la revendication 19, **caractérisé en ce que** la porosité interconnectée est définie par une matrice de particules fibreuses, les particules fibreuses ayant un rapport d'aspect longueur/diamètre d'au moins 5 :1.

10 25. Article abrasif selon la revendication 24, **caractérisé en ce que** l'article abrasif est pratiquement exempt d'inducteur de porosité.

15 26. Article abrasif selon la revendication 24, **caractérisé en ce que** les particules fibreuses consistent en matériaux choisis dans le groupe comprenant les grains abrasifs, la matière de charge, des combinaisons de ceux-ci, et des agglomérats de ceux-ci.

20 27. Article abrasif selon la revendication 26, **caractérisé en ce que** les grains abrasifs sont des grains abrasifs d'alumine alpha sol gel frittée ayant un rapport d'aspect longueur/diamètre d'au moins 5 :1.

25 28. Article abrasif selon la revendication 26, **caractérisé en ce que** la matière de charge est choisie dans le groupe comprenant la fibre de céramique, la fibre de verre, la fibre organique, des combinaisons de celles-ci, et des agglomérats de celles-ci.

29. Article abrasif selon la revendication 24, **caractérisé en ce que** les particules fibreuses ont un rapport d'aspect longueur/diamètre d'au moins 6 :1.

30 30. Article abrasif selon la revendication 27, **caractérisé en ce que** l'article abrasif comprend environ 31 à 57 % en volume de grains abrasifs.

31. Article abrasif selon la revendication 19, **caractérisé en ce que** la porosité interconnectée est définie par au moins une couche de matière de charge structurée choisie dans le groupe comprenant de la natte de verre, de la natte organique, de la natte de fibre de céramique, et des combinaisons de celles-ci.

35 32. Article abrasif selon la revendication 31, **caractérisé en ce que** la natte de fibre céramique est recouverte d'une matière de liant vitrifié.

33. Article abrasif selon la revendication 31, **caractérisé en ce que** la natte de fibre organique est une natte de fibre polyester ayant un revêtement d'une barbotine d'alumine.

40 34. Article abrasif selon la revendication 33, **caractérisé en ce que** la barbotine d'alumine est frittée en chauffant la natte de revêtement à environ 1500°C avant de former l'article abrasif.

35 35. Article abrasif selon la revendication 24, **caractérisé en ce que** les particules fibreuses comprennent des grains abrasifs et le liant en quantités efficaces pour le meulage.

45 36. Article abrasif selon la revendication 35, **caractérisé en ce que** les particules fibreuses comprennent environ 16 à 34 % en volume de grains abrasifs et environ 3 à 15 % en volume liant.

50

55