Technical Field
[0001] The present invention relates to an apparatus detecting a burglar by detecting with
using an radio wave whether a tag having a resonance circuit block is in a predetermined
location and the like.
Background Art
[0002] Heretofore, a tag is disclosed in Japanese Unexamined Patent Publication No. 8-185584,
the tag which is constructed such that a resonance circuit block of the tag attached
to an object for monitoring a burglar resonates with a specific frequency from a radio
wave transmission unit, separation detection means detects whether the tag is separated
from the object for monitoring a burglar, and a separation information block controls
warning sound output means on the basis of a detection output of this separation detection
means. In this burglar-alarm tag, the resonance circuit block is constructed with
forming conductive metal foil, having a predetermined shape, by etching and the like
in both sides of a thin film of an insulating dielectric. For example, a coil portion
formed in a spiral shape with conductive metal foil, and a surface-side planer pattern
of a capacitor, connected to the coil portion, in the central portion of the spiral
of this coil portion are formed on the surface of the thin film.
[0003] In an entrance of an outlet selling the object for monitoring a burglar, a transmission
antenna and a reception antenna are installed in a predetermined interval, and these
antennas are electrically connected to a control block. The control block is constructed
such that the control block makes the transmission antenna transmit a radio wave having
a frequency resonating in the resonance circuit block and always checks a signal level
of a signal received from the reception antenna. Furthermore, a speaker sounding an
alarm is connected to a control output terminal of the control block.
[0004] With using a burglar-alarm tag constructed in this manner, a radio wave transmitted
from a transmission antenna resonates in a resonance circuit block of the tag attached
to an object for monitoring a burglar if an object for monitoring a burglar passes
between the transmission antenna and a reception antenna without payment. Hence, the
reception antenna receives an input signal whose reception level is modulated. In
consequence, the control block sounds an alarm from a speaker and can check takeout
of an unpaid product. In regard to a paid-up product, a tag is disabled by breaking
a capacitor through applying a strong radio wave, or an alarm is disabled by temporarily
stopping the alarm speaker.
[0005] Nevertheless, the above burglar-alarm tag requires a transmission antenna and a reception
antenna, which are comparatively large, so as to detect a burglar of a product with
the tag. Therefore, this type of tag has a defect that a comparatively wide space
is required as an installation space of these antennas.
[0006] In addition, the above burglar-alarm tag has a possibility of a malfunction in a
location with plenty of electrical noise of a computer and the like.
[0007] Furthermore, in regard to the above burglar-alarm tag, a central line of the helical
coil portion extends in the direction orthogonal to a mounting surface of an object,
and hence a radio wave transmitted from the resonance circuit block passes the object.
Therefore, if this tag is attached on an object whose surface is made of conductive
material such as aluminum or ferromagnetic material such as a steel sheet, self inductance
of the coil portion changes. Hence, in comparison with a case that the tag is attached
to an object whose surface is made of insulating-material or non-magnetic material,
the tag has a possibility of not operating as a burglar-alarm tag due to an influence
of a change of a resonance frequency in the resonance circuit block and the like.
Disclosure of Invention
[0008] An object of the present invention is to provide a radio wave type burglar detection
apparatus that can be installed in a comparatively small space, can prevent a malfunction
even if the apparatus is installed in a location with plenty of electrical noise,
and can surely detect the presence and absence of a tag even if the tag is placed
in the vicinity of an object made of metal.
[0009] Another object of the present invention is to provide a radio wave type burglar detection
apparatus that can increase a ratio (S/N ratio) between a signal transmitted by the
tag detection sensor and a signal generated by electrical noise of a computer and
the like by making a radio wave, which is transmitted by the tag detection sensor,
have directivity.
[0010] Still another object of the present invention is to provide a radio wave type burglar
detection apparatus that can immediately detect abnormal operation caused by a failure
and the like of a tag, a tag detection sensor, a drawer sensor, or an upper lid sensor,
and hence can increase the reliability of the apparatus.
[0011] The invention according to claim 1, as shown in Figures 1 and 3, is a radio wave
type burglar detection apparatus comprising: a tag 11 that has a resonance circuit
block 12 and is placed with an object 15 in a predetermined location; a tag detection
sensor 16 that is installed in the vicinity of the tag 11 placed in the predetermined
location and detects whether the tag 11 is present in the predetermined location;
and a control circuit 19 controlling alarm means 18 on the basis of an detection output
of the tag detection sensor 16.
[0012] Since the tag detection sensor 16 detects that the tag 11 is present in the predetermined
location if the tag 11 is placed in the predetermined location with the object 15,
the control circuit 19 does not activate the alarm means 18. In addition, if the tag
11 is taken out from the predetermined location with the object 15, the tag detection
sensor 16 detects that the tag 11 is not present in the predetermined location, and
hence the control circuit 19 activates the alarm means 18.
[0013] The invention according to claim 2, as shown in Figures 1 and 3, is a radio wave
type burglar detection apparatus comprising: a tag 11 having a resonance circuit block
12; a box 13 containing a drawer 14 where the tag 11 is contained with an object 15;
a tag detection sensor 16 that is installed in the box 13 and detects whether the
tag 11 is present within the drawer 14; a drawer sensor 17 detecting whether the drawer
14 is drawn; and a control circuit 19 controlling alarm means 18 on the basis of each
detection output of the tag detection sensor 16 and drawer sensor 17.
[0014] In this radio wave type burglar detection apparatus according to claim 2, since the
drawer sensor 17 detects that the drawer 14 is not drawn if the drawer 14 is contained
in the box 13, the control circuit 19 does not activate the alarm means 18 regardless
of whether the tag 11 is present within the drawer 14 or not. In addition, if the
drawer 14 is drawn from the box 13, the drawer sensor 17 detects that the drawer 14
is drawn, and at the same time, the tag detection sensor 16 detects that the tag 11
is present within the drawer 14. Therefore, the control circuit 19 does not activate
the alarm means 18. Furthermore, if the tag 11 is taken out with the object 15 from
the drawer 14 with drawing the drawer 14, the tag detection sensor 16 detects that
the tag 11 is not present within the drawer 14. Therefore, the control circuit 19
activates the alarm means 18.
[0015] The invention according to claim 3, as shown in Figure 7, is a radio wave type burglar
detection apparatus comprising: a tag 11 having a resonance circuit block; a box 63
that contains the tag 11 with an object 15 and has an upper lid 63b that can be opened
and closed; a tag detection sensor 66 that is installed in the box 63 and detects
whether the tag 11 is present within the box 63; an upper lid sensor 67 detecting
whether the upper lid 63b is opened or closed; and a control circuit 19 controlling
alarm means 18 on the basis of each detection output of the tag detection sensor 66
and upper lid sensor 67.
[0016] In this radio wave type burglar detection apparatus according to claim 3, since the
upper lid sensor 67 detects that the upper lid 63b is not opened if the upper lid
63b is closed, the control circuit 19 does not activate the alarm means 18 regardless
of whether the tag 11 is present within the box 63 or not. In addition, if the upper
lid 63b is opened, the upper lid sensor 67 detects that the upper lid 63b is opened,
and the tag detection sensor 66 detects that the tag 11 is present within the box
63. Therefore, the control circuit 19 does not activate the alarm means 18. Furthermore,
if the tag 11 is taken out with the object 15 from the box 63 with opening the upper
lid 63b, the tag detection sensor 66 detects that the tag 11 is not present within
the box 63. Therefore, the control circuit 19 activates the alarm means 18.
[0017] The invention according to claim 4 is the invention according to claim 1, and further,
as shown in Figure 1, this invention is characterized in that a tag 11 is placed in
one piece with an object 15 in a predetermined location.
[0018] In this radio wave type burglar detection apparatus described in claim 4, if the
object 15 is taken out from the predetermined location, the tag 11 also is taken out
from the predetermined location surely, and hence a burglar of the object 15 can be
surely detected.
[0019] The invention according to claim 5 is the invention according to claim 2 or 3, and
further, as shown in Figure 1 or 7, this invention is characterized in that a tag
11 is contained in one piece with an object 15 in a drawer 14 or box 63.
[0020] In this radio wave type burglar detection apparatus described in claim 5, if the
object 15 is taken out from the drawer 14 or box 63, the tag 11 also is taken out
from the drawer 14 or box 63 surely, and hence a burglar of the object 15 can be surely
detected.
[0021] The invention according to claim 6 is the invention according to any one of claims
2, 3 and 5, and further, as shown in Figures 1 and 3 or 7, this invention is characterized
in that a drawer 14 or a box 63 is made of metal material, and a soft magnetic member
22 or 72 is sandwiched between a tag 11 and the drawer 14 or box 63.
[0022] The invention according to claim 7 is the invention according to claim 6, and further,
this invention is characterized in that a soft magnetic member is made of a sintered
ferrite, a compact of ferrite powder and binder, or composite material of soft magnetic
metal powder.
[0023] In this radio wave type burglar detection apparatus described in claim 6 or 7, a
magnetic field can easily pass to a resonance circuit block 12 of a tag 11 owing to
the soft magnetic member 22 or 72. Hence, even if a drawing 14 or a box 63 is made
of metal material, the tag 11 can be surely detected by a tag detection sensor 16
or 66.
[0024] The invention according to claim 8 is the invention according to any one of claims
1 through 7, and further, as shown in Figure 1, this invention is characterized in
that a tag detection sensor 16 has a core 23a, where a coil 23b is wound, and at least
a part of the core 23a, which does not face to a tag 11, is covered with the coil
23b by either or both of a wave absorber 26 and an electromagnetic wave shielding
member.
[0025] In this radio wave type burglar detection apparatus described in claim 8, even if
the radio wave type burglar detection apparatus of the present invention is installed
in a location with plenty of electrical noise of a computer and the like, the electrical
noise is absorbed by the wave absorber 26 and is cut off by the electromagnetic wave
shielding member. Therefore, injection of the electrical noise into the core 23a of
the tag detection sensor 16 is blocked, and hence it is possible to prevent the radio
wave type burglar detection apparatus of the present invention from malfunctioning.
[0026] The invention according to claim 9 is the invention according to any one of claims
1 through 7, and further, as shown in Figure 7, this invention is characterized in
that a tag detection sensor 66 has a loop antenna 73, and a surface of the loop antenna
73, which does not face to a tag 11, is covered by either or both of a wave absorber
76 and an electromagnetic wave shielding member.
[0027] In this radio wave type burglar detection apparatus described in claim 9, even if
the radio wave type burglar detection apparatus of the present invention is installed
in a location with plenty of electrical noise of a computer and the like, the electrical
noise is absorbed by the wave absorber 26 and is cut off by the electromagnetic wave
shielding member. Therefore, injection of the electrical noise into the loop antenna
73 of the tag detection sensor 66 is blocked, and hence it is possible to prevent
the radio wave type burglar detection apparatus of the present invention from malfunctioning.
[0028] The invention according to claim 10 is the invention according to claim 8, and further,
as shown in Figure 1, this invention is characterized in that a pair of arm sections
23c and 23d made of ferrite is provided at both ends of the core 23a with protruding
toward a tag 11.
[0029] In the radio wave type burglar detection apparatus described in claim 10, a radio
wave transmitted from the pair of arm sections 23c and 23d proceeds toward the tag
11, that is, it is possible to make the radio wave have directivity. Therefore, it
is possible to increase a ratio (S/N ratio) between a signal transmitted by the arm
sections 23c and 23d and a signal generated by electrical noise of a computer and
the like.
[0030] The invention according to claim 11 is the invention according to any one of claims
1, 2, 4, 5, 6, 7, 8, and 10, and further, as shown in Figure 9 or 10, this invention
is characterized in that this invention comprises a self operation management circuit
81 or 91 detecting abnormal operation of a tag 11, a tag detection sensor 16 or 66,
or a drawer sensor 17.
[0031] In a radio wave type burglar detection apparatus described in claim 11, if the tag
11, tag detection sensor 16 or 66, or drawer sensor 17 abnormally operates due to
a failure and the like, the self operation management circuit 81 or 91 are immediately
detect the abnormal operation. Therefore, it is possible to rapidly repair or replace
the tag 11 or the like which abnormally operates.
Brief Description of Drawings
[0032]
Fig. 1 is a block diagram showing a radio wave type burglar detection apparatus according
to a first embodiment of the present invention;
Figure 2A is a vertical cross-sectional view of a safe in a state of a drawer being
contained in the safe;
Figure 2B is a vertical cross-sectional view of a safe in a state of the drawer being
drawn from the safe;
Figure 3 is an exploded perspective view of a tag in the radio wave type burglar detection
apparatus;
Figure 4 is a vertical cross-sectional view of the tag;
Figure 5 is a block diagram of a tag detection circuit thereof;
Figure 6 is a block diagram that shows a second embodiment of the present invention
and corresponds to Figure 1;
Figure 7 is a block diagram that shows a third embodiment of the present invention
and corresponds to Figure 1;
Figure 8A is a vertical cross-sectional view of a safe in a state of an upper lid
being closed;
Figure 8B is a vertical cross-sectional view of a safe in a state of an upper lid
being opened;
Figure 9 is a block diagram that corresponds to Figure 1 and shows a radio wave type
burglar detection apparatus that comprises a self operation management circuit and
is a fourth embodiment of the present invention; and
Figure 10 is a block diagram that corresponds to Figure 7 and shows a radio wave type
burglar detection apparatus that comprises a self operation management circuit and
is a fifth embodiment of the present invention.
Best Mode for Carrying Out the Invention
[0033] Next, a form of a first embodiment of the present invention will be described on
the basis of drawings. A radio wave type burglar detection apparatus, as shown in
Figures 1 and 3, comprises: a tag 11 having a resonance circuit block 12; a box 13
containing a drawer 14 where the tag 11 is contained with an object 15; a tag detection
sensor 16 detecting whether the tag 11 is present within the drawer 14; a drawer sensor
17 detecting whether the drawer 14 is drawn; and a control circuit 19 controlling
alarm means 18 on the basis of each detection output of the tag detection sensor 16
and drawer sensor 17. The tag 11 is formed in the approximately same shape as that
of the object 15 in this embodiment. This tag 11, as shown in Figures 3 and 4, comprises:
a base plate 11a made of insulating-material such as paper and a plastic thin sheet;
a coil portion 11b that is made of conductive material such as copper and aluminum
and is formed in a helical and approximately rectangular shape on the upper surface
of this base plate 11a; a dielectric layer 11c that is made of insulating-material
and is bonded to cover the upper surface of the base plate 11a through the coil portion
11b; and a surface layer 11d that is made of insulating-material and is bonded to
cover the upper surface of the dielectric layer 11c.
[0034] On the upper surface of the base plate 11a, a first electrode layer 11e and a first
connecting terminal 11f that are made of conductive material and are electrically
connected to an internal end and an external end of the coil portion 11b are bonded
respectively. The dielectric layer 11c is bonded to cover a part of the upper surface
of the base plate lla except the first connecting terminal 11f. In addition, on the
bottom surface of the surface layer 11d, a second electrode layer 11g and a second
connecting terminal 11h that are made of conductive material and face to the first
electrode layer 11e and first connecting terminal 11f are bonded respectively. The
second electrode layer 11g and second connecting terminal 11h are electrically connected
with each other. The first and second connecting terminals 11f and 11h are electrically
connected with each other when the surface layer 11d is laminated through the dielectric
layer 11c on the base plate 11a. In addition, a capacitor 11i is constructed with
the first electrode layer 11e, first dielectric layer 11c, and second electrode layer
11g, and a resonance circuit block 12 is constructed with this capacitor 11i and coil
portion 11b. A resonance frequency of the resonance circuit block 12 is 7-9 MHz in
this embodiment.
[0035] The box 13 is a safe where the drawer 14 is contained, and the object 15 is plenty
of bank notes (Figures 1 and 2). The drawer 14 is partitioned into a document container
14c, which is in a near end, and bank note containers 14d and 14e, which are in a
back end, with a first partition board 14a extending in the width direction. The bank
note containers 14d and 14e are partitioned into a pair of bank note containers 14d
and 14e, which are partitioned into a left part and a right part respectively, with
a second partition board extending in the drawing direction. This drawer 14 is made
of metal material such as a steel sheet, the tags 11 and 11 are contained in the pair
of bank note containers 14d and 14e respectively, and further, on these tags 11 and
11, plenty of bank notes 15 and 15 are piled respectively. In addition, soft magnetic
members 22 and 22 are sandwiched between the tags 11 and 11, and the drawer 14.
[0036] It is preferable to use a sintered ferrite, a compact of ferrite powder and binder,
or composite material of soft magnetic metal powder as this soft magnetic member.
As the binder, polyester, nylon, polyvinyl chloride, synthetic rubber, natural rubber,
and the like can be used. In addition, as the composite material of soft magnetic
metal powder, composite material of carbonyl iron powder, permalloy powder by ball
mill crushing, and the like, and resin such as polyester, nylon, polyvinyl chloride,
synthetic rubber, and natural rubber can be used. The purpose of inserting the soft
magnetic member 22 between the tag 11 and drawer 14 is to make it possible that a
magnetic field easily passes to the resonance circuit block of the tag 11 owing to
the soft magnetic member 22, and hence, that the tag 11 is surely detected by the
tag detection sensor 16 even if the drawer 14 is made of metal. In addition, an opening
13a for drawing the drawer 14 is formed in the front panel of the safe 13, and this
opening 13a is enabled to open and close by means of a front door 13b (Figures 2A
and 2B).
[0037] The tag detection sensor 16 comprises an antenna 23 attached on a back surface of
an upper wall in the vicinity of the opening 13a of the safe 13, and a tag detection
circuit 24 electrically connected to a coil 23b of this antenna 23 (Figures 1, 2A,
2B, and 5). The antenna 23 has a core 23a that is made of ferrite and extends in the
width direction of the safe 13, a coil 23b wound around this core 23a, and a pair
of arm sections 23c and 23d, which is made of ferrite and is provided in both ends
of the core 23a with protruding toward two tags 11 and 11 respectively. The core 23a,
including the coil 23b, and a base end of the pair of arm sections 23c and 23d are
covered with the wave absorber 26 (Figures 1 and 5) and electromagnetic wave shielding
member (not shown) through an insulator (not shown) such as a vinyl tape. In addition,
if the pair of arm sections is not provided in both ends of the core with protruding,
the periphery of a part of a core except a part of the core facing to the tag, that
is, both ends of the core can be covered with the coil through the insulator with
the wave absorber and electromagnetic wave shielding member. In addition, regardless
of the presence or absence of the pair of arm sections, a part of the core not facing
to the tag can be covered with the coil through the insulator with the wave absorber
and electromagnetic wave shielding member. The wave absorber 26 is a nonwoven fabric
type wave absorber, and a wave absorber is used, the wave absorber which is a wave
absorber comprising a nonwoven fabric composed of first fibers which are covered by
oxidized metal and second fibers that is an insulator and is not covered by metal.
In addition, a wave absorber composed of laminated nonwoven fabric sheets composed
of the first fibers and second fibers is used. Furthermore, a wave absorber comprising
a nonwoven fabric composed of a plurality of laminated layers composed of at least
one layer of nonwoven fabric containing oxidized metal-coated fibers and one layer
of nonwoven fabric containing non-oxidized metal-coated fibers is also used, the nonwoven
fabric having a layer containing the oxidized metal-coated fibers which is located
in the injection surface side of a radio wave. As metal coating the fibers and being
oxidized, one or two kinds of metal, alloys, or the like that are selected from a
group of silver, copper, nickel, and zinc are used.
[0038] In addition, as the wave absorber 26, a wave absorber comprising a nonwoven fabric
composed of first fibers, which is coated with metal that is sulfided, and second
fibers, which is an insulator and is not coated with metal, can be used. Furthermore,
a wave absorber comprising a plurality of laminated nonwoven fabric sheets composed
of the first and second fibers can be also used. Moreover, a wave absorber comprising
a nonwoven fabric composed of a plurality of laminated layers composed of at least
one layer of nonwoven fabric containing sulfided metal-coated fibers and one layer
of nonwoven fabric containing non-sulfided metal-coated fibers can be also used, the
nonwoven fabric having a layer containing the sulfided metal-coated fibers which is
located in the injection surface side of a radio wave. As metal coating the fibers
and being sulfided, copper, a copper alloy, silver or a silver alloy is used.
[0039] In addition, it is preferable to use as an electromagnetic wave shielding member
a nonwoven fabric comprising organic fibers coated with silver, a nonwoven fabric
comprising a mixture of organic fibers and organic fibers coated with silver, or a
laminated body comprising nonwoven fabrics comprising organic fibers and organic fibers
coated with silver. Natural and synthetic organic fibers such as cotton, linen, regenerated
cellulose, polyamide, acrylic fibers, polyolefine, polyester, and the like are used
as the organic fibers. The purpose of coating the core 23a, including the coil 23b,
and the pair of arm sections 23c and 23d with the wave absorber 26 and electromagnetic
wave shielding member is to make it possible that electrical noise of a computer and
the like is absorbed by the wave absorber 26 and is blocked from incidence into the
core 23a of the antenna 23 by shutting off with the electromagnetic wave shielding
member, and hence that a radio wave type burglar detection apparatus is prevented
from malfunctioning. In addition, the purpose of providing the pair of arm sections
23c and 23d in both sides of the core 23a with protruding is to increase a ratio (S/N
ratio) between a signal transmitted from the arm sections 23c and 23d and a signal
generated by electrical noise of a computer and the like by a radio wave, transmitted
from the pair of arm sections 23c and 23d, proceeding toward the tags 11 and 11, that
is, making the radio wave have directivity.
[0040] The tag detection circuit 24, as shown in Figure 5, comprises: a voltage-controlled
oscillator 24a that is electrically connected to the coil 23b of the antenna 23 and
feeds a current, having the same frequency as a resonance frequency of the tag 11,
through the coil 23b; a sweep block 24b sweeping the oscillating frequency of this
oscillator 24a within the range of 7-9 MHz; an amplifier 24c whose input terminal
is connected to the output terminal of an automatic gain controller in the voltage-controlled
oscillator 24a; a noise filter 24d whose input terminal is connected to the output
terminal of the amplifier 24c; and a threshold circuit 24e whose input terminal is
connected to the output of the noise filter 24d. This tag detection circuit 24 is
constructed so that, when the resonance circuit block 12 resonates by the tag 11 accessing
the coil 23b, a specific signal may appear at the output terminal of the automatic
gain controller of the voltage-controlled oscillator 24a. This specific signal is
amplified by the amplifier 24c, a noise signal mixed in this signal is filtered by
the noise filter 24d, and further the signal is selected by the threshold circuit
24e. If a waveform of the specific signal is not present in a waveform selected by
the threshold circuit 24e, the threshold circuit 24e outputs the ON signal "1". In
addition, if a waveform of the specific signal is present in a waveform selected by
the threshold circuit 24e, the threshold circuit 24e outputs the OFF signal "0".
[0041] The drawer sensor 17 is a reed switch (Figures 1 and 2) attached to one internal
surface of a side wall in the vicinity of the opening 13a of the safe 13. In addition,
a magnet 27 is attached to an external surface of a side wall in the vicinity of the
back end of the drawer 14. If the drawer 14 is contained in the safe 13, the magnet
27 is separated from the reed switch 17, and hence the reed switch outputs the signal
"0" with keeping the OFF state. If the drawer 14 is drawn, the magnet 27 accesses
the reed switch 17, and hence the reed switch outputs the signal "1" with turning
on. One terminal of this reed switch 17 is connected to a power supply 28, and another
terminal is connected to a control input terminal of an AND circuit 19, which is a
control circuit, with the output terminal of the threshold circuit 24e (Figures 1
and 5). A first buzzer 18, which is alarm means, is connected to the control output
terminal of the AND circuit 19 (Figure 1). The AND circuit 19 activates the first
buzzer 18 only when the reed switch 17 outputs the signal "1" because of the drawer
17 being drawn and the threshold circuit 24e outputs the signal "1" because of the
tag 11 not being present within the drawer 14.
[0042] A time constant circuit 29, which is composed of a resistor 29a and a capacitor 29b,
is connected between the AND circuit 19 and first buzzer 18. When chattering at the
output terminal of the threshold circuit 24e and the reed switch 17 arises, the time
constant circuit 29 prevents the first buzzer 18 from malfunctioning. In particular,
this is effective to a case that chattering arises at the output terminal of the threshold
circuit 24e due to electrical noise that is caused by a cellular phone and the like
and is not continuous but intermittent. The tag detection circuit 24, power supply
28, AND circuit 19, first buzzer 18, and time constant circuit 29 are contained in
a case 31 attached to the external surface of a side wall of the safe 13 (Figures
1 and 2).
[0043] Operation of the radio wave type burglar detection apparatus constructed like this
will be described.
[0044] If the drawer 14 is contained in the safe 13 and the front door 13b is closed (Figure
2A), the magnet 27 is separated from the reed switch 17, and hence the reed switch
17 outputs the signal "0" with keeping the OFF state. Therefore, even if an ON signal
"1" is outputted from the threshold circuit 24e because the tag detection sensor 16
cannot detect the tags 11 and 11 due to the tags 11 and 11 not facing to the antenna
23, the AND circuit 19 does not activate the first buzzer 18 on the basis of respective
detection outputs of the reed switch 17 and tag detection sensor 16.
[0045] If the front door 13b of the safe 13 is opened and the drawer 14 is drawn in a state
of being able to take the bank notes 15 out (Figure 2B), the magnet 27 accesses the
reed switch 17, and hence the reed switch 17 outputs the signal "1" owing to the magnetic
intensity of the magnet 27 (Figure 1). Nevertheless, since the tag 11 faces to the
antenna 23, the tag detection sensor 16 detects the two tags 11 and 11, and hence
the threshold circuit 24e outputs the signal "0". In consequence, the AND circuit
19 does not activate the first buzzer 18 on the basis of respective detection outputs
of the reed switch 17 and tag detection sensor 16.
[0046] In addition, even if one of the two tags 11 and 11 is taken out from the drawer with
the bank notes 15, the tag detection sensor 16 continues to detect another residual
tag 11, and hence the threshold circuit 24e continues to output the signal "0". In
consequence, the AND circuit 19 does not activate the first buzzer 18 on the basis
of respective detection outputs of the reed switch 17 and tag detection sensor 16.
This is because it is considered that an owner of the safe 13 counts the bank notes
15 in the safe 13.
[0047] Furthermore, if all of the tags 11 and 11 are taken out with the bank notes 15 and
15 from the drawer 14 in the state of the reed switch 17 outputting the signal "1",
the tag detection sensor 16 detects that the tags 11 and 11 are not present in the
drawer 14, and hence the threshold circuit 24e outputs the signal "1". In consequence,
the AND circuit 19 activates the first buzzer 18 on the basis of respective detection
outputs of the reed switch 17 and tag detection sensor 16. Therefore, an owner of
the safe 13 can immediately know that the bank notes 15 in the safe 13 are taken out
without notice by an alarm sounded by the first buzzer 18, and hence can instantly
report the incident to the police.
[0048] Figure 6 shows a second embodiment of the present invention. In Figure 6, the same
symbols are assigned to the same components as those in Figure 1.
[0049] In this embodiment, the power supply 28 is connected in series to the tag detection
circuit 24 through the reed switch 17, and this series circuit constructs a control
circuit 49. Except the above construction this embodiment has the same construction
as the first embodiment has.
[0050] Since the operation of a radio wave type burglar detection apparatus constructed
like this is the approximately same as the operation of the first embodiment, repeated
description will be omitted.
[0051] Figures 7 and 8 show a third embodiment of the present invention. In Figures 7 and
8, the same symbols are assigned to the same components as those in Figures 1 and
2.
[0052] In this embodiment, an opening 63a is provided in the upper side of the safe 63 made
of metal material, and an upper lid 63b that can open and close the opening 63a is
installed in the upper surface of this safe 63. Furthermore, a loop antenna 73 that
is circular or square and consists of a plurality of turns of wire is used as an antenna
of a tag detection sensor 66. In the safe 63, a soft magnetic member 72 made of the
same material as that of the soft magnetic member 22 in the first embodiment is placed,
and two tags 11 and 11 are placed in parallel to each other on this soft magnetic
member 72. Thus, the soft magnetic member 72 is sandwiched between the tags 11 and
11, and the safe 63. In addition, on these tags 11 and 11, plenty of bank notes 15
and 15 are piled respectively. The loop antenna 73 is placed to become above between
the two tags 11 and 11 in the safe 63, and both ends of this antenna 73 are electrically
connected to the tag detection circuit 24. In addition, the surface of the loop antenna
73 not facing to the tags 11 and 11 is covered by a wave absorber 76 and an electromagnetic
wave shielding member (not shown) through an insulator (not shown).
[0053] In addition, an upper lid sensor 67 is mounted to the inside of a side wall in the
vicinity of the opening 63a of the safe 63. This sensor 67 is a micro switch, which
outputs the signal "0" with turning off at the time of closing the upper lid 63b,
and which outputs the signal "1" with turning on at the time of opening the upper
lid 63b. The AND circuit 19, which is a control circuit, activates the first buzzer
18 only when the micro switch 67 outputs the signal "1" because of the upper lid 63b
being opened and a threshold circuit (not shown) in the tag detection circuit 24 outputs
an ON signal "1" because of the tag 11 not being present within the safe 63. The tag
detection circuit 24, power supply 28, AND circuit 19, first buzzer 18, and time constant
circuit 29 are contained in a case 81 mounted to the external surface of a back wall
of the safe 63. The construction of this embodiment except the above construction
is the same as that of the first embodiment.
[0054] In the radio wave type burglar detection apparatus constructed like this, if the
upper lid 63b is closed (Figure 8A), the tag detection sensor 66 detects that the
tags 11 and 11 are present in the safe 63, and hence the tag detection circuit 24
outputs the signal "0". Since the micro switch 67 outputs the signal "0", the AND
circuit 19 does not activate the first buzzer 18. In addition, if the upper lid 63b
is opened (Figure 8B), the micro switch 67 outputs the signal "1" (Figure 1), but
the tag detection sensor 66 detects that the tags 11 and 11 are present in the safe
63, and hence the tag detection circuit 24 outputs the signal "0". In consequence,
the AND circuit 19 does not activate the first buzzer 18.
[0055] In addition, even if one of the two tags 11 and 11 is taken out from the safe 63
with the bank notes 15, the tag detection sensor 66 continues to detect another residual
tag 11 in the safe 63, and hence the tag detection circuit 24 continues to output
the signal "0". In consequence, the AND circuit 19 does not activate the first buzzer
18. Furthermore, if all of the tags 11 and 11 are taken out with the bank notes 15
and 15 from the safe 63 in the state of the upper lid being opened (the micro switch
67 outputting the signal "1"), the tag detection sensor 66 detects that the tags 11
and 11 are not present in the safe 63, and hence the tag detection circuit 24 outputs
the signal "1". Hence, the AND circuit 19 activates the first buzzer 18. In consequence,
an owner of the safe 63 can immediately know that the bank notes 15 in the safe 63
are taken out without notice by an alarm sounded by the first buzzer 18, and hence
can instantly report the incident to the police.
[0056] Figure 9 shows a fourth embodiment of the present invention. In Figure 9, the same
symbols are assigned to the same components as those in Figure 1.
[0057] This embodiment comprises a self operation management circuit 81 detecting abnormal
operation of the tag 11, tag detection sensor 16 or reed switch 17. This self operation
management circuit 81 has an exclusive OR circuit 82 and an inverting circuit 83.
A first input terminal 82a out of two input terminals 82a and 82b of the exclusive
OR circuit 82 is connected to the output side of the tag detection circuit 24, and
a second input terminal 82b is connected to the ground side of the reed switch 17
respectively. The inverting circuit 83 is connected between the first input terminal
82a and tag detection circuit 24. In addition, the output terminal 82c of the exclusive
OR circuit 82 is connected to a second buzzer 86, which is information means, through
a time constant circuit 84.
[0058] If ON signals "1" or OFF signals "0" are inputted to all of the first and second
input terminals 82a and 82b of the exclusive OR circuit 82, the exclusive OR circuit
82 outputs the signal "0". If the signal "0" is inputted to either of the first or
second input terminal 82a or 82b and the signal "1" is inputted to the other terminal,
the exclusive OR circuit 82 outputs the signal "1". Thus, the exclusive OR circuit
82 has the input and output relation shown in Table 1.
Table 1
1st Input |
2nd Input |
Output |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
[0059] If the signal "0" is inputted, the inverting circuit 83 outputs the signal "1", and
if the signal "1" is inputted, the inverting circuit 83 outputs the signal "0". In
addition, the second buzzer 86 is constructed to have a tone different from that of
the first buzzer 18 that is the alarm means. The buzzer 86 is not activated if the
exclusive OR circuit 82 outputs the signal "0", and is activated if outputting the
signal "1". In addition, as information means, a lamp and the like can be used instead
of the buzzer. Furthermore, the time constant circuit 84 consists of a resistor 84a
and a capacitor 84b, and absorbs a time lag between the tag detection circuit 24 and
reed switch 17. Thus, even if the outputs of the tag detection circuit 24 and reed
switch 17 instantly become unstable due to the time lag at the time of drawing or
containing the drawer 14 and hence the exclusive OR circuit 82 outputs the signal
"1" in an instant, the second buzzer 86 is not activated owing to the time constant
circuit 84. In addition, the time constant circuit 84 has a function of preventing
the second buzzer 86 from being activated when external noise that is intermittent
is received. The construction except the above construction is the same as that of
the first embodiment.
[0060] The operation of the radio wave type burglar detection apparatus constructed like
this will be described.
[A] A case that all of the tag 11, tag detection sensor 16, and reed switch 17 normally
operate
[0061] Since the tag 11 does not face to the antenna 23 if the drawer 14 is contained in
the safe 13, the tag detection sensor 16 cannot detect the tag 11, and hence the tag
detection circuit 24 outputs the ON signal "1". This ON signal "1" from the tag detection
circuit 24 is inverted by the inverting circuit 83 and is outputted to the first input
terminal 82a of the exclusive OR circuit 82. On the other hand, the reed switch 17
is turned off because the reed switch 17 is separated from the magnet 27, and hence
the OFF signal "0" is outputted to the second input terminal 82b of the exclusive
OR circuit 82. In consequence, the exclusive OR circuit 82 outputs the signal "0"
to the second buzzer 86, and hence the second buzzer 86 is not activated. At this
time, since the output of the tag detection circuit 24 is the signal "0" and the output
of the reed switch 17 is the signal "0", the first buzzer 18 is not activated.
[0062] In addition, if the drawer 14 is drawn from the safe 13, the tag 11 faces to the
antenna 23, the tag detection sensor 16 detects the tag 11, and the tag detection
circuit 24 outputs the OFF signal "0". This output "0" from the tag detection circuit
24 is inverted by the inverting circuit 83 into the signal "1" to be outputted to
the first input terminal 82a of the exclusive OR circuit 82. On the other hand, since
the reed switch 17 is turned on because the magnet 27 accesses the reed switch 17,
the ON signal "1" is outputted to the second input terminal 82b of the exclusive OR
circuit 82. In consequence, since the exclusive OR circuit 82 outputs the signal "0"
to the second buzzer 86, the second buzzer 86 is not activated. At this time, since
the output of the tag detection circuit 24 is the signal "0" and the output of the
reed switch 17 is the signal "1", the first buzzer 18 is not activated.
[0063] Furthermore, if the two tags 11 and 11 are taken out from the drawer 14 in the state
of the drawer 14 being drawn from the safe 13, the tag detection sensor 16 does not
detect the tag 11 because the tag 11 does not face to the antenna 23, and hence the
tag detection circuit 24 outputs the ON signal "1". This output "1" from the tag detection
circuit 24 is inverted into the signal "0" by the inverting circuit 83 to be outputted
to the first input terminal 82a of the exclusive OR circuit 82. On the other hand,
since the reed switch 17 keeps the state of accessing the magnet 27, the reed switch
17 outputs the ON signal "1" to the second input terminal 82b of the exclusive OR
circuit 82. In consequence, since the exclusive OR circuit 82 outputs the signal "1"
to the second buzzer 86, the second buzzer 86 is activated in a tone different from
that of the first buzzer 18. At this time, since the output of the tag detection circuit
24 is the signal "1" and the output of the reed switch 17 is the signal "1", the first
buzzer 18 is activated. Thus, if the bank notes 15 in the safe 13 are taken out without
notice, not only the first buzzer 18 but also the second buzzer is activated. Nevertheless,
since the tag 11 is taken out with the bank notes 15 from the drawer 14, it is possible
to judge that the bank notes 15 are taken out without notice.
[B] A case that the tag detection sensor 16 abnormally operates due to a failure
[0064] A tag detection sensor 16 abnormally operates due to abnormal oscillation of a voltage-controlled
oscillator (not shown), abnormal operation of an amplifier (not shown), or a failure
or disconnection of a wire of another part constructing the tag detection sensor 16.
Therefore, in spite of the tag 11 not facing to the antenna 23, the tag detection
circuit 24 outputs the OFF signal "0" as if the tag detection sensor 16 detected the
tag 11. This output "0" from the tag detection circuit 24 is inverted into the signal
"1" by the inverting circuit 83 to be inputted to the first input terminal 82a of
the exclusive OR circuit 82. On the other hand, since the normal reed switch 17 is
turned off because the reed switch 17 is separated from the magnet 27, the reed switch
17 outputs the signal "0" to the second input terminal 82b of the exclusive OR circuit
82. In consequence, since the exclusive OR circuit 82 outputs the signal "1" to the
second buzzer 86, the second buzzer 86 is activated in a tone different from that
of the first buzzer 18. At this time, since the output of the tag detection circuit
24 is the signal "0" and the output of the reed switch 17 is the signal "0", the first
buzzer 18 is not activated.
[0065] In addition, if the drawer 14 is drawn from the safe 13, the tag detection sensor
16 abnormally operates and the tag detection circuit 24 outputs the signal "1", which
is the signal showing absence of the tag 11, in spite of the tag 11 facing to the
antenna 27. This output "1" from the tag detection circuit 24 is inverted into the
signal "0" by the inverting circuit 83 to be inputted to the first input terminal
82a of the exclusive OR circuit 82. On the other hand, since the normal reed switch
17 is turned on because the magnet 27 accesses the reed switch 17, the reed switch
17 outputs the signal "1" to the second input terminal 82b of the exclusive OR circuit
82. In consequence, since the exclusive OR circuit 82 outputs the signal "1" to the
second buzzer 86, the second buzzer 86 is activated. At this time, since the output
of the tag detection circuit 24 is the signal "0" and the output of the reed switch
17 is the signal "1", the first buzzer 18 is not activated.
[C] A case that the reed switch 17 abnormally operates due to a failure
[0066] Since the tag 11 does not face to the antenna 23 if the drawer 14 is contained in
the safe 13, the tag detection sensor 16 cannot detect the tag 11, and hence the tag
detection circuit 24 outputs the ON signal "1". This ON signal "1" from the tag detection
circuit 24 is inverted into the signal "0" by the inverting circuit 83 and is outputted
to the first input terminal 82a of the exclusive OR circuit 82. On the other hand,
the reed switch 17, which abnormally operates due to a contact failure, a short-circuit
of wiring, and the like, is turned on in spite of the magnet 27 being separated from
the reed switch 17. Hence, the OFF signal "0" is outputted to the second input terminal
82b of the exclusive OR circuit 82. In consequence, the exclusive OR circuit 82 outputs
the signal "1" to the second buzzer 86, and hence the second buzzer 86 is activated.
At this time, since the output of the tag detection circuit 24 is the signal "1" and
the output of the reed switch 17 is the signal "1", the first buzzer 18 is activated.
Nevertheless, since the first and second buzzer 18 and 86 are activated in the state
of the drawer 14 being contained in the safe 13, it is possible to judge that the
reed switch 17 is failed.
[0067] In addition, if the drawer 14 is drawn from the safe 13, the tag 11 faces to the
antenna 23, the tag detection sensor 16 detects the tag 11, and the tag detection
circuit 24 outputs the OFF signal "0". This output "0" from the tag detection circuit
24 is inverted by the inverting circuit 83 into the signal "1" to be outputted to
the first input terminal 82a of the exclusive OR circuit 82. On the other hand, since
the reed switch 17, which abnormally operates, is turned off in spite of the magnet
27 accessing the reed switch 17, the signal "0" is outputted to the second input terminal
82b of the exclusive OR circuit 82. In consequence, since the exclusive OR circuit
82 outputs the signal "1" to the second buzzer 86, the second buzzer 86 is activated.
At this time, since the output of the tag detection circuit 24 is signal "0" and the
output of the reed switch 17 is the signal "0", the first buzzer 18 is not activated.
[D] A case that the tag 11 abnormally operates due to a failure
[0068] Even if the tag 11 is failed due to disconnection of a wire and the like if the drawer
14 is contained in the safe 13, this tag 11 does not face to the antenna 27, and hence
the normal tag detection sensor 16 cannot detect the tag 11. Hence, the tag detection
circuit 24 outputs the ON signal "1". This ON signal "1" from the tag detection circuit
24 is inverted into the signal "0" by the inverting circuit 83 and is outputted to
the first input terminal 82a of the exclusive OR circuit 82. On the other hand, the
normal reed switch 17 is turned off since the magnet 27 is separated from the reed
switch 17, and hence, the OFF signal "0" is outputted to the second input terminal
82b of the exclusive OR circuit 82. In consequence, the exclusive OR circuit 82 outputs
the signal "0" to the second buzzer 86, and hence the second buzzer 86 is not activated.
At this time, since the output of the tag detection circuit 24 is the signal "1" and
the output of the reed switch 17 is the signal "0", the first buzzer 18 is not activated.
[0069] Nevertheless, if the drawer 14 is drawn from the safe 13, the normal tag detection
sensor 16 cannot detect the failed tag 11 in spite of the tag 11 facing to the antenna
27, and hence the tag detection circuit 24 outputs the signal "1". This output "1"
from the tag detection circuit 24 is inverted by the inverting circuit 83 into the
signal "0" to be outputted to the first input terminal 82a of the exclusive OR circuit
82. On the other hand, since the normal reed switch 17 is turned on since the magnet
27 accesses the reed switch 17, the signal "1" is outputted to the second input terminal
82b of the exclusive OR circuit 82. In consequence, since the exclusive OR circuit
82 outputs the signal "1" to the second buzzer 86, the second buzzer 86 is activated.
At this time, since the output of the tag detection circuit 24 is signal "1" and the
output of the reed switch 17 is the signal "1", the first buzzer 18 is activated.
Nevertheless, although the first and second buzzers 18 and 86 are activated in the
state of the drawer 14 being drawn from the safe 13, the tag 11 is present in the
drawer 14, and hence it is possible to judge that the tag 11 is failed.
[0070] In this manner, if the tag detection sensor 16, reed switch 17, or tag 11 abnormally
operates due to a failure and the like, the self operation management circuit 81 immediately
detects this abnormal operation and activates the second buzzer 86. Therefore, an
owner of the safe 13 can instantly know the failure of the radio wave type burglar
detection apparatus. Hence, since it is possible to repair or replace this apparatus
failed or malfunctioned, it is possible to increase the reliability of the radio wave
type burglar detection apparatus of the present invention. In addition, by transmitting
the output of the self operation management circuit 81 with the output of the AND
circuit 19 (control circuit) to a security guard company or the like, personnel of
the security guard company or the like, which receives the alarm, go to the location,
and can judge whether the alarm is an alarm or a failure.
[0071] Figure 10 shows a fifth embodiment of the present invention. In Figure 10, the same
symbols of Figure 7 are assigned to the same components.
[0072] This embodiment comprises a self operation management circuit 91 detecting abnormal
operation of the tag 11 or tag detection sensor 66. This self operation management
circuit 91 is a branch circuit branching from the output side of the tag detection
circuit 24. The second buzzer 86 that is information means is connected to this branch
circuit 91 through the time constant circuit 84 composed of the resistor 84a and capacitor
84b. The time constant circuit 84 has a function of preventing the second buzzer 86
from being activated when receiving intermittent external noise. In addition, a lamp
or the like can be used as information means instead of the buzzer. The construction
except the above construction is the same as that of the third embodiment.
[0073] The operation of the radio wave type burglar detection apparatus constructed like
this will be described.
[E] A case that both of the tag 11 and tag detection sensor 66 normally operate
[0074] If the upper lid 63b is closed, the tag 11 faces to the loop antenna 73, and hence
the tag detection sensor 66 detects that the tags 11 and 11 are present in the safe
63, and the tag detection circuit 24 outputs the OFF signal "0". Therefore, the self
operation management circuit 91 does not activate the second buzzer 86. At this time,
since the output of the tag detection circuit 24 is the signal "0" and the output
of the micro switch 67 is the signal "0", the first buzzer 18 is not activated.
[0075] In addition, even if the upper lid 64b is opened, the tag 11 faces to the loop antenna
73, and hence, similarly to the above, the tag detection circuit 24 outputs the OFF
signal "0". In consequence, the self operation management circuit 91 does not activate
the second buzzer 86. At this time, since the output of the tag detection circuit
24 is the signal "0" and the output of the micro switch 67 is the signal "1", the
first buzzer 18 is not activated.
[0076] In addition, if the two tags 11 and 11 are taken out from the safe 63 in the state
of the upper lid 64b being opened, the tag 11 does not face to the loop antenna 73,
and hence the tag detection sensor 66 does not detect the tag 11. Hence, the tag detection
circuit 24 outputs the ON signal "1", and the self operation management circuit 91
activates the second buzzer 86 in a tone different from that of the first buzzer 18.
At this time, since the output of the tag detection circuit 24 is the signal "1" and
the output of the micro switch 67 is the signal "1", the first buzzer 18 is activated.
Thus, if the bank notes 15 in the safe 63 are taken out with the tag 11 without notice,
not only the first buzzer 18 but also the second buzzer 86 are activated. Nevertheless,
since the tag 11 is taken out with the bank notes 15 from the safe 63, it is possible
to judge that the bank notes 15 are taken out without notice.
[F] A case that the tag detection sensor 66 abnormally operates due to a failure
[0077] If the upper lid 63b is closed, a tag detection sensor 66 abnormally operates due
to abnormal oscillation of a voltage-controlled oscillator (not shown), abnormal operation
of an amplifier (not shown), or a failure or disconnection of a wire of another part
constructing the tag detection sensor 66. Therefore, in spite of the tag 11 facing
to the loop antenna 73, the tag detection circuit 24 outputs the ON signal "1" as
if the tag detection sensor 66 did not detect the tag 11. Hence, the self operation
management circuit 91 activates the second buzzer 86. At this time, since the output
of the tag detection circuit 24 is the signal "1" and the output of the micro switch
67 is the signal "0", the first buzzer 18 is not activated.
[0078] In addition, if the upper lid 63b is opened, the tag detection sensor 66 outputs
the signal "1", which shows that the tag 11 is not detected, in spite of the tag 11
facing to the loop antenna 73. Hence, the self operation management circuit 91 activates
the second buzzer 86. At this time, since the output of the tag detection circuit
24 is the signal "1" and the output of the micro switch 67 is the signal "1", the
first buzzer 18 is activated.
[G] A case that the tag 11 abnormally operates due to a failure
[0079] If the tag 11 is failed due to disconnection of a wire and the like when the upper
lid 63b is closed, the normal tag detection sensor 66 cannot detect the tag 11 in
spite of the tag 11 facing to the loop antenna 73, and hence the tag detection circuit
24 outputs the ON signal "1". Therefore, the self operation management circuit 91
activates the second buzzer 86. At this time, since the output of the tag detection
circuit 24 is the signal "1" and the output of the micro switch 67 is the signal "0",
the first buzzer 18 is not activated.
[0080] In addition, if the upper lid 63b is opened, the tag detection circuit 24 outputs
the signal "1" in spite of the tag 11, similarly to the above, facing to the loop
antenna 73. Hence, the self operation management circuit 91 activates the second buzzer
86. At this time, since the output of the tag detection circuit 24 is the signal "1"
and the output of the micro switch 67 is the signal "1", the first buzzer 18 is activated.
[0081] If the tag 11 is present in the safe 63 like the above-described examples [F] and
[G] and the second buzzer 86 is activated regardless of open and close of the upper
lid 63b, it is possible to judge that the tag detection sensor 66 or tag 11 is failed.
[0082] In this manner, if the tag detection sensor 66 or tag 11 abnormally operates due
to a failure and the like, the self operation management circuit 91 immediately detects
this abnormal operation and activates the second buzzer 86. Therefore, an owner of
the safe 63 can instantly know the failure of the radio wave type burglar detection
apparatus. Hence, since it is possible to repair or replace this apparatus failed
or malfunctioned, it is possible to increase the reliability of the radio wave type
burglar detection apparatus of the present invention. In addition, by transmitting
the output of the self operation management circuit 91 with the output of the AND
circuit 19 (control circuit) to a security guard company or the like, personnel of
the security guard company or the like, which receives the alarm, go to the location,
and can judge whether the alarm is an alarm or a failure.
[0083] In addition, although a safe is cited as a box in the first through fifth embodiments,
a show window case for displaying precious metal, a cash register that is a terminal
of a POS (Point Of Sales) system, and the like also can be used as the box. In addition,
although a buzzer is cited as alarm means in the first through third embodiments,
a lamp or other alarm means also can be used, and this alarm means can be installed
in a security guard company and the like. In this case, since the security guard company
and the like can immediately know a burglar and the like of bank notes from a safe,
the company can correspond to this matter immediately.
[0084] Furthermore, although a first buzzer is cited as alarm means and a second buzzer
is cited as information means in the fourth and fifth embodiments, a lamp and other
alarm means can be used as the alarm means and a lamp and other information means
can be used as the information means.
[0085] Moreover, although plenty of bank notes are piled on a tag in the first through fifth
embodiments, checks, important papers, and the like can be placed, and a bundle of
a tag, plenty of bank notes, and the like can be contained in one piece in a drawer
or the box. In this case, if the bank notes and the like are taken out from the drawer
or box, the tag is always taken out with them, and hence it is possible to surely
detect a burglar of the bank notes and the like. In addition, if the objects to be
contained in a safe are metals such as bar gold and precious metal articles, a radio
wave is cut off with the metals in case of these metals being placed of the tag. Hence,
it is preferable to place the metal beside the tag and to bind the metal to the tag.
[0086] In addition, although two tags are contained in a drawer or a box in the first through
fifth embodiments, one or three tags also can be contained. If three or more tags
are contained, it is necessary to extend an antenna without using a pair of arm sections
in the first, second, and fourth embodiments. Nevertheless, since the antenna in the
third embodiment is a loop antenna, all tags can be detected without extending the
antenna.
[0087] Furthermore, a core or a loop antenna of a tag detection sensor are covered with
both of a wave absorber and an electromagnetic wave shielding member in the first
through fifth embodiments, either of the wave absorber or electromagnetic wave shielding
member can be used for covering.
[0088] Moreover, a loop antenna can be used as the antenna in the first and second embodiments,
and a core where a coil is wound can be used as the antenna in the third embodiment.
[0089] In addition, the figures of the resonance frequency cited in the first embodiment
are examples, and hence the present invention is not limited to this range.
[0090] Moreover, the self operation management circuit cited in the fourth embodiment can
be provided in the radio wave type burglar detection apparatus according to the second
embodiment.
Industrial Applicability
[0091] As described above, according to the present invention, a radio wave type burglar
detection apparatus has such a construction that a tag having a resonance circuit
block is placed with an object in a predetermined location, a tag detection sensor
that is installed near the tag placed in this predetermined location detects whether
the tag is present in the predetermined place, and a control circuit controls alarm
means on the basis of the detection output of this sensor. Hence, if the tag is placed
with the object in the predetermined location, the control circuit does not activate
the alarm means on the basis of the detection output of the tag detection sensor.
If the tag is taken out with the object from the predetermined location, the control
circuit activates the alarm means on the basis of the detection output of the tag
detection sensor. In consequence, it is possible to surely detect whether the tag
is present in the predetermined location.
[0092] In addition, by containing a tag, which has a resonance circuit block, with an object
in a drawer, containing this drawer in a box, detecting by a tag detection sensor,
which is installed in this box, whether the tag is present in the drawer, detecting
by a drawer sensor whether the drawer is drawn, and controlling alarm means by a control
circuit, the drawer sensor detects that the drawer is not drawn regardless of the
tag being present in the drawer if the box contains the drawer. Hence, the control
circuit does not activate the alarm means. Furthermore, if the drawer is drawn from
the box, the drawer sensor detects that the drawer is drawn, and the tag detection
sensor detects that the tag is present in the drawer. Therefore, the control circuit
does not activate the alarm means. Moreover, if the tag is taken out with the object
from the drawer with the drawer being drawn, the tag detection sensor detects that
the tag is absent in the drawer. Hence, the control circuit activates the alarm means.
In consequence, it is possible to surely detect whether the tag is taken out from
the drawer.
[0093] Furthermore, by containing a tag, which has a resonance circuit block, with an object
in a box having an upper lid that can be opened and closed, detecting whether the
tag is present in the box by a tag detection sensor installed in the box, detecting
open and close of the upper lid by an upper lid sensor, and controlling alarm means
on the basis of respective detection outputs of these sensors by a control circuit,
the upper lid sensor detects regardless of presence or absence of the tag in the box
that the upper lid is not opened if the upper lid is closed. Therefore, the control
circuit does not activate the alarm means. Moreover, if the upper lid is opened, the
upper lid sensor detects that the upper lid is opened, and the tag detection sensor
detects that the tag is present in the box. Hence, the control circuit does not activate
the alarm means. In addition, if the tag is taken out with the object from the box
with the upper lid being opened, the tag detection sensor detects that the tag is
absent in the box, and hence the control circuit activates the alarm means. In consequence,
it is possible to surely detect whether the tag is taken out from the box.
[0094] Moreover, by placing a tag and an object in one piece in a predetermined location,
or containing the tag with the object in one piece in a drawer or a box, the tag is
always taken out from the predetermined location or from the drawer or box if the
object is taken out from the predetermined location or from the drawer or box.
Therefore, it is possible to surely detect a burglar of the object.
[0095] In addition, if a drawer or a box is made of metal material, a magnetic field easily
passes to the resonance circuit block of the tag by means of a soft magnetic member
by sandwiching a soft magnetic member made of a sintered ferrite, a compact of ferrite
powder and binder, or composite material of soft magnetic metal powder between the
tag and drawer or box. Therefore, even if the drawer or box is made of metal material,
it is possible to surely detect the tag by the tag detection sensor.
[0096] Furthermore, by covering a ferrite core, where a coil of a tag detection sensor is
wound, and at least a part of a loop antenna, which does not face to a tag, with an
wave absorber and an electromagnetic wave shielding member, electrical noise is absorbed
by the wave absorber and is cut off by the electromagnetic wave shielding member even
if the radio wave type burglar detection apparatus of the present invention is installed
in a location with plenty of electrical noise of a computer and the like.
Therefore, it is possible to block injection of the electrical noise into the core
of the tag detection sensor or the loop antenna, and hence it is possible to prevent
the apparatus from malfunctioning.
[0097] Moreover, by providing a pair of arm sections in both sides of a core with protruding
toward a tag, it is possible to make a radio wave, which is transmitted from these
arm sections, have directivity. Therefore, it is possible to increase a ratio (S/N
ratio) between a signal transmitted from the arm sections and a signal generated by
electrical noise of a computer and the like. In consequence, it is possible to increase
the sensitivity of the tag detection sensor, and hence to surely detect presence and
absence of the tag by the tag detection sensor.
[0098] In addition, by detecting the abnormal operation of a tag, a tag detection sensor,
a drawer sensor, or an upper lid sensor by a self operation management circuit, the
self operation management circuit immediately detects the abnormal operation if the
tag or the like abnormally operates due to a failure or the like. Therefore, it is
possible to rapidly repair or replace the tag or the like that abnormally operates.
In consequence, it is possible to increase the reliability of the radio wave type
burglar detection apparatus of the present invention.