
European Patent Office
^ ̂ ̂ ^ I ̂ ̂ ̂ ̂ ̂ ̂ II ̂ ̂ ̂ II ̂ II ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ I ̂

Office europeen des brevets E P 0 9 3 6 5 4 2 A 2

EUROPEAN PATENT A P P L I C A T I O N

(43) Date of publication: (51) |nt CI.6: G06F 9 / 3 8
18.08.1999 Bulletin 1999/33

(21) Application number: 99300779.8

(22) Date of filing: 03.02.1999

(84) Designated Contracting States: • Ray, David Scott
AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU Georgetown, Texas 78628 (US)
MC NL PT SE • Chiarot, Kevin Arthur
Designated Extension States: Pflugerville, Texas 78660 (US)
AL LT LV MK RO SI • Williamson, Barry Duane

Round Rock, Texas 78681 (US)
(30) Priority: 10.02.1998 US 21134

(74) Representative: Moss, Robert Douglas
(71) Applicant: International Business Machines IBM United Kingdom Limited

Corporation Intellectual Property Department
Armonk, NY 10504 (US) Hursley Park

Winchester Hampshire S021 2JN (GB)
(72) Inventors:

• Tung, Shih-Hsiung Stephen
Austin, Texas 78726 (US)

(54) Detection of out of order instruction execution

(57) The present invention is directed towards a
means to detect and reorder out of order instructions
that may violate data coherency. The invention compris-
es a mis-queue table for holding entries of instruction
data, each entry corresponding to an instruction in a
computer microprocessor. The instruction data in each
entry comprises: i) address information for the instruc-
tion; ii) ordering information for the instruction, indicating
the order of the instruction relative to other instructions
in the mis-queue table; iii) data modification information
for the instruction, for indicating a possibility of modified
data; and iv) out of order information, for indicating that
a newer instruction has completed before the corre-
sponding older instruction to the entry. The invention al-
so comprises an out of order comparator for comparing

an address of a completed instruction to any address
information entries in the miss queue. If a completed in-
struction accesses the same address as another in-
struction, as indicated in the address information in the
mis-queue table, and the completed instruction is newer
than the matched instruction, the out of order field is
marked indicating this condition exists. The invention
comprises a modification comparator. This compares
addresses from data altering events to those addresses
in the entries in the mis-queue table. On a match, the
modification field of the corresponding entry is marked
to indicate this condition exists. When an instruction en-
try indicates that the corresponding instruction's data is
modified, and that the instruction is out of order, all sub-
sequent instructions are cancelled.

CM
<
CM
^>
lO
CO
CO
O)
o
a .
LU

F I G . 6

570 540 550 560 530 520 J

, S ■ S / S A i / i h

190

ID E/A ; R/A M 0

5 1 0
ADDRESS

Printed by Jouve, 75001 PARIS (FR)

1 EP 0 936 542 A2 2

Description

Field of the Invention

[0001] This invention relates generally to the field of
computer processors, and more particularly, to proces-
sors which are integrated on a single microprocessor
chip. Still more particularly, the invention relates to de-
tection and correction of data coherency problems in-
herent in out of order processing, especially in a multiple
CPU system.

Background of the Invention

[0002] Providing ever faster microprocessors is one
of the major goals of current processor design. Many
different techniques have been employed to improve
processor performance. One technique which greatly
improves processor performance is the use of cache
memory. As used herein, cache memory refers to a set
of memory locations which are formed on the microproc-
essor itself, and consequently, has a much faster access
time than other types of memory, such as RAM or mag-
netic disk, which are located separately from the micro-
processor chip. By storing a copy of frequently used da-
ta in the cache, the processor is able to access the
cache when it needs this data, rather than having to go
"off chip" to obtain the information, greatly enhancing
the processor's performance.
[0003] However, certain problems are associated with
cache memory. In particular, a great problem exists
when multiple processors are employed in a system and
need the same data. In this case, the system needs to
ensure that the data being requested is coherent, that
is valid for the processor at that time. Another problem
exists when the data is stored in the cache of one proc-
essor, and another processor is requesting the same in-
formation.
[0004] Superscalar processors achieve performance
advantages over conventional scalar processors be-
cause they allow instructions to execute out of program
order. In this way, one slow executing instruction will not
hold up subsequent instructions which could execute
using other resources on the processor while the stalled
instruction is pending.
[0005] In a typical architecture, when an instruction
requires a piece of data, the processor goes first to the
onboard cache to see if the data is present in the on-
board cache. Some caches have two external ports, and
the cache can be interleaved. This means that, for ex-
ample in FIG. 1 , a cache 100 has two cache banks, 140
and 130. One cache bank could be for odd addresses
and the other cache bank would then be for even ad-
dresses.
[0006] Internally, each cache bank 140 and 130 cache
has an internal input port (not shown) to which address
information of a cache request is made. In FIG. 1, the
data for address A1 is stored on cache line 1 1 0 in cache

bank 130, and the data for address A2 is stored on
cache line 120 in cache bank 140. Cache 100 has two
external ports for input data, port 180 and port 190.
[0007] Cache request 1 shows a cache request for an

5 instruction 1 (not shown), and Request 2 shows a cache
request for instruction 2 (not shown). Instruction 1 is an
older instruction than instruction 2, meaning it should be
executed before instruction 2. If a superscalar processor
has multiple load units, such as in the PowerPC™ proc-

10 essor from IBM Corporation, Austin, TX., then both in-
structions could make a cache request at the same time.
In the example shown, both instruction 2 and instruction
1 are attempting to access data at address Al, and have
submitted cache requests to cache 100 to do so.

75 [0008] Since bank 130 only has one internal input
port, both cache requests cannot be processed at the
same time. This is due to the interleaved nature of cache
100.
[0009] FIG. 2 shows what happens when cache re-

20 quest 2 accesses cache bank 1 30 before cache request
1 . Cache request 2 hits in cache bank 1 30 for the data
it needs. However, cache request 1 cannot access
cache bank 130 until at least the next cycle. Thus, newer
instruction 2 can get the data it needs before older in-

25 struction 1 can. Newer instruction 2 can complete before
older instruction 1 in this case because of this port allo-
cation conflict.
[0010] The same ordering problem can occur when
an older instruction misses in the cache, and a newer

30 instruction hits. A miss occurs when the address of the
data cannot be found in the memory management unit,
and the memory management unit must then request
that the data be brought from higher memory. A hit oc-
curs when both the address of the data and the data are

35 accessible through the memory management unit and
the cache, and this data can be output to an instruction
waiting for it.
[0011] A cache miss with an older instruction followed
by a cache hit by a newer instruction, both attempting

40 to access the same data, can occur when the real ad-
dress of the data is represented by two different effective
addresses, when the effective address requested by the
newer instruction and its data are already accessible by
the memory management unit and the cache, and

45 where the older instruction address and data is not ac-
cessible in the memory management unit and the
cache, this also leads to a situation where a newer in-
struction accessing the same data as an older instruc-
tion can complete before the older instruction.

so [0012] In multi-processor systems, a cache miss in
one processor may trigger a "snoop" request to the other
processors in the system. This snoop request indicates
to the other processors that the data being "snooped" is
being requested by another processor, and the other

55 processors should determine whether the address be-
ing sought resides in their own cache. If it is, the main
memory data should be made coherent, that is updated
to reflect the correct current state of the system state.

2

3 EP 0 936 542 A2 4

[0013] In terms of superscalar architecture, this prob-
lem is compounded by the fact that any loads may be
finished out of order, or in other words, a newer instruc-
tion may be marked for completion before an older one.
That is, a newer instruction may be marked as set to
execute before an older one is. Thus, two load instruc-
tions may address the same cache location, and the
newer instruction may actually be furnished with a piece
of data before the older instruction. Thus, the newer in-
struction be marked for completion out of order possibly
causing false data to be used in the completion of the
instruction, when a later load instruction bypasses an
earlier load instruction, the earlier load instruction may
get newer data than it should have received based on
the original program order.
[0014] Previous solutions to this coherency problem
include the one detailed in European Published Appli-
cation EP 0 7855004 entitled "A Method and System for
Bypassing in a Load/Store Unit of a Superscalar Proc-
essor". In this solution, a Load Queue held a page index
and a real address along with a an ID and a valid bit.
The ID indicated the program order of the load instruc-
tion.
[0015] In addition to the aforementioned entries, the
Load Queue entry also held a modified field which indi-
cates whether the cache line entry for the address has
been modified, when a cache access, such as a store
instruction or a snoop request, indicates that the cache
line may have been modified, the Load Queue is
searched. If it contains an entry for the same line, the
modified bit is set to indicate a possible modification.
[0016] Any subsequent load would perform a compar-
ison of the Load Queue entries. If the same line is pend-
ing in the Load Queue and marked as modified, the ID
field is checked. If thecurrent line is olderthan that which
was pending and modified, the pending loads in the
Load Queue are cancelled and re-executed after the
subsequent load. This avoids the problem of having the
older load get newer data than the newer load.

Summary of the Invention

[0017] According to a first aspect, the invention pro-
vides an apparatus for out of order execution of instruc-
tions comprising: a) a mis-queue table for holding en-
tries of instruction data, each entry corresponding to an
instruction in a computer microprocessor, the instruction
data comprising: i) address information for the instruc-
tion; ii) order information for the instruction, for indicating
the order of the corresponding instruction in relation to
other instructions; iii) out of order information, for indi-
cating that a newer instruction using data at the address
corresponding to the address information field has com-
pleted before the current entry; iv) data modification in-
formation for the instruction, for indicating a possibility
of modified data at the address corresponding to the ad-
dress information field; b) an out of order comparator for
setting the out of order information field of an entry in

the mis-queue table, the out of order information field of
a compared entry being set if a newer instruction using
data at the address corresponding to the address infor-
mation field in the compared entry has completed before

5 the compared entry; c) a modification comparator for
comparing address information in the address informa-
tion field in an entry in the mis-queue table to a possibly
modified address, wherein the modification field in the
entry is marked to indicate modified data at the address

10 if the modified address is comparable to the address in-
formation in the instruction entry being compared.
[0018] According to a second aspect, the invention
provides a method for detecting out of order instructions
in a microprocessor which may cause a data coherency

is violation, the method comprising: a) preparing a new in-
struction to execute on the microprocessor, the new in-
struction having a data address; b) if the new instruction
is set to execute, then: i) comparing the data address of
the instruction to existing entries in a mis-queue table,

20 the instruction entries corresponding to previous in-
structions, the instruction entries containing address in-
formation, instruction order information, an out of order
indicator, and a modified data indicator; ii) if the data
address of the new instruction is comparable to address

25 information of an entry in the mis-queue table, marking
the comparable entry in the mis-queue table as an out
of order instruction; c) if the new instruction is not set to
execute, creating an entry for the new instruction in the
mis-queue table, whereby the data address of the new

30 instruction is put in the address information of the new
instruction entry, and information on the order of the in-
struction is put in the ordering information of the new
instruction entry.
[0019] This invention provides a novel means to elim-

35 inate the load queue and only cancel the instruction that
may have finished with the wrong data.
[0020] The invention provides a mis-queue table to
hold any rejected attempts to access the cache, or any
other reason that an instruction cannot be completed.

40 [0021] In the preferred embodiment, all instructions
create an initial entry in the mis-queue table. If the data
for the instruction is in the cache and available, the in-
struction entry in the mis-queue table is taken out of the
mis-queue table. The processor does this after search-

es ing the mis-queue table for possible ordering problems.
The instruction is then marked for completion by the se-
quencing unit of the processor, using the data found in
the cache.
[0022] An ordering problem occurs when an older in-

50 struction is completed after a newer instruction, and the
newer and older instructions access data at the same
address.
[0023] If the data for the instruction is not available in
the cache, or otherwise unable to complete, the instruc-

ts tion entry created in the mis-queue table stays in the
mis-queue table until the instruction is ready to com-
plete, when the instruction is ready to complete, such
as when data is ready in the cache, the instruction is

3

5 EP 0 936 542 A2 6

then marked for completion. The instruction entry is then
deleted from the mis-queue table.
[0024] When an instruction is ready to complete, the
associated entry is deleted from the mis-queue table. A
search is made of the mis-queue table for any previous
instruction entries involving the same address. If any
previous instruction entry is found with the same ad-
dress as the completing entry, the previous instruction
entries are marked as being out of order, since they have
not completed yet. As noted before, this can happen, for
example, when the instructions have aliased the same
data address, and the older instructions have not been
notified by the cache that the data is ready for use.
[0025] It should be noted that whether all instructions
create entries in the mis-queue table, and instruction en-
tries ready to complete are pulled out on the next cycle,
or whether only rejected instructions create entries in
the mis-queue table, the functional result is the same.
The result is that instruction entries corresponding to in-
structions that complete immediately do not stay in the
mis-queue table, and only instruction entries corre-
sponding to instructions that do not complete immedi-
ately remain in it.
[0026] This eliminates the need to have a load queue
since all present instructions are either deemed valid
and set to be run or have a corresponding entry placed
into a mis-queue table to wait for data.
[0027] If a present instruction is completed, the ad-
dress of the data is checked against the entries in the
mis-queue table for a match. If a match is present, the
matching entries in the mis-queue table are marked as
out of order. That is, a newer instruction accessing data
from an address has been set for completion earlier than
an older instruction to the same address, then the older
instruction is completed out of order, and its entry in the
mis-queue table should be marked as such.
[0028] Further, when the cache returns valid data for
an instruction having an entry in the mis-queue table for
awhile, the instruction corresponding to that entry is set
for completion. A similar search is made in the mis-
queue table for older instruction entries corresponding
to instructions accessing data at that address that have
not yet completed. If any matches are found, any match-
ing older entries will be marked as out of order.
[0029] If a data coherency altering event happens,
such as a snoop request, the mis-queue table is inter-
rogated. Any entry with the same address of the data
coherency altering event is marked as modified.
[0030] When an instruction entry is released from the
mis-queue table, the instruction is completed. The proc-
essor then determines if certain events have occurred.
If an instruction entry in the mis-queue table indicates
that the instruction corresponding to that entry is both
out of order and modified, any instructions that are sup-
posed to execute after that out of order and modified
instruction will be cancelled and re-executed, thus pre-
serving data coherency.

Brief Description of the Drawings

[0031] FIG. 1 is a diagram of an interleaved cache,
showing two instructions attempting to access the same

5 data on one of the cache banks.
[0032] FIG. 2 is a diagram of a newer instruction ac-
cessing the data prior to an older instruction in the cache
of FIG. 1 , and how an out of order completion may occur.
[0033] FIG. 3isablockdiagramofasuperscalarproc-

10 essor.
[0034] FIG. 4 is a block diagram of a load circuit in a
superscalar processor.
[0035] FIG 5 is a diagram of a mis-queue table ac-
cording to the preferred embodiment of the invention.

is [0036] FIG. 6 is a diagram of an entry in mis-queue
table showing the fields.
[0037] FIGS 7-10 diagram how an embodiment of
the present invention detects out of order instruction
completion.

20 [0038] FIGS. 1 1 a - 1 1 d diagram how an embodiment
of the invention works.

Detailed Description of the Invention

25 [0039] FIG. 3 is a block diagram of a processor sys-
tem 10 for processing information in accordance with
the present invention. In the preferred embodiment,
processor 10 is a single integrated circuit superscalar
microprocessor, such as the PowerPC™ processor

30 from IBM Corporation, Austin, TX. Accordingly, as dis-
cussed further hereinbelow, processor 10 includes var-
ious units, registers, buffers, memories, and other sec-
tions, all of which are formed by integrated circuitry. Al-
so, in the preferred embodiment, processor 10 operates

35 according to reduced instruction set computing ("RISC")
techniques. As shown in FIG. 3, a system bus 11 is con-
nected to a bus interface unit ("Bill") 12 of processor
10. BIU 12 controls the transfer of information between
processor 10 and system bus 11.

40 [0040] Bl U 1 2 is connected to an instruction cache 1 4
and to a data cache 16 of processor 10. Instruction
cache 1 4 outputs instructions to a sequencer unit 1 8. In
response to such instructions from instruction cache 1 4,
sequencer unit 18 selectively outputs instructions to oth-

45 er execution circuitry of processor 10.
[0041] In addition to sequencer unit 18 which includes
execution units of a dispatch unit 46 and a completion
unit 48, in the preferred embodiment the execution cir-
cuitry of processor 1 0 includes multiple execution units,

so namely a branch unit 20, a fixed point unit a ("FXUA")
22, a fixed point unit B ("FXUB") 24, a complex fixed
point unit ("CFXU") 26, a load/store unit ("LSU") 28 and
a floating point unit ("FPU") 30. FXUA 22, FXUB 24,
CFXU 26 and LSU 28 input their source operand infor-

ms mation from general purpose architectural registers
("GPRs") 32 and a fixed point rename buffers 34. More-
over, FXUA 22 and FXUB 24 input a "carry bit" from a
carry bit ("CA") register 42. FXUA 22, FXUB 24, CFXU

4

7 EP 0 936 542 A2 8

26 and LSU 28 output results (destination operand in-
formation) of their operations for storage at selected en-
tries in fixed point rename buffers 34. Also, CFXU 26
inputs and outputs source operand information and des-
tination operand information to and from special pur-
pose registers ("SPRs") 40.
[0042] FPU 30 inputs its source operand information
from floating point architectural registers ("FPRs") 26
and floating point rename buffers 38. FPU 30 outputs
results (destination operand information) of its operation
for storage at selected entries in floating point rename
buffers 38.
[0043] Sequencer unit 1 8 inputs and outputs informa-
tion to and from GPRs 32 and FPRs 36. From sequencer
unit 18, branch unit 20 inputs instructions and signals
indicating a present state of processor 10. In response
to such instructions and signals, branch unit 20 outputs
(to sequencer unit 18) signals indicating suitable mem-
ory addresses storing a sequence of instructions for ex-
ecution by processor 10. In response to such signals
from branch unit 20, sequencer unit 18 inputs the indi-
cated sequence of instructions from instruction cache
1 4. If one or more of the sequence of instructions is not
stored in instruction cache 14, then instruction cache 14
inputs (through BIU 12 and system bus 11) such instruc-
tions from system memory 39 connected to system bus
11.
[0044] In response to the instructions input from in-
struction cache 14, sequencer unit 18 selectively dis-
patches through a dispatch unit 46 the instructions to
selected ones of execution units 20, 22, 24, 26, 28 and
30. Each execution unit executes one or more instruc-
tions of a particular class of instructions. For example,
FXUA 22 and FXU B 24 execute a first class of fixed point
mathematical operations on source operands, such as
addition, subtraction, ANDing, Oring and XORing.
CFXU 26 executes a second class of fixed point opera-
tions on source operands, such as fixed point multipli-
cation and division. FPU 30 executes floating point op-
erations on source operands, such as floating point mul-
tiplication and division.
[0045] Processor 10 achieves high performance by
processing multiple instructions simultaneously at vari-
ous ones of execution units 20, 22, 24, 26, 28 and 30.
Accordingly, each instruction is processed as a se-
quence of stages, each being executable in parallel with
stages of other instructions. Such a technique is called
"pipelining". In a significant aspect of the preferred em-
bodiment, an instruction is normally processed at six
stages, namely fetch, decode, dispatch, execute, com-
pletion and writeback.
[0046] In the preferred embodiment, each instruction
requires one machine cycle to complete each of the
stages of instruction processing. Nevertheless, some in-
structions (e.g., complex fixed point instructions execut-
ed by CFXU 26) may require more than one cycle. Ac-
cordingly, a variable delay may occur between a partic-
ular instruction's execution and completion stages in re-

sponse to the variation in time required for completion
of preceding instructions.
[0047] In response to a Load instruction, LSU 28 in-
puts information from data cache 26 and copies such

5 information to selected ones of rename buffers 34 and
38. If such information is not stored in data cache 16,
then data cache 16 inputs (through BIU 12 and system
bus 1 1) such information from a system memory 39 con-
nected to system bus 11. Moreover, data cache 16 is

10 able to output (through BIU 12 and system bus 11) in-
formation from data cache 1 6 to system memory 39 con-
nected to system bus 11 .
[0048] Referring nowto FIG. 4, there is shown asche-
matic diagram illustrating a circuit for processing instruc-

ts tions, such as a load, according to an embodiment of
the invention. An address to the data unit 204 which con-
tains the control logic required to physically access the
cache 206. Cache 206 has an output port connected to,
in this case, a 64-bit data line which passes data from

20 the cache 206 into the Formatter 210 to be processed,
if the data is in the cache.
[0049] In one embodiment of the invention, each time
an instruction is dispatched an entry in a mis-queue ta-
ble 600 is created. If the instruction hits in the data

25 cache, then on the following cycle the entry for that in-
struction is removed from the mis-queue table 600.
However, if the instruction misses in the data cache,
then its real address, and possibly its effective address,
and other information remains in mis-queue table 600.

30 The processor continually scans the address informa-
tion in the entries in the mis-queue table, and each cycle
the processor attempts to access the cache at the ef-
fective address stored in mis-queue table 600. Eventu-
ally, the data becomes available in the cache for each

35 of the entries in the mis-queue table 600 and is passed
onto the formatter to be processed.
[0050] It should be noted, that instead of accessing
the cache through the effective address, as explained
above, a microprocessor can attempt to access the

40 cache via a real address stored in the cache. It should
be noted that this is a matter of implementation, and
does not affect the overall invention.
[0051] However, it should be noted that a present in-
struction need not initially be placed in mis-queue table

45 600 for the current invention to work. The present in-
struction need only be represented in the mis-queue ta-
ble 600 when, for whatever reason, the present instruc-
tion cannot be set to complete immediately after it is in-
itially introduced by the sequencing unit.

so [0052] In the preferred embodiment, instruction en-
tries are stored in order in mis-queue table 600. This is
diagrammed in FIG. 5, where the instruction generating
instruction entry 410 is an older instruction than the in-
struction generating instruction entry 420, thus instruc-

ts tion entry 410 is stored higher in the mis-queue table
600 than instruction 420. However, it should be noted
that with appropriate identification and ordering informa-
tion, instructions could be stored in the mis-queue table

5

9 EP 0 936 542 A2 10

in no particular order.
[0053] An entry in the mis-queue table is represented
in FIG. 6. The minimal information necessary for the in-
vention is an address information field 510, an out of
order information field 520, and a modified data infor-
mation field 530. The address information can also have
subfields, including real address information 540, and
effective address information 550. The mis-queue table
entry may also have other information associated with
it, such as a valid field 560, and an instruction id field
570, which could be used as ordering information.
[0054] In another embodiment, the entries in the mis-
queue table are stored out of order in the mis-queue ta-
ble. The valid field 560 in FIG. 6 indicates whether the
mis-queue table entry is indeed still in the mis-queue
table 600. A new entry is created in the first mis-queue
table line not having the valid field 560 set. Ordering in-
formation is preserved with the use of instruction id field
570.
[0055] Turning now to FIG. 7, a new instruction 800
accessing data at address D is initially presented by the
processor. In the preferred embodiment, an entry 61 0 is
created for new instruction 800 in the next available slot
in the mis-queue table 600. If new instruction 800 com-
pletes immediately, the processor checks the older en-
tries 620, 630, and 640 in mis-queue table 600 against
new instruction 800. Specifically, the address of the new
instruction 800 is checked against the address informa-
tion 51 0 of all older entries in mis-queue table 600 for a
comparable address. By definition, all entries contained
in mis-queue table 600 must correspond to older instruc-
tions than new instruction 800.
[0056] It should be noted that if new instruction 800
completes on the next cycle, entry 610 would be delet-
ed. It should also be noted that entry 610 need not be
created immediately. The operand address of new in-
struction 800 could be checked against the address in-
formation in the entries in mis-queue table 600, and only
if new instruction 800 does not complete with the next
clock cycle would entry 61 0 be created for it.
[0057] In an alternative embodiment, entry 610 would
not be deleted, but would have the valid field set to in-
dicate it was no longer a valid mis-queue table entry. A
newer entry could then use this line in mis-queue table
600.
[0058] Suppose the data for new instruction 800 is
present in the cache. Then, new instruction 800 is set
for completion with the data found for it in the cache.
The address that new instruction 800 is supposed to use
is then compared against address information 51 0 in all
older entries in the mis-queue table 600. If any matches
to the new instruction 800's address are comparable to
an address information field 510 in any entry corre-
sponding to an earlier instruction in mis-queue table
600, those matching entries are marked as out of order.
Out of order means that a newer instruction has been
marked for completion that uses the data at an address
that an older instruction, still in the mis-queue table, is

also to use. Out of order field 520 is used to mark an
entry as out of order.
[0059] FIG. 8 shows the mis-queue table 600 after in-
struction 800 has completed on the next clock cycle.

5 Note that instruction entry 620 has been marked as out
of order using out of order field 520, since it has not com-
pleted and it accesses data at the same memory loca-
tion as new instruction 800.
[0060] If new instruction 800 has to wait on the data

10 from the cache, it enters the mis-queue table as entry
610 and will remain there until it can complete, as shown
in FIG. 9. FIG. 9 also shows that several other instruction
entries have been added to the mis-queue table 600 in
the interim. At some later time, the data cache has the

is data ready for new entry 610, but not matching entry
620. Thus, new instruction 800 has completed.
[0061] When new instruction 800 is completed, the
processor scans the entries in the mis-queue table
which correspond to instructions older than instruction

20 800, that is all entries above corresponding entry 610.
The processor searches earlier entries for an address
comparable to new instruction entry address field 650.
If an older instruction entry going to the same address
as found in new instruction entry 610, the older instruc-

ts tion entry is marked as out of order, as shown in FIG. 10.
[0062] When new instruction 800 is completed, its en-
try in mis-queue 600 is deleted. In the preferred embod-
iment all others entries move up, thus preserving the
timing order of the table as shown in FIGS. 9 and 10.

30 [0063] If at any time the data changes for an instruc-
tion, the entry must indicate this. Thus, if a snoop, or
other indication of data change, occurs while an instruc-
tion entry is in mis-queue table 600, modified indicator
530 of the corresponding instruction entry will be set to

35 indicate a potential problem. The processor scans the
entries and marks each entry that has an address that
indicates the same address on a data change as being
modified.
[0064] when data coherency has possibly been vio-

40 lated, both the out of order indicator and the modified
indicator will both show that these events have oc-
curred. This means a newer instruction which has been
set for completion earlier than an older instruction, may
have older data associated with it than the older instruc-

ts tion. This would probably violate data coherency.
[0065] FIGS 1 1 a, 1 1 b, 1 1 c, and 1 1 d show a sequence
in which this problem is detected. Mis-queue table 600
has initial entries 1110, 1120, and 1130, corresponding
to instructions 1210, 1220, and 1230 respectively. New

so instruction 1240 is initiated going to memory location a,
and its data is found in the cache. Entry 1110 is then
marked as out of order when new instruction 1240 is
completed before it in FIG. 11b. Snoop request 1140 is
made indicating that memory location a has changed in

55 FIG. 11c. Upon interrogating mis-queue table 600, entry
1110 is marked as modified. Thus, entry 1110 indicates
a data coherency problem with the data coming from a.
[0066] It should be noted that new instruction 1 240 in-

6

11 EP 0 936 542 A2 12

itiated an entry 1150 in the mis-queue table 600 even
when it cleared out immediately. It should be noted that
if new instruction 1 240 missed in the cache, initiated en-
try 1150 would remain on the mis-queue table 600. It
should also be noted that entry 1150 could be created
after the miss. The important thing is that new instruction
1240's operand address be compared to the entries in
the mis-queue table, and any matches should be
marked if new instruction 1 240 completes before the in-
structions corresponding to older entries 1110, 1120,
and 1130.
[0067] When an instruction entry is shown to be mod-
ified and out of order, as in the case of entry 1110, the
newer instruction causing the older instruction entry to
be marked as out of order cannot be run. In the preferred
embodiment, when the instruction corresponding to en-
try 1110 is completed, the mis-queue table reports to
completion logic that a problem has occurred with the
instruction corresponding to this entry. The instruction
corresponding to entry 1110 is completed and allowed
to execute. However, all instructions following that initi-
ating entry 1110, namely instructions 1220, 1230, and
1 240, and any other instructions that completed and are
set to execute after the instruction corresponding to en-
try 1110 are cancelled and reset go through the entire
run process again.
[0068] In the preferred embodiment of the invention,
the addresses are only compared to a set granularity.
Thus, addresses are only compared to the double word
boundary to indicate a potential problem. However, it
should be noted that actual addresses could be com-
pared, as well as other granularities.
[0069] In the preferred embodiment of the invention,
after the error situation is detected, all instructions after
the instruction indicating the problem are flushed and
reset for execution. Thus data coherency is preserved
in the flush of the remaining instructions.

Claims

1. An apparatus for out of order execution of instruc-
tions comprising:

a) a mis-queue table for holding entries of in-
struction data, each entry corresponding to an
instruction in a computer microprocessor, the
instruction data comprising :

i) address information for the instruction;
ii) order information for the instruction, for
indicating the order of the corresponding
instruction in relation to other instructions;
iii) out of order information, for indicating
that a newer instruction using data at the
address corresponding to the address in-
formation field has completed before the
current entry;

iv) data modification information for the in-
struction, for indicating a possibility of mod-
ified data at the address corresponding to
the address information field;

5
b) an out of order comparator for setting the out
of order information field of an entry in the mis-
queue table, the out of order information field
of a compared entry being set if a newer instruc-

10 tion using data at the address corresponding to
the address information field in the compared
entry has completed before the compared en-
try;

is c) a modification comparator for comparing ad-
dress information in the address information
field in an entry in the mis-queue table to a pos-
sibly modified address, wherein the modifica-
tion field in the entry is marked to indicate mod-

20 ified data at the address if the modified address
is comparable to the address information in the
instruction entry being compared.

2. The apparatus of claim 1, wherein the apparatus
25 cancels all instructions following an instruction cor-

responding to an instruction entry that indicates an
out of order instruction and modified data.

3. The apparatus of claim 1 wherein the out of order
30 comparator compares all data address information

in an entry to determine if the addresses are com-
parable.

4. The apparatus of claim 1 wherein the out of order
35 comparator compares a portion of the data address

information in an entry to determine if the addresses
are comparable.

5. A method for detecting out of order instructions in
40 a microprocessor which may cause a data coher-

ency violation, the method comprising :

a) preparing a new instruction to execute on the
microprocessor, the new instruction having a

45 data address;

b) if the new instruction is set to execute, then :

i) comparing the data address of the in-
50 struction to existing entries in a mis-queue

table, the instruction entries corresponding
to previous instructions, the instruction en-
tries containing address information, in-
struction order information, an out of order

55 indicator, and a modified data indicator;
ii) if the data address of the new instruction
is comparable to address information of an
entry in the mis-queue table, marking the

7

13 EP 0 936 542 A2

comparable entry in the mis-queue table as
an out of order instruction;

c) if the new instruction is not set to execute,
creating an entry for the new instruction in the s
mis-queue table, whereby the data address of
the new instruction is put in the address infor-
mation of the new instruction entry, and infor-
mation on the order of the instruction is put in
the ordering information of the new instruction 10
entry.

The method of claim 5 further comprising the steps
of :

15
d) continually scanning the mis-queue table for
entries corresponding to instructions set to ex-
ecute;

e) when an instruction corresponding to an en- 20
try in the mis-queue table is set to execute :

i) comparing the address information of the
entry corresponding to the instruction set
to execute with the address information of 25
entries in the mis-queue table correspond-
ing to older instructions than the instruction
set to execute;
ii) if an entry is found in the mis-queue table
corresponding to an older instruction than 30
the instruction set to execute, and if the ad-
dress information of the entry correspond-
ing to the instruction set to execute is com-
parable to the address information in the
entry corresponding to the older instruc- 35
tion, the entry corresponding to the older
instruction is marked as out of order;
iii) removing the entry corresponding to the
instruction set to execute from the mis-
queue table. 40

The method of claim 6 further comprising the steps
of :

f) continually scanning for data altering events; 45

g) when a data altering event happens :

i) broadcasting the address of the altered
data to the mis-queue table; so
ii) comparing the address of the altered da-
ta to address information in the entries of
the mis-queue table;
iii) if the address of the altered data and the
address of an entry in the mis-queue table 55
are comparable, the entry in the mis-queue
table having the comparable address is
marked as modified.

8

EP 0 936 542 A2

F I G . 1

1 1 0 -

1 3 0 -

■ A1 A2

f
1 8 0 '

CACHE REQUEST
NUMBER 1 FOR DATA

AT ADDRESS A1

120

140

t t t t

100

N 9 0
CACHE REQUEST

NUMBER 2 FOR DATA
AT ADDRESS A1

F I G . 2

n o -

1 3 0 -

A1 A2

•

f
1 8 0 '

CACHE REQUEST
NUMBER 1 FOR DATA

AT ADDRESS A1

120

t t t t

1 0 0

N 9 0
CACHE REQUEST

NUMBER 3 FOR DATA
AT ADDRESS A2

CACHE REQUEST
NUMBER 2 HITS
IN CACHE;

CACHE RETURNS
DATA FOR
INSTRUCTION

r F = n

■> =>

2 -hh. o „ .
< — >

CO

^TI I £
a; I i

- UJ

1

- m

EP 0 936 542 A2

202

204
BUSY

208

7

DATA UNIT

CACHE
206

2 1 0 ^ T

F I G . 4

212

64

5 E

._ i

m .
^ T / 2 1 4

FORMATTER
1 /

MERGE

216-A mux 7
L_

200

J
600

570 540 550 560 530 520 /
S i \ ■ S. ,S , / , /■
ID E/A - R/A M

510
ADDRESS

190

n

EP 0 936 542 A2

8 0 (K
Ld D -*> R.

520
/ ̂ — ass
 ̂ V 0 M

D
A
B
D

650

620
630
640
610

600

F I G . 7

520

=v V 0 M
0 v7
A
B

F I G . 8

6 2 0
630
6 4 0

520
510 > « >

 ̂ V 0 M
D

A
B

D
E
F
G

F I G . 9

5 1 0 ^
520

V 0 M
D �

A

B
E

F

F I G . 1 0

620

630

640
650

660

I2

EP 0 936 542 A2

1240
LD(A) Rz

520

 ̂ V 0 M
600

A
B
C
A

- 1 1 1 0
- 1 1 2 0
- 1 1 3 0
- 1 1 5 0

F I G . 1 1 a

520

V 0 M
A s/ -
B
C

F I G . 1 1 b

1110
1120
1130

5 1 0 ^
520

V 0 M
A �
B
C

F I G . 1 1 c

5N00P A
. 1 1 4 0

520 ,530
> 1 0 / = = * = = ,
+ > V 0 M
A � �
B

C

U I G . 1 1 d

i

	bibliography
	description
	claims
	drawings

