FIELD OF THE INVENTION
[0001] The present invention relates to a method for making lithographic printing plates.
More specifically the invention relates to a method using a heat-sensitive imaging
element that requires no separate processing and that can be imaged on-press.
BACKGROUND OF THE INVENTION
[0002] Lithographic printing is the process of printing from specially prepared surfaces,
some areas of which are capable of accepting ink, whereas other areas will not accept
ink.
[0003] In the art of photolithography, a photographic material is made imagewise receptive
to oily or greasy ink in the photo-exposed (negative working) or in the non-exposed
areas (positive working) on a ink-repelling background.
[0004] In the production of common lithographic plates, also called surface litho plates
or planographic printing plates, a support that has affinity to water or obtains such
affinity by chemical treatment is coated with a thin layer of a photosensitive composition.
Coatings for that purpose include light-sensitive polymer layers containing diazo
compounds, dichromate-sensitized hydrophilic colloids and a large variety of synthetic
photopolymers. Particularly diazo-sensitized systems are widely used.
[0005] Upon imagewise exposure of such light-sensitive layer the exposed image areas become
insoluble and the unexposed areas remain soluble. The plate is then developed with
a suitable liquid to remove the diazonium salt or diazo resin in the unexposed areas.
[0006] On the other hand, methods are known for making printing plates involving the use
of imaging elements that are heat-sensitive rather than photosensitive. A particular
disadvantage of photosensitive imaging elements such as described above for making
a printing plate is that they have to be shielded from the light. Furthermore they
have a problem of stability of sensitivity in view of the storage time and they show
a lower resolution. The trend towards heat-sensitive printing plate precursors is
clearly seen on the market.
[0007] EP-A- 444 786, JP- 63-208036,and
JP- 63-274592 disclose photopolymer resists that are sensitized to the near IR. So far, none has
proved commercially viable and all require wet development to wash off the unexposed
regions.
EP-A- 514 145 describes a laser addressed plate in which heat generated by the laser exposure causes
particles in the plate coating to melt and coalescence and hence change their solubility
characteristics. Once again, wet development is required.
EP-A- 652 483 discloses a lithographic printing plate requiring no dissolution processing which
comprises a substrate bearing a heat-sensitive coating, which coating becomes relatively
more hydrophilic under the action of heat Said system yields a positive working printing
plate.
EP-A- 609 941 describes a heat-mode recording material comprising on a substrate a metallic layer
and a thin hydrophobic layer which becomes hydrophilic upon exposure. However the
lithographic performance of the obtained printing plate is poor.
EP-A- 770 495 discloses a heat-sensitive material and method for making lithographic printing plates
that can be imaged on-press. However a wet processing step is required.
OBJECTS OF THE INVENTION
[0008] It is an object of the present invention to provide a method whereby the heat-sensitive
imaging material for making a lithographic printing plate is imaged on-press and whereby
printing plates having a high lithographic performance (ink acceptance, scratch resistance,
durability) are obtained.
SUMMARY OF THE INVENTION
[0009] According to the present invention there is provided a method for making lithographic
printing plates comprising the steps of:
a. mounting a heat-sensitive imaging material, comprising on a lithographic base having
a hydrophilic surface, a metallic layer or a metal oxide layer and on top thereof
an oleophobic layer having a thickness of less than 5µm, on a print cylinder of a
printing press;
b. image-wise exposing said imaging material with an IR-laser;
c. rotating said print cylinder while supplying an aqueous dampening liquid and/or
supplying ink to said image forming layer of said imaging material.
[0010] The present invention also provides a method for making multiple copies of an original
comprising the steps of:
a. mounting a heat-sensitive imaging material, comprising on a lithographic base having
a hydrophilic surface, a metallic layer or a metal oxide layer and on top thereof
an oleophobic layer having a thickness of less than 5µm, on a print cylinder of a
printing press;
b. image-wise exposing said imaging material with an IR-laser;
c. rotating said print cylinder while supplying an aqueous dampening liquid and/or
supplying ink to said image forming layer of said imaging material and
d. transferring ink from said imaging material to a receiving element.
DETAILED DESCRIPTION OF THE INVENTION
[0011] It has been found that by imaging a heat-sensitive imaging material in accordance
with the present invention on the press, lithographic printing plates requiring no
processing and having a high lithographic performance can be obtained.
[0012] Metallic layers or metal oxide layers suitable for use in accordance with the invention
comprise metals or metal oxides converting the actinic radiation to heat so that the
oleophobicity of the oleophobic top-layer is destroyed. The thickness of the metallic
layer or metal oxide layer is preferably from 0.01µm to 2µm, and most preferably from
0.05µm to 1.5 µm. Specific examples of metal layers or metal oxide layers are aluminum,
titanium oxide, bismuth and silver of which the latter three are preferred.
[0013] A silver layer for use in this invention as the metallic layer can be made according
to the principles of the silver complex diffusion transfer reversal process, hereinafter
called DTR-process, having been described e.g. in US-P 2,352,014 and in the book "Photographic
Silver Halide Diffusion Processes" by André Rott and Edith Weyde - The Focal Press
- London and New York, (1972).
[0014] In the DTR-process non-developed silver halide of an information-wise exposed photographic
silver halide emulsion layer material is transformed with a so-called silver halide
solvent into soluble silver complex compounds which are allowed to diffuse into an
image-receiving element and are reduced therein with a developing agent, generally
in the presence of physical development nuclei, to form a silver image having reversed
image density values ('DTR-image') with respect to the black silver image obtained
in the exposed areas of the photographic material.
[0015] In another method for providing a metal layer on the lithographic base having a hydrophilic
surface a silver halide emulsion disposed on a hydrophilic substrate is strongly exposed
to actinic radiation and then developed, or otherwise processed to maximum blackness.
The black opaque emulsion is converted to a reflective recording material by heating
at least to 270 °C in an oxygen containing environment until the emulsion coating
assumes a shiny reflective appearance. Such method is disclosed in
US-P-4 314 260.
[0016] According to an alternative method for providing a metal layer on the lithographic
base having a hydrophilic surface the metal is provided using vapour or vacuum deposition.
[0017] According to another embodiment of the invention the metallic layer can be a bismuth
layer that can be provided by vacuum deposition.
[0018] A drawback of the method of preparation of a thin bismuth recording layer by vacuum
deposition is the fact that this is a complicated, cumbersome and expensive process.
[0019] Therefore, in
EP-A- 97201282 the vacuum deposition is replaced by coating from an aqueous medium. According to
this disclosure a thin metal layer is formed by the following steps :
(1) preparing an aqueous medium containing ions of a metal,
(2) reducing said metal ions by a reducing agent thus forming metal particles,
(3) coating said aqueous medium containing said metal particles on a transparent support.
[0020] As a metal oxide layer preferably a titanium oxide layer is used. This layer can
be applied to the substrate by vacuum deposition, electron-beam evaporation or sputtering.
[0021] The oleophobic layer provided on top of the metallic layer or metal oxide layer preferably
comprises of a polymer containing phenolic groups. Preferred polymers containing phenolic
groups are phenolic resins (e.g. novolac) or hydroxyphenyl substituted polymers (e.g.
polyhydroxystyrenes). The oleophobic layer has a thickness of less than 5µm. As a
consequence a highly sensitive heat-sensitive imaging element is obtained. The use
of a polymer containing phenolic groups furthermore improves the lithographic performance
( ink acceptance, scratch resistance, durability) of the lithographic printing plates
obtained according to the present invention.
[0022] Other suitable compounds, preferably for a silver layer, to be used in the oleophobic
layer are compounds which contain a mercapto or a thiolate group and one or more hydrophobic
substituents e.g. an alkyl containing at least three carbon atoms. Examples of these
compounds for use in accordance with the present invention are e.g. phenyl mercaptotetrazoles
or those described in
US-P- 3 776 728 and
US-P- 4 563 410. The most preferred compounds are described in
EP-A 609 941.and correspond to one of the following formulas:

wherein R
5 represents hydrogen or an acyl group, R
4 represents alkyl, aryl or aralkyl. Most preferably used compounds are compounds according
to one of the above formulas wherein R
4 represents an alkyl containing 3 to 16 C-atoms.
[0023] According to the present invention, the lithographic base comprises a flexible support,
such as e.g. paper or plastic film, provided with a hardened hydrophilic layer. A
particularly suitable hardened rough hydrophilic layer may be obtained from a hydrophilic
binder hardened with a hardening agent such as formaldehyde, glyoxal, polyisocyanate
or preferably a hydrolysed tetra-alkylorthosilicate.
[0024] As hydrophilic binder there may be used hydrophilic (co)polymers such as for example,
homopolymers and copolymers of vinyl alcohol, acrylamide, methylol acrylamide, methylol
methacrylamide, acrylic acid, methacrylic acid, hydroxyethyl acrylate, hydroxyethyl
methacrylate or maleic anhydride/vinylmethylether copolymers.
[0025] A hardened hydrophilic layer on a flexible support used in accordance with the present
embodiment preferably also contains substances that increase the mechanical strength
and the porosity of the layer e.g. colloidal silica. In addition inert particles of
larger size than the colloidal silica can be added e.g. silica prepared according
to Stöber as described in J. Colloid and Interface Sci., Vol. 26, 1968, pages 62 to
69 or alumina particles or particles having an average diameter of at least 100 nm
which are particles of titanium dioxide or other heavy metal oxides. Incorporation
of these particles gives the surface of the hardened hydrophilic layer a uniform rough
texture consisting of microscopic hills and valleys.
[0026] The thickness of the hardened hydrophilic layer may vary in the range of 0.2 to 25
µm and is preferably 1 to 10 µm.
[0027] Particular examples of suitable hardened hydrophilic layers for use in accordance
with the present invention are disclosed in
EP-A 601 240, GB-P-1 419 512, FR-P-230 354, US-P-3 971 660, US-P-4 284 705 and
EP-A 514 490.
[0028] As suport on which the hydrophilic layer is provided it is particularly preferred
to use a plastic film e.g. substrated polyethylene terephthalate film, cellulose acetate
film, polystyrene film, polycarbonate film etc... The plastic film support may be
opaque or transparent.
[0029] It is particularly preferred to use a polyester film support to which an adhesion
improving layer has been provided. Particularly suitable adhesion improving layers
for use in accordance with the present invention comprise a hydrophilic binder and
colloidal silica as disclosed in
EP-A- 619 524, EP-A- 620 502 and EP-A- 619 525. Preferably, the amount of silica in the adhesion improving layer is between 200 mg
per m
2 and 750 mg per m
2. Further, the ratio of silica to hydrophilic binder is preferably more than 1 and
the surface area of the colloidal silica is preferably at least 300 m
2 per gram, more preferably a surface area of 500 m
2 per gram.
[0030] In accordance to one embodiment of the present invention the heat-sensitive imaging
material is mounted on the press and image-wise exposed. The printing press is then
started and while the print cylinder with the imaging element mounted thereon rotates,
the dampener rollers that supply dampening liquid are dropped on the imaging element
and subsequent thereto the ink rollers are dropped. Generally, after about 10 revolutions
of the print cylinder the first clear and useful prints are obtained.
[0031] According to an alternative method, the ink rollers and dampener rollers may be dropped
simultaneously or the ink rollers may be dropped first.
[0032] According to another embodiment of the present invention after the heat-sensitive
imaging element has been exposed a dry or wet cleaning step is performed by applying
brush rollers or rollers that supply plain water to avoid contamination of the dampening
solution and ink.
[0033] The printing plates of the present invention can also be used in the printing process
as a seamless sleeve printing plate. This cylindrical printing plate wich has as diameter
the diameter of the print cylinder is slided on the print cylinder instead of applying
in a classical way a classically formed printing plate. More details on sleeves are
given in 'Grafisch Nieuws' ed. Keesing, 15, 1995, page 4 to 6.
[0034] In accordance to the method of the present invention for obtaining a lithographic
printing plate the heat-sensitive imaging element is image-wise scanning exposed using
a laser, preferably a laser that operates in the infrared or near-infrared, i.e. wavelenght
rang of 700-1500nm. Most preferred are laser diodes emitting in the near-infrared.
Preferably the laser used is a multibeam laser.
[0035] The following examples illustrate the present invention without limiting it thereto.
All parts and percentages are by weight unless otherwise specified.
EXAMPLES
Example 1
Preparation of the DTR material
[0036] On the back of a polyethylene terephtalate support with a thickness of 175 µ, was
coated a layer from a 11% wt solution in demineralized water ( pH=4), with a wet thickness
of 50 µm. The resulting layer contained 74.7% of titaniumdioxide, 8.6% of polyvinylalcohol,
16.2% of hydrolysed tetramethylorthosilicate and 0.5% of wetting agents.
[0037] On the other side of the polyethylene terephtalate support which is provided with
a hydrophilic subbing layer, is first coated a layer from a 20% wt solution in demineralized
water ( pH=4), with a wet coating thickness of 50 µm. This layer contained 82.7% of
titaniumdioxide, 9.1% of polyvinylalcohol, 8.2% of hydrolysed tetramethylorthosilicate
and 0.17‰ of palladiumsulphide (particle size 2-3 nm). On this base layer, a layer
of palladiumsulphide particles (2-3 nm) is coated from a 0.24‰ wt solution (pH=9)
in demineralized water, with a wet thickness of 13 µm. Finally, an emulsion layer
and top layer were simultaneously coated by means of the cascade coating technique.
The emulsion layer was coated with a wet thickness of 30 µm and such that the silver
halide coverage expressed as AgNO
3 was 2.50 g/m
2 and the gelatin content was 1.50 g/m
2. The toplayer was coated with a wet thickness of 15 µm such that the gelatin content
was 0.7 g/m
2. The top layer further contained 61 mg/m
2 of Levanyl Rot and 0.14 g/m
2 matting agent.
Preparation of the heat-sensitive imaging element
[0038] To obtain a heat-sensitive imaging element according to the present invention, the
unexposed DTR material as described above was developed for 12s at 24 °C in an aqueous
alkaline solution having the following ingredients:
Anhydrous sodium sulphite |
120 g |
Sodium hydroxide |
22 g |
Carboxymethylcellulose |
4 g |
Potassium bromide |
0.75 g |
Anhydrous sodium thiosulphate |
8 g |
Aluminum sulphate.18H2O |
8 g |
Ethylene diamine tetraacetic acid tetrasodium salt |
4.2 g |
Hydroquinone |
20 g |
Methylfenidon |
6.25 g |
Demineralized water to make |
1L |
pH (25°C) > 12.5 |
|
[0039] The initiated diffusion transfer was allowed to continue for 18 s to form a silver
layer, whereafter the material was rinsed with water containing 0.03‰ of trypsine
at 50 °C.
[0040] The thus obtained metallic silver layer was provided with a hydrophobic layer by
guiding the material through a finisher at 45°C, having the following composition:
Dextran 70000 |
40 g |
Polyethyleneglycol 200 |
50 ml |
Sodiumdihydrogenphosphate.2H2O |
20 g |
Citric acid |
22 g |
Potassium nitrate |
12.5 g |
Sodium hydroxide |
12.6 g |
1-phenyl-5-mercaptotetrazole |
0.5 g |
Biocide |
0.1 g |
Wetting agent |
261.5 mg |
Demineralized water to make |
1L |
pH (25°C) = 5.95 |
|
Exposing the heat-sensitive imaging element
[0041] This material was imaged with an Isomet diode external drum platesetter at 3.2 m/s
and 3600 dpi. The power level in the image plane was 253 mW. The plate was printed
on a Heidelberg GTO46 printing machine with a conventional ink (Van Son rubberbase)
and fountain solution (Rotamatic), by first applying dampening liquid to the surface
of the imaging element by dropping the dampening rollers of the printing press and
after 5 revolutions the ink rollers were dropped as well.
[0042] After 5 further revolutions paper was contacted resulting in excellent prints without
any scumming in the IR-exposed areas and good ink-uptake in the unexposed areas.
Example 2
Preparation of the DTR material
[0043] The DTR material was prepared as described in example 1.
Preparation of the heat-sensitive imaging element
[0044] To obtain a heat-sensitive imaging element according to the present invention, the
unexposed DTR material was developed for 12s at 24 °C in an aqueous alkaline solution
as described in example 1.
[0045] The initiated diffusion transfer was allowed to continue for 18 s to form a silver
layer, whereafter the material was rinsed with water at 50 °C.
[0046] The thus obtained metallic silver layer was coated with a novolac layer (2 g/m
2 Alvonol SPN452).
Exposing and printing the heat-sensitive imaging element
[0047] This material was imaged with an Isomet diode external drum platesetter at 3.2 m/s
and 3600 dpi. The power level in the image plane was 253 mW. The plate was printed
on a Heidelberg GTO46 printing machine under more critical conditions than example
1 with a conventional ink (K+E) and a fountain solution of 5% G671c (commercialy available
from Agfa-Gevaert N.V.) + 10% isopropanol, by first applying dampening liquid to the
surface of the imaging element by dropping the dampening rollers of the printing press
and after 5 revolutions the ink rollers were dropped as well.
[0048] After 5 further revolutions paper was contacted resulting in excellent prints without
scumming in the IR-exposed areas and good ink-uptake in the unexposed areas and a
runlenght > 3000 prints.
1. A method for making a lithographic printing plate comprising the steps of:
a. mounting a heat-sensitive imaging material, comprising on a lithographic base having
a hydrophilic surface, a metallic layer or a metal oxide layer and on top thereof
an oleophobic layer having a thickness of less than 5µm, on a print cylinder of a
printing press;
b. image-wise exposing said imaging material with an IR-laser;
c. rotating said print cylinder while supplying an aqueous dampening liquid and/or
supplying ink to said image forming layer of said imaging material
2. A method for making multiple copies of an original comprising the steps of:
a. mounting a heat-sensitive imaging material, comprising on a lithographic base having
a hydrophilic surface, a metallic layer or a metal oxide layer and on top thereof
an oleophobic layer having a thickness of less than 5µm, on a print cylinder of a
printing press;
b. image-wise exposing said imaging material with an IR-laser;
c. rotating said print cylinder while supplying an aqueous dampening liquid and/or
supplying ink to said image forming layer of said imaging material and
d. transferring ink from said imaging material to a receiving element.
3. A method according to claim 1 wherein said lithographic base comprises a plastic support
having thereon a crosslinked hydrophilic layer.
4. A method according to claim 3 wherein said crosslinked hydrophilic layer comprises
a hydrophilic binder crosslinked by means of a hydrolysed tetra-alkylorthosilicate.
5. A method according to claim 1 wherein said oleophobic layer contains a polymer having
phenolic groups or a hydroxyphenyl substituted polymer.
6. A method according to claim 1 wherein said metallic layer is a metallic silver or
bismuth layer.
7. A method according to claim 1 wherein said metal oxide layer is a titaniumoxide layer.
8. A method according to claim 1 wherein said image-wise exposure is carried out by means
of a multibeam IR-laser.
9. A method according to claim 1 wherein the imaging material is a web material.
10. A method according to claim 1 wherein a dry or wet cleaning step is performed after
the exposure of the heat-sensitive imaging material.