(11) **EP 0 922 857 A1**

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

16.06.1999 Bulletin 1999/24

(51) Int Cl.6: F02P 17/12

(21) Numéro de dépôt: 98403127.8

(22) Date de dépôt: 11.12.1998

(84) Etats contractants désignés:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

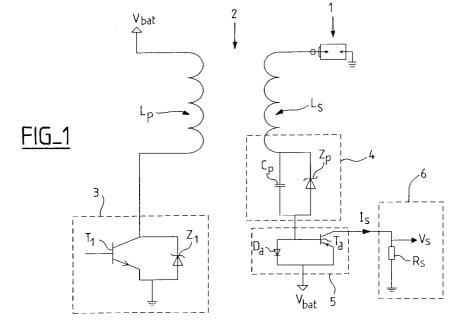
Etats d'extension désignés:

AL LT LV MK RO SI

(30) Priorité: 12.12.1997 FR 9715803

(71) Demandeur: RENAULT
92109 Boulogne-Billancourt (FR)

(72) Inventeurs:


- Agache-Durand, Mirela 75006 Paris (FR)
- Agneray, André
 92100 Boulogne Billancourt (FR)
- (74) Mandataire: Fernandez, Francis et al Renault, Technocentre,
 S.0267 - TCR AVA 0-56,
 1. avenue du Golf

78288 Guyancourt (FR)

(54) Capteur d'ionisation dans un système d'allumage d'un moteur à combustion interne

(57) L'invention concerne un capteur de mesure du courant d'ionisation des gaz dans les cylindres d'un moteur à combustion interne, dont l'enroulement primaire (L_p) de la bobine mono-sortie est relié à un module (3) électronique de commande de l'allumage et dont l'enroulement secondaire (L_s) a sa partie haute tension de reliée à au moins une bougie d'un cylindre, et sa partie basse tension reliée à un circuit de mesure du courant d'ionisation, qui est constitué :

- de moyens (4) de polarisation de l'électrode centrale de la bougie, à la fin de chaque étincelle;
- d'un module (5) d'amplification du courant d'ionisation, connecté aux moyens (4) de polarisation ;
- d'un module (6) de réception du courant d'ionisation et de conversion de ce courant en un signal de tension (V_s).

10

15

Description

[0001] La présente invention concerne un capteur d'ionisation, dans un système d'allumage commandé électroniquement d'un moteur à combustion interne, notamment pour véhicule automobile. Réalisant une mesure du courant d'ionisation des gaz en combustion dans les cylindres du moteur, ce capteur permet la détection du cliquetis, des ratés de combustion et le détrompage des cylindres.

[0002] Une solution actuelle pour connaître la qualité de la combustion du mélange air-carburant dans les cylindres consiste à mesurer le courant d'ionisation des gaz dans les cylindres, au moyen des bougies d'allumage, après l'étincelle éclatant entre les électrodes de chaque bougie. Dans certaines publications, sont décrits des circuits de mesure au pied du secondaire d'une bobine mono-sortie connectée à la bougie, dans lesquels l'amplification du signal pour augmenter l'immunité au bruit n'est pas prévue dès le pied de la bobine, mais à l'extérieur de la bobine, au moyen d'amplificateurs opérationnels.

[0003] La demande de brevet déposée au nom de RENAULT sous le numéro 95 14936 décrit des circuits de mesure du courant d'ionisation sur la partie haute tension des bobines. Les mesures au secondaire de la bobine nécessitent des composants qui tiennent la haute tension et sont généralement coûteux.

[0004] Les solutions actuelles ne résolvent donc pas les problèmes de coût, d'amplification du courant d'ionisation nécessitant une alimentation supplémentaire et d'amortissement des oscillations de la bobine, à la fin de chaque étincelle, qui masque le signal d'ionisation et réduit la plage temporelle du signal exploitable.

[0005] L'invention vise à résoudre ces inconvénients en proposant un capteur de mesure du courant d'ionisation, assurant la polarisation de la bougie par l'utilisation directe de la tension de la batterie ou la remise en conduction de la bobine après la fin de l'étincelle, et l'amplification du courant de mesure par l'utilisation d'un transistor au pied du circuit secondaire de la bobine.

[0006] Pour cela, l'objet de l'invention est un capteur d'ionisation dans un système d'allumage commandé électroniquement d'un moteur à combustion interne, dont le système d'allumage comprend une bobine mono-sortie dont l'enroulement primaire L_p est relié à un module 3 électronique de commande de l'allumage et dont la partie haute tension de l'enroulement secondaire L_s est reliée à l'électrode centrale d'au moins une bougie d'un cylindre qui a une seconde électrode reliée à la masse et qui émet des étincelles entre ces électrodes, caractérisé en ce que la partie basse tension de l'enroulement secondaire L_s est reliée à un circuit de mesure du courant d'ionisation, constitué :

- de moyens de polarisation de l'électrode centrale de la bougie, à la fin de chaque étincelle;
- d'un module d'amplification du courant d'ionisation,

- connecté aux moyens de polarisation ;
- d'un module de réception du courant d'ionisation et de conversion de ce courant en un signal de tension V_{\circ} .

[0007] D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description d'exemples de réalisation, illustrée par les figures suivantes qui sont :

- les figures 1 à 4 : trois variantes de réalisation d'un capteur de courant d'ionisation selon l'invention ;
- les figures 5_a à 5_d: des chronogrammes des signaux de commande et de mesure du courant d'ionisation pour un capteur selon l'invention.

Les éléments portant les mêmes références sur les différentes figures remplissent les mêmes fonctions en vue des mêmes résultats.

[0008] Sur la figure 1 est représenté un capteur de courant d'ionisation d'une bougie 1 d'allumage affectée à un cylindre du moteur, dont l'allumage est commandé par un calculateur électronique. Le système d'allumage comporte une bobine d'allumage 2, dont l'enroulement primaire L_p est relié d'un côté à la tension positive V_{bat} de la batterie d'alimentation du véhicule, égale à 12 volts, et de l'autre côté à un module 3 de commande d'allumage, composé d'un transistor T_1 et d'une diode Zener Z_1 , qui délivre des créneaux de tension. La partie haute tension de l'enroulement secondaire $L_{\rm s}$ de la bobine est reliée à une électrode de la bougie 1 et la partie basse tension de cet enroulement est reliée à un circuit de mesure du courant d'ionisation.

[0009] Ce circuit de mesure est composé de trois modules 4, 5 et 6. Le module 4 est constitué de moyens de polarisation de l'électrode centrale de la bougie à la fin de l'étincelle, avec une tension positive sur son électrode centrale, afin de réaliser une mesure du courant d'ionisation. Dans cette première variante de réalisation, il se compose d'une diode Zener Z_p , de tension voisine de 100 Volts par exemple, et d'une capacité de polarisation C_p , de l'ordre de 10 nanoFarads par exemple, en parallèle sur la diode. Pour obtenir une polarisation positive de l'électrode centrale de la bougie, il faut induire une étincelle de polarité négative sur cette électrode.

[0010] A ce précédent module 4 est connecté un module 5 d'amplification du courant d'ionisation, réalisé à partir d'un transistor T_a de type PNP et d'une diode D_a entre la base et l'émetteur du transistor, alimentés par la tension de la batterie $\mathsf{V}_{\mathsf{bat}}$, et qui doivent répondre aux contraintes thermiques de l'intérieur de la bobine. Pendant la phase d'étincelle, le courant d'arc circule dans la diode D_a et le transistor T_a est bloqué. A la fin de l'étincelle, le courant d'ionisation étant de signe opposé au courant d'arc, il sera ainsi amplifié par le transistor T_a et envoyé sur une résistance R_s , composant un module 6 de conversion du courant d'ionisation I_s en tension de sortie V_s . Ce module 6 constitue le circuit de réception

du courant d'ionisation I_s amplifié. Il est situé à l'extérieur de la bobine 1 et peut être intégré au calculateur électronique ou à tout autre circuit électronique exploitant le courant d'ionisation.

[0011] La figure 2 est la figure duale de la figure 1, c'est-à-dire que le transistor est de type NPN et que tous les composants électroniques sont placés en sens inverse pour que toutes les polarités et les courants soient inversés.

[0012] Les avantages de cette première variante de réalisation sont la faible sensibilité aux bruits puisque le courant d'ionisation est amplifié au pied de la bobine, le facteur d'amplification très élevé obtenu par le transistor T_a et la sortie en tension du signal d'ionisation dans des valeurs habituelles des signaux.

[0013] La figure 3 est une deuxième variante de réalisation d'un capteur selon l'invention, dont le module d'amplification $\mathbf{5}_{a}$ diffère du module 5 de la précédente version et permet de contrôler le facteur d'amplification indépendamment des caractéristiques du transistor et de la température. Les autres modules 3, 4 et 6 sont identiques à ceux de la première variante.

[0014] Ce module d'amplification 5_a à gain contrôlé comporte un transistor T_a et une diode D_a , protégeant le transistor du courant inverse pendant l'étincelle de la bougie et montée en parallèle avec une seconde diode D_a , identique à D_a , reliée à une résistance R_b dans le circuit base-collecteur du transistor. Le gain G_a d'amplification est obtenu par le rapport entre cette résistance R_b et une autre résistance R_c sur le collecteur du transistor :

$$G_a = R_c/R_b$$

La diode D'_a permet la compensation en température de la tension base-émetteur pour avoir un gain plus finement ajusté.

 ${\hbox{\bf [0015]}}$ La figure 4 représente une troisième variante de réalisation pour laquelle la polarisation de la bougie n'est plus réalisée par un module 4 classique, mais elle est assurée par la tension d'alimentation V_{bat} de la batterie du véhicule. Cette variante comporte un module d'amplification du courant d'ionisation 5 comme sur la figure 1, ou préférentiellement 5_a comme sur la figure 2 quand il n'y a pas de polarisation .

[0016] Avec ce même circuit, on peut augmenter la tension de polarisation de l'électrode centrale de la bougie, par remise en conduction du circuit primaire L_p de la bobine 2. Par ce moyen, l'électrode centrale est polarisée avec une tension V_{pol} , égale au produit de la tension-batterie V_{bat} par le rapport de transformation N d la bobine :

$$V_{pol} = V_{bat} * N.$$

[0017] Ce moyen a également pour avantage de ré-

duire les oscillations de la bobine en fin d'étincelle et par conséquent d'augmenter la plage temporelle du signal d'ionisation exploitable.

[0018] Les figures 5_a à 5_d dont les chronogrammes des signaux de commande et de mesure du courant d'ionisation pour la polarisation de l'électrode centrale de la bougie 1, par remise en conduction de l'enroulement primaire L_p de la bobine 2.

[0019] Le signal S_1 , représenté sur la figure S_a , est le signal de commande de la bobine appliqué en entrée du module 3 de commande. Le premier créneau C_1 est le créneau de charge de la bobine qui déclenche la production d'une étincelle sur son front descendant f_1 .

[0020] Le deuxième créneau C_2 , déclenché à la fin de l'étincelle, est destiné à la polarisation de la bougie en vue de la mesure du courant d'ionisation I_s par remise en conduction de l'enroulement primaire L_p . Lors du front descendant f_2 de ce deuxième créneau sera déclenchée une étincelle résiduelle sans effet sur le fonctionnement du moteur. La largeur de ce deuxième créneau ne peut pas dépasser la durée maximale de charge de la bobine et constitue la durée de mesure du courant d'ionisation.

[0021] Sur la figure 5_b , le signal S_2 est la tension sur l'électrode centrale de la bougie, mesurée par rapport à la masse, constituée par exemple par le culot de la bouque.

Entre les instants t_1 et t_2 correspondant au premier créneau C_1 de commande de la bobine, la bobine se charge et la tension S_2 atteint une valeur positive V_{pol} . Sur le front descendant f_1 du créneau C_1 , le courant est brusquement interrompu dans l'enroulement primaire L_p de la bobine, provoquant une forte surtension amplifiée dans l'enroulement secondaire L_s , dont la tension S_2 présente un pic P_1 négatif. Ce pic traduit une chute brutale de sa valeur qui provoque un claquage au niveau des électrodes de la bougie et l'apparition d'une étincelle

Entre les instants t_2 et t_3 , la bobine se décharge. A la fin de l'étincelle, pendant la durée du deuxième créneau C_2 de commande, le potentiel de l'électrode centrale est égal à V_{pol} , soit le produit de la tension de la batterie V_{bat} par le rapport N de transformation de la bobine, et permet la création du courant d'ionisation. La deuxième étincelle résiduelle, provoquée par un pic p_2 de la tension S_2 , lors du front descendant f_2 du deuxième créneau, ne doit pas avoir lieu dans la phase d'admission du carburant du cylindre, du cycle suivant. C'est pourquoi il faut calculer la durée de ce second créneau C_2 de commande afin d'empêcher un tel événement, quel que soit le régime du moteur.

[0022] La figure 5_c représente le signal I_s , qui est le courant d'ionisation mesuré en sortie du capteur selon l'invention. Sur les fronts de commutation F_1 , f_1 et f_2 du signal de commande S_1 de la bobine, le courant I_s présente des impulsions parasites I_1 , I_2 et I_3 dues aux effets capacitifs. A la fin de la première étincelle, à l'instant I_3 , le courant I_s présente des oscillations d'amortissement

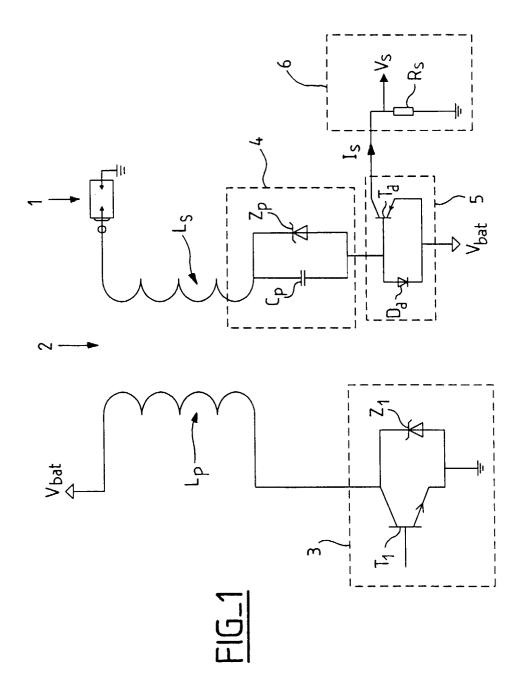
15

20

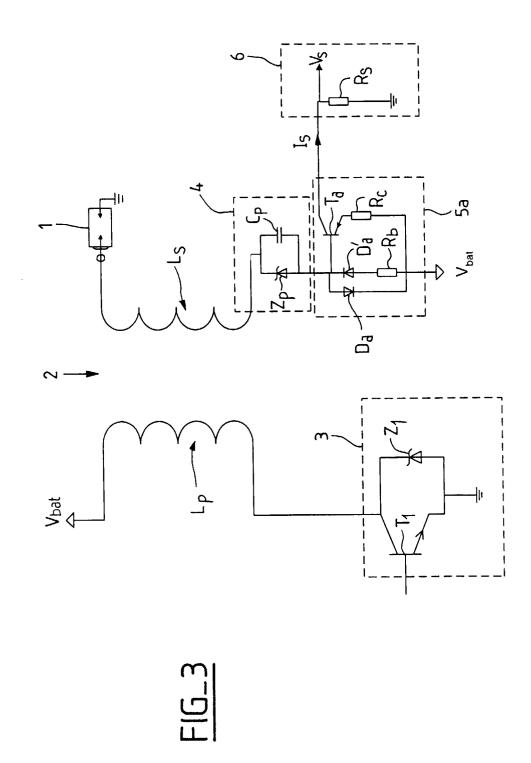
30

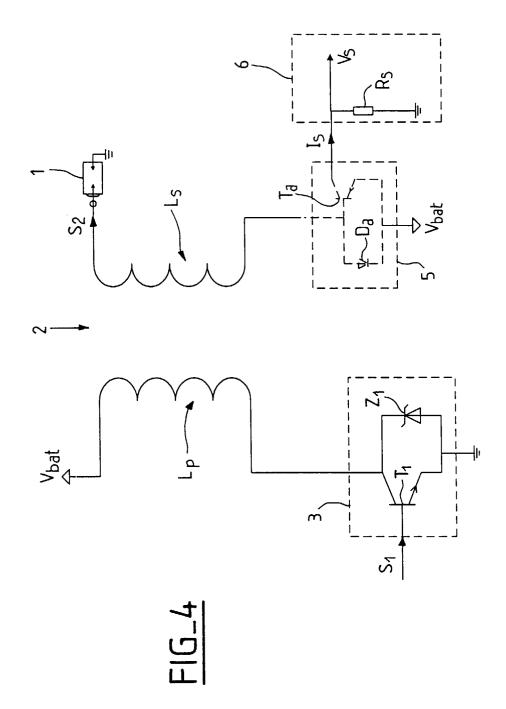
 σ_a de la bobine, suivies du signal d'ionisation réellement exploitable $C_{io}.$ La remise en conduction de l'enroulement primaire de la bobine, par le deuxième créneau de commande C_2 du signal $S_1,$ met fin aux oscillations de la bobine et permet la mesure du courant d'ionisation pendant toute la durée du créneau $C_2,$ entre les instants t_4 et $t_5.$

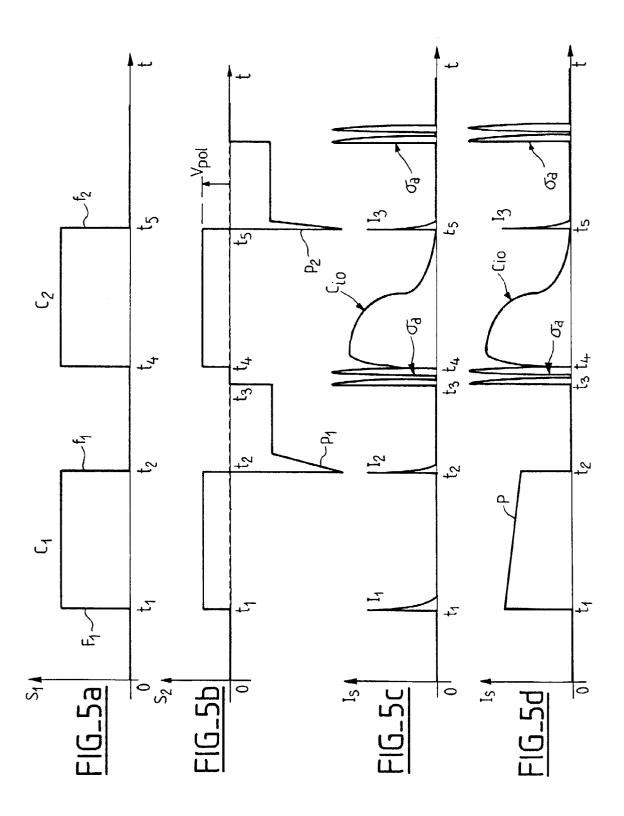
[0023] Il est intéressant de noter que la deuxième étincelle peut provoquer une combustion tardive destinée à protéger le pot catalytique en améliorant la combustion des gaz non brûlés à la première étincelle. Elle permet ainsi d'augmenter la durée de vie du pot catalytique en cas de ratés d'allumage.


[0024] La figure $5_{\rm d}$ est le chronogramme d'un exemple de courant d'ionisation détecté avec le capteur selon l'invention, lorsque la bougie est encrassée. Dans ce cas, le signal entre les deux instants t_1 et t_2 , correspondant au premier créneau C_1 de commande de la bobine, présente un palier P au lieu des deux impulsions parasites l_1 et l_2 . Ce palier est un signe d'encrassement de la bougie.


[0025] Le capteur d'ionisation selon l'invention permet de détecter les anomalies de combustion, par la mesure du courant d'ionisation dans le cylindre en compression après l'étincelle, et de connaître le type d'anomalies, par exemple les ratés de combustion correspondant à une absence de combustion qui peut endommager le pot catalytique ou le cliquetis dommageable pour le moteur


Revendications


- 1. Capteur de mesure du courant d'ionisation des gaz en combustion dans les cylindres d'un moteur à combustion interne, dont le système d'allumage comprend une bobine mono-sortie dont l'enroulement primaire (L_p) est relié à un module (3) électronique de commande de l'allumage et dont la partie haute tension de l'enroulement secondaire (L_s) est reliée à l'électrode centrale d'au moins une bougie d'un cylindre qui a une seconde électrode reliée à la masse et qui émet des étincelles entre ces électrodes, caractérisé en ce que la partie basse tension de l'enroulement secondaire (L_s) est reliée à un circuit de mesure du courant d'ionisation, constitué:
 - de moyens (4) de polarisation de l'électrode centrale de la bougie, à la fin de chaque étincelle;
 - d'un module (5) d'amplification du courant d'ionisation, connecté aux moyens (4) de polarisation;
 - d'un module (6) de réception du courant d'ionisation et de conversion de ce courant en un signal de tension (V_s).


- 2. Capteur de mesure du courant d'ionisation selon la revendication 1, caractérisé en ce que le module (5) d'amplification du courant d'ionisation est constitué par un transistor (T_a) et une diode (D_a), alimentés par la tension (V_{bat}) de la batterie du moteur.
- 3. Capteur de mesure du courant d'ionisation selon la revendication 1, caractérisé en ce que le module (5_a) d'amplification du courant d'ionisation est constitué par un transistor (T_a) et une diode (D_a) montée en parallèle avec une seconde diode (D_a) , identique à (D_a) , reliée à une première résistance (R_b) dans le circuit base-collecteur du transistor (T_a) , le gain (G_a) d'amplification étant obtenu par le rapport entre ladite résistance (R_b) et une seconde résistance (R_c) sur le collecteur du transistor.
- 4. Capteur de mesure du courant d'ionisation selon l'une des revendications 2 ou 3, caractérisé en ce que les moyens (4) de polarisation de l'électrode centrale de la bougie sont constitués par la tension (V_{bat}) de la batterie, le module (5, 5_a) d'amplification du courant d'ionisation étant directement connecté à la partie basse tension de l'enroulement secondaire (L_e) de la bobine.
- 5. Capteur de mesure du courant d'ionisation selon l'une des revendications 2 ou 3, caractérisé en ce que les moyens (4) de polarisation de l'électrode centrale de la bougie sont constitués par le module électronique (3) de commande de l'allumage qui commande la remise en conduction de l'enroulement primaire (Lp) de la bobine par l'émission d'un deuxième créneau, dont la durée est déterminée pour ne pas dépasser la durée de charge de la bobine et pour que l'étincelle résiduelle induite se produise avant la phase d'admission du cycle moteur suivant et provoque la combustion des gaz non brûlés à la première étincelle.

Office européen RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 98 40 3127

Catégorie	Citation du document avec des parties perti	indication, en cas de besoin, nentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.Cl.6)	
Y A	16 octobre 1992 * page 2, ligne 11	MENS AUTOMOTIVE SA) - page 3, ligne 23 * - page 5, ligne 28;	1 2,4,5	F02P17/12	
Y A	figure 1 * DE 195 24 541 C (TE; DAIMLER BENZ AG (D * colonne 2, ligne figures 1,3A,3B * PATENT ABSTRACTS OF vol. 096, no. 002,	LEFUNKEN MICROELECTRO E)) 5 décembre 1996 6 - colonne 3, ligne JAPAN 29 février 1996			
A	<pre>& JP 07 286552 A (31 octobre 1995 * abrégé * US 5 457 757 A (KID</pre>		1,2,5		
	10 octobre 1995 * abrégé; figures 1			DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6) F02P	
•	ésent rapport a été établi pour tou	utes les revendications Date d'achèvement de la recherche		Examinateur	
LA HAYE		25 février 199	9 Fuc	ns, P	
X : parti Y : parti autre	ATEGORIE DES DOCUMENTS CITE culièrement pertinent à lui seul culièrement pertinent en combinaisor document de la même catégorie re-plan technologique	E : document d date de dép n avec un D : cité dans la L : cité pour d'a	T: théorie ou principe à la base de l'invention E: document de brevet antérieur, mais publié à la date de dépôt ou après cette date D: cité dans la demande L: cité pour d'autres raisons		

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 98 40 3127

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Les dits members sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

25-02-1999

Document brevet cit au rapport de recherc		Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
FR 2675206	Α	16-10-1992	AUCUN	
DE 1952 4 541	С	05-12-1996	EP 0752580 A JP 9025866 A US 5814994 A	08-01-1997 28-01-1997 29-09-1998
US 5457757	Α	10-10-1995	AUCUN	

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82